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	 For a hybrid vehicle, an appropriate energy management strategy is crucial to distribute the 
energy to satisfy the power performance of the vehicle. The plug-in hybrid electric vehicle 
(PHEV)’s driving conditions in Fuzhou, China were simulated in this study considering the 
power components, driver’s habit, and dynamics module using Matrix Laboratory (MATLAB) 
and Simulink. In the simulation, the adaptive equivalent consumption minimization strategy 
(ECMS) simulation model was constructed. The equivalent factors for initial states of batteries, 
driving distances, and driving conditions were optimized using the variable-step Firefly 
Algorithm with an established library of optimal equivalent factors. A penalty function was 
introduced using the reference curve to dynamically adjust the equivalence factors in real time. 
The backpropagation neural network was used to build the Simulink model for driving condition 
determination, and its prediction accuracy reached 88.7%. Compared with the rule control 
strategy, adaptive ECMS improved the fuel economy by 7.77 and 4.48%. The results serve as a 
reference for developing an integration strategy for sensor data to enhance PHEV performance. 

1.	 Introduction

	 For the energy management of hybrid vehicles, rule-based and optimization-based control 
strategies are used. Sensor technology is essential to develop an energy management strategy 
(EMS) for hybrid vehicles as collecting real-time data is crucial to optimize energy usage. 
Sensors are used to monitor the state of charge (SOC) and state of health (SOH) of the battery, 
engine speed, torque, and fuel consumption, and optimize torque distribution and energy 
efficiency.(1,2)

	 On the basis of sensor data, rule-based control strategies are established on deterministic and 
fuzzy rules while optimization-based control strategies are established on offline global 
optimization and online transient optimization. Peng et al. used a dynamic programming (DP) 
algorithm to optimize the range of engine operation using rule-based control strategies to reduce 
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power and fuel consumption.(3) Ding et al. determined 12 different operating statuses in 
accordance with different power requirements in rule-based control strategies.(4) They used 
genetic algorithms (GAs) to optimize the parameters to reduce the emission of polluting gases.(4) 
Xu et al. used GA and DP algorithms to optimize the fuzzy control parameters to improve the 
fuel economy.(5) Bo et al. optimized the fuzzy rule parameters by using a quality-learning 
algorithm and a gradient descent method to shorten the computation time and enhance the fuel 
economy and vehicle dynamic performance.(6) Wang et al. applied the DP algorithm to a plug-in 
hybrid electric vehicle (PHEV) to calibrate fuel control strategies.(7) Zhang et al. adjusted the 
equivalence factor using a fuzzy proportional-integral controller and reduced the fuel 
consumption by 4.44%.(8) Wang et al. used a fuzzy logic controller to adjust the equivalence 
factor considering the deviation of the reference SOC from the measured SOC for fuel 
consumption saving.(7) However, with such control strategies, optimal values cannot be 
identified under different driving conditions, states, distances, and SOCs. In addition, identifying 
driving and engine conditions is important to enhance the effect of control strategies on the fuel 
economy.
	 Larsson et al. used the global positioning system (GPS) to determine the most economical 
driving routes using the reference SOC curve, and its fuel consumption was reduced by 1.9%.(9) 
Ye et al. predicted the vehicle speed in the next 10 s on the basis of vehicle network 
communication and adjusted the torque distribution on the basis of the prediction to effectively 
improve the vehicle fuel economy.(10) However, the recognition method is easily disturbed by the 
environment during vehicle driving, which makes it difficult to predict in a shorter time than 
using the conventional physics- or measurment-based method. Shen et al. proposed a new speed 
prediction algorithm using a Markov model and backpropagation neural network (BPNN) to 
compensate for the prediction errors. When applying the algorithm to a fuel consumption 
strategy and power maintenance strategy, fuel economy was improved by 3.11 and 7.93%, 
respectively.(11) Sun et al. proposed an improved control algorithm based on long and short-term 
memory (LSTM), and fuel was saved by 18.71%.(12) The previous algorithms required a huge 
amount of data for prediction, which caused biased model prediction in unexpected events.
	 Therefore, we identified driving conditions on the basis of previous vehicle movements and 
built a BPNN model. To overcome the disadvantage that the fixed equivalence factors do not 
apply to complex driving conditions, we used the Firefly Algorithm to construct the map of 
equivalence factors on the basis of initial states of batteries, driving distances, and driving 
conditions. An adaptive equivalent consumption minimization strategy (ECMS) was also 
formulated on the basis of the predicted driving conditions to obtain enhanced fuel economy 
compared with charge-depleting (CD) and ECMS strategies.

2.	 Model Design

	 In this study, a single-axle parallel PHEV of P2 type was used (Fig. 1). The universal 
characteristic curve of the PHEV was obtained by testing the engine at different speeds and 
torques, as shown in Fig. 2.
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	 The fuel consumption rates of the engine under the chosen speed and torque were calculated 
as

	 ( )2 ,e e e eb f n T= ,	 (1)
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⋅
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where be is the brake specific fuel consumption (BSFC), which is the rate of fuel consumption 
per unit of power output, fe2 is a function that relates the engine speed and torque to the BSFC, ne 
is the engine speed (in RPM), Te is the engine torque (in Nm), ṁf is the mass flow rate of fuel 
consumption (in kg/s or g/s), Pe is the engine power (in W), ρ is the fuel density (in kg/m3), D is 
the total distance driven, and 10 is a conversion factor. The efficiency curve of the PHEV was 
obtained by testing the motor at different speeds and torques, as shown in Fig. 3

Fig. 1.	 (Color online) Structure of PHEV P2 type.

Fig. 2.	 (Color online) Universal characteristic curve of engine of PHEV P2 type.
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	 The efficiency of the motor [Eq. (3)] and the charging and discharging power [Eq. (4)] under 
the chosen speed and torque were calculated.

	 ( )2 ,m m m mf n Tη = 	 (3)

	 ( )
9550

msign Tm m
ele m

T nP η −⋅
= 	 (4)

Here, ηm is the efficiency of the motor, fm2 is the function that describes the motor’s efficiency 
based on its speed (nm) and torque (Tm), Pele represents the electrical power of the motor, and 
9550 is a conversion constant. 
	 We used the Rint model as an equivalent circuit model. The open circuit voltage and internal 
resistance and the SOC of the battery are used in the model (Figs. 4–6). Voltage and the charge 
states of batteries were estimated using Eqs. (5)–(8).
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Fig. 3.	 (Color online) Motor efficiency curve.
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Here, Vbat is the battery terminal voltage, Voc is the open circuit voltage, Ibat is the battery 
current (in A), Rint is the battery internal resistance (in Ω), Rdis is the internal resistance during 
discharge, and Rchg is the internal resistance during charging.

Fig. 4.	 (Color online) Open circuit voltage curve.

Fig. 5.	 (Color online) Charge internal resistance curve.

Fig. 6.	 (Color online) Discharge internal resistance change curve.
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3.	 Adaptive ECMS 

3.1	 Control strategy

	 The principle of ECMS was proposed by Paganelli et al.(13) The objective function is 
transformed into an instantaneous optimization for each moment by using the objective function 
for real-time control. The equivalent fuel consumption is the sum of the engine fuel and motor 
power consumption.(14) In the PHEV, the battery is consumed in the CD and charging sustaining 
(CS) modes. In the CD mode, more power is consumed on the externally charged grid with a 
small equivalent factor. During driving, the vehicle tends to use the minimum power of the 
battery. The Pontryagin Minimum is used to minimize fuel consumption as long as the power 
demand is satisfied. In this study, engine torque was used as the control variable and electricity 
as the state variable in the state equations Eqs. (10) and (11).

	 equ e mm m m= +   	 (9)

Here, ṁequ is the equivalent fuel consumption, ṁe is the engine fuel consumption, and ṁm is the 
motor equivalent fuel consumption.
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I is the battery current, Qess is the battery capacity, Uoc is the open-circuit voltage, Rb represents 
the internal resistance, and Pbat(t) is the battery power. 
	 The constraint conditions are defined as
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where SOCmin and SOCmax are the upper and lower limits of battery power, nm_min and nm_max 
are the minimum and maximum speeds of the motor, ne_min and ne_max are the minimum and 
maximum speeds of the engine, Tm_min(t) and Tm_max(t) are the minimum and maximum torques 
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of the motor at a given moment, and Te_min(t) and Te_max(t) are the minimum and maximum 
torques of the engine at a given moment, respectively.
	 The target performance equation is 

	 ( ) ( )( )
0

min ,ft
e et

J m SOC t T t dt= ∫  .	 (13)

	 The Hamiltonian function equation (14) is used by multiplying the objective function with the 
derivatives of the state variables by the Lagrange multipliers.

	 ( ) ( )( ) ( )( ) ( ) ( ), ,e e eH SOC t T t t m T t t SOC tλ= + ⋅  	 (14)

Here, ṁe represents the instantaneous fuel consumption rate of the engine and λ(t) is the 
Lagrange multiplier. 
	 From the optimal solution at each moment, the global optimal solution is obtained, and in the 
Pontryagin minimum, the system satisfies the canonical equation:
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where Qess is the battery capacity.
	 During driving, the battery is charged and discharged, and its power Pbat has positive and 
negative values alternately. The Hamiltonian functions Eqs. (16) and (17) are used to describe 
the states of charging and discharging.
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Here, ηbat is the instantaneous charging and discharging efficiency of the battery power and Qlhv 
is the low heating value of fuel.

3.2	 Firefly Algorithm 

	 The standard Firefly Algorithm has a search process to find local optimal solutions and 
minimize the discovery steps of global optimal solutions. The numbers of steps in the Firefly 
Algorithm are adjusted for optimization. At the beginning of the iteration of the algorithm, more 
steps are used to search for the global optimal point. As the algorithm iterates, the number of 
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necessary steps decreases to quickly converge to the global optimum and improve the accuracy 
of the algorithm. The algorithm flow is as follows.
(1)	�Initialize the basic parameters. Set the number of firefly individuals N, the step factor α, the 

absorption coefficient of the medium to light γ, the maximum attraction βO, the maximum 
number of iterations Tmax, and the randomly generated firefly positions.

(2)	�Calculate the adaptation value of each firefly as its respective brightness in accordance with 
the firefly location [Eq. (18)].

	 ( )
0

t
ef x m dt= ∫ 	 (18)

(3)	Calculate the attraction between fireflies using

	 2( )ij j iR x x= − ,	 (19)

	 ( )2
ijR

R Oe
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β β
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= ,	 (20)

	� where Rij is the distance between two fireflies i and j, and β is the attractiveness of a firefly at 
a certain distance Rij, e is Euler’s number, and γ is the light absorption coefficient.

(4)	�Update its position using Eq. (21). The low luminance is affected by the high-luminance 
firefly.

	 ( )'
i i R j ix x x xβ αε= + − + 	 (21)

	� xi is the position of firefly i in space, ε is the random perturbation whose value is between 
−0.5 and 0.5, α is a randomization parameter or step size factor, and ε is a random number (or 
vector of random numbers) drawn from a Gaussian (normal) distribution.

(5)	Reduce the step size factor to improve the merit-seeking ability using

	 kα α= ⋅ , 	 (22)

	 where k is the variable step coefficient.
(6)	�Record the population fitness value, i.e., the optimal objective function value, and the optimal 

individual position as numerical parameters.
(7)	�Determine whether the iteration reaches the maximum number of iterations. If not, 

procedures (2)–(6) are repeated; otherwise, (8) is executed.
(8)	Output the optimal value of each parameter.
	 Using the typical driving conditions in Fuzhou City, the optimal equivalent factor library of 
initial power and driving distance was established for three driving conditions. In the conditions, 
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the initial power levels were configured to range from 30 to 80%, increasing incrementally by 
10%, and the driving distances were 90, 70, 50, and 30 km. The optimal factors were found to be 
integrated into the library, as shown in Figs. 7–9.

3.3	 SOC penalty function

	 For the battery power to approach its lower limit toward the end of driving, a penalty function 
and reference SOC curves were developed to optimize performance. The reference SOC curve 
shows a straight line. SOCs in predriving (SOC0), in the lower battery limit (SOCf), and the total 
driving distance h are presented in Fig. 10.
	 When the vehicle is driven, SOC does not decrease below the reference curve with the SOC 
penalty function PSOC [Eq. (22)]. 

	
( )2

1 0.1
5 1 SOCP

SOC
e ×

∆ = −
× +

	 (22)

Here, ΔSOC is the difference between the reference SOC and the actual SOC of the car at a 
certain moment.
	 The penalty function with the equivalence factor forms the new equivalent fuel consumption 
expression:

	 ( )equ e SOC mm m S P m= + + ⋅   .	 (23)

	 The penalty factor PSOC changes depending on the battery discharge capacity and the 
difference between the reference and actual SOCs for the maximized utilization of battery power 
and the optimized fuel consumption.

Fig. 7.	 (Color online) Optimal equivalent factor library for low-speed driving.
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Fig. 9.	 (Color online) Optimal equivalent factor library for high-speed driving.

Fig. 10.	 (Color online) Reference SOC curve.

Fig. 8.	 (Color online) Optimal equivalent factor library for intermediate-speed driving.
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3.4	 BPNN

	 Three hundred data values were randomly selected for the speed ranges to extract features 
from the training samples for BPNN (Table 1). The receiver operating characteristic (ROC) 
curve, confusion matrix, and the best performance are shown in Figs. 11–13, respectively. The 
classification result from the ROC curve is presented in Fig. 11. The confusion matrix presents 
the prediction accuracies of 88.8, 95.2, and 90.5% for three driving conditions, and the overall 
accuracy of 89.3%, which meets the requirements. In the best performance, the cross-entropy is 
0.07196. The measured output is close to the predicted output, indicating the excellent 
performance of BPNN.

4.	 Simulation Results

	 To verify the effectiveness, adaptive ECMS was simulated, and the result was compared with 
those of the fixed equivalent fuel consumption strategy and the rule control strategy. The urban 
driving conditions in Fuzhou were combined in a driving time of 12000 s. Figure 14 shows the 
results of the driving conditions. The simulation results of adaptive ECMS at different speeds 
are presented in Fig. 15. The error range was 1.5, which meets the requirement for optimal 
driving.
	 Figures 16 and 17 show the SOC and engine torque in the CD and CS modes in the rule 
control strategy. In the CD mode, the motor provides additional power to the engine, which 
consumes too much battery power. In the CS mode, the engine provides power for the whole 
vehicle and consumes power to charge the battery. In the CS mode, a longer driving time and 
better fuel consumption than in the CD model were observed. The adaptive ECMS does not 

Table 1
Training samples.

Serial number Type of driving 
condition

Maximum 
speed (km/h)

Average speed 
(km/h)

Average 
acceleration 

speed of 
acceleration 

section (m/s2)

Average 
deceleration 

speed of 
deceleration 

section (m/s2)

Driving 
condition 
category

1 Low speed 12.3 5.305 0.370 −0.418 001
2 Low speed 34.6 15.381 0.372 −0.478 001

:
100 Low speed 7.433 1.864 0.314 −0.346 001
101 Mid-speed 64.733 32.062 0.546 −1.045 010
102 Mid-speed 47.433 24.876 0.383 −0.511 010

:
200 Mid-speed 53.767 30.123 0.581 −0.583 010
201 High speed 93.067 45.704 0.516 −0.613 100

:
300 High speed 50.767 32.053 0.291 −0.463 100
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Fig. 12.	 Confusion matrices.

Fig. 11.	 (Color online) ROC curves.
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Fig. 13.	 (Color online) Best validation performance (0.07198) in epoch 18 (red line: training, blue line: verification, 
green line: testing result).

Fig. 14.	 (Color online) Combined driving conditions in simulation.

Fig. 15.	 (Color online) Simulation results of adaptive ECMS.
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dynamically select the equivalent factor to the changing conditions and initiates the CS mode. In 
adaptive ECMS, the changing conditions during driving are identified to dynamically select the 
equivalent factor. At the same time, the penalty function is used with a new equivalent factor. In 
the CD mode, the power of the engine and the motor is fully utilized to avoid the execution of the 
CS mode by distributing the engine and motor torque efficiently.
	 Figure 18 shows the fuel consumption of the three energy control strategies throughout the 
whole driving process. In ECMS, after the CS mode is initiated, the engine increases its fuel 
consumption rapidly. In adaptive ECMS, the power is evenly used throughout the driving 

Fig. 16.	 (Color online) SOC in CD and CS modes.

Fig. 17.	 (Color online) Engine torque in CD and CS modes.
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process, and the engine torque is reasonably distributed to achieve efficient driving and reduce 
fuel consumption.
	 The fuel economy with ECMS was improved by 3.44% in 100 km driving while adaptive 
ECMS improved the fuel economy by 7.77% (Table 2). Adaptive ECMS reduced fuel 
consumption most effectively under the driving conditions of Fuzhou.

5.	 Sensor Technology for Adaptive Fuel Consumption Strategy 

	 Sensor technology plays a pivotal role in enhancing the fuel economy of ECMS in PHEVs by 
providing real-time, accurate data, which is essential for optimal energy management. As 
highlighted in the results of this study, sensors must be used to monitor the battery’s SOC and 
SOH, engine speed, torque, and fuel consumption for optimizing torque distribution and energy 
efficiency. To refine the adaptive ECMS by providing richer contextual data, more precise and 
dynamic adjustments of the equivalence factor are required. 
	 In this study, while BPNN achieves a commendable prediction accuracy of 88.7% for driving 
conditions, incorporating a wider array of sensor data significantly improves the accuracy and 
robustness of such predictions, leading to even greater fuel economy. To advance the model of 
this study, which was developed on the basis of past vehicle movements to identify driving 
conditions, Lidar and radar sensors must be used to collect precise data about traffic density, 
road curvature, and upcoming obstacles.(15,16) This data can be fed into BPNN to accurately 
estimate future power demands, allowing ECMS to pre-emptively adjust the engine and motor 
operation. GPS data integrated with live traffic information through connected vehicle systems 
or external data feeds enables ECMS to predict stop-and-go conditions or periods of high-speed 
driving with greater certainty.(10) Such accurate prediction allows for intelligent battery 
management and engine operation.

Fig. 18.	 (Color online) Cumulative fuel consumption curve.
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	 Other than Lidar, radar, and GPS data, data on road surface conditions (e.g., wet, icy, or 
rough) needs to be used to enable the powertrain to save power.(17) By inputting the data into 
ECMS, power delivery can be adjusted to reduce traction and optimize efficiency. Exhaust gas 
composition data (e.g., NOx, CO2, and particulate matter) and optimal battery temperature are 
important information on engine combustion efficiency and emissions(18) and the efficiency and 
longevity of the battery. 
	 These data must be used to sustain appropriate fuel economy over the vehicle’s lifespan and 
to select the most efficient combination of engine and motor power delivery in ECMS. For 
ECMS improvements, effective data fusion from multiple sensors is mandatory. For instance, 
real-time vehicle speed, acceleration, and GPS data with traffic predictions and road conditions 
need to be combined and processed by sophisticated machine learning algorithms, to achieve 
precise and adaptive equivalence factor adjustments. The robust adaptive ECMS of this study 
can be advanced with the integration of sensor data, coupled with sophisticated data fusion and 
predictive analytics to further improve the fuel economy of PHEVs. 

6.	 Conclusions

	 Using MATLAB/Simulink, we built a simulation model of PHEV driving. On the basis of the 
principle of Pontryagin’s minima, adaptive ECMS was built in MATLAB with the engine torque 
as the control variable, the power as the dependent variable, and the size of the equivalent factor 
S. Fuel consumption depends on the initial battery state, driving distance, and driving conditions. 
The optimal equivalence factors were obtained by using variable steps at different speeds. To 
fully utilize the battery power and adjust the equivalence factor in real time, a penalty function 
was created. Three hundred data values under various driving conditions were randomly 
selected to train BPNN, and the prediction accuracy reached 89.3% with a cross-entropy of 
0.07196, indicating satisfactory performance. Three different control strategies in CD and CS 
modes showed the fuel consumptions of 3.0271/100 (adaptive ECMS), 3.282/100 (rule control 
strategy), and 3.169/100 (ECMS) (L/km). The fuel economy of ECMS and adaptive ECMS was 
improved by 4.48 and 7.77%, respectively, compared with that of the rule control strategy. The 
results of this study provide a reference to formulate an integration strategy of sensor data for the 
improvement of PHEV performance.

Table 2
Fuel consumption economy.

Control strategy Cumulative fuel 
consumption (L)

Fuel consumption per 
100 km (L/km) Economic improvement (%)

Rule control 2.785 3.282 –
ECMS 2.69 3.169 3.44
Condition recognition 
adaptive ECMS 2.57 3.027 7.77
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