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	 The You Only Look Once (YOLO) algorithm is employed to develop a system for detecting 
wildfire smoke and providing early warnings, with a deep neural network (DNN) as its 
underlying architecture. To achieve accurate real-time smoke detection, the system was 
optimized through experiments conducted under diverse conditions. It was then implemented in 
an embedded computing environment to enhance the efficiency of wildfire detection. The 
findings demonstrate the effectiveness of this DNN-based smoke detection system in real-world 
environments.

1.	 Introduction

	 We employed the You Only Look Once (YOLO) model to enhance wildfire detection by 
integrating artificial intelligence into an embedded environment.(1) Specifically, a Jetson Xavier-
based system is utilized in conjunction with a Pixhawk flight controller—a widely adopted 
configuration in UAV applications. The Pixhawk functions as the primary control unit, enabling 
the stable management of peripheral components and seamless communication with the Xavier 
module. For real-time wildfire smoke detection, YOLOv5 is selected as the core detection model 
owing to its lightweight structure, high compatibility with embedded systems, and robust 
performance in resource-constrained scenarios. Compared with YOLOv8, YOLOv5 offers 
simpler deployment and more efficient TensorRT optimization, which is essential for real-time 
inference. Additionally, official support within NVIDIA’s DeepStream SDK reinforces its 
suitability for field-based disaster detection tasks. YOLO addresses object detection as a 
regression problem, utilizing a single network to ensure rapid processing.(2) The key advantage 
of YOLO is its ability to significantly reduce false positives in background detection.(3) 
Additionally, YOLO demonstrates a high capacity for learning common patterns, enabling its 
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application in artistic fields such as painting.(4) Its adaptability across diverse domains further 
highlights its versatility.(5) In object detection, YOLO tracks multiple objects and their locations 
by combining classification and localization within a unified framework.(6)

	 Before the adoption of YOLO, object detection was primarily achieved using deformable part 
models (DPMs) and region-based convolutional neural networks (R-CNNs).(7) An R-CNN model 
follows a two-stage detection approach, where region proposal and classification occur 
sequentially.(8) This process involves image data initialization, execution of the two-stage 
detector for region proposal and classification, selective search, and region proposal network 
operations, followed by classification through support vector machines (SVMs) and Softmax.(9) 
After retraining, results are obtained through multiclass classification and bounding box 
regression.(10) Despite its complexity, R-CNN achieves high mean average precision (mAP).(11)

	 In contrast, YOLO’s learning method is based on human-like pattern recognition, performing 
classification and localization simultaneously.(4) Unlike previous two-stage detectors, YOLO 
formulates object detection as a single regression problem, enabling real-time performance.(5)  
The model processes entire images at once, effectively minimizing errors related to background 
misclassification—an issue common in conventional methods.(2) Furthermore, YOLO’s ability 
to learn generalized representations facilitates seamless adaptation to novel domains.(12) 
	 YOLO also offers remarkable efficiency. The base model operates at 45 frames per second 
(fps), whereas the fast variant reaches 150 fps. For comparison, typical frame rates include 24 
fps for films, 30 fps for television dramas, and 60 fps for sports broadcasts.(13,14) Given these 
advantages, we leveraged YOLO’s speed, accuracy, and adaptability to develop an efficient, real-
time wildfire detection system.

2.	 Data, Materials, and Methods

	 The research apparatus consists of a Xavier system connected to a Pixhawk device. The 
Pixhawk, commonly used in drones, serves as the primary controller for managing various 
components. This connection between the Xavier and the Pixhawk forms a fundamental part of 
the broader research setup, facilitating the operation and testing of the system. 
	 To enable real-time wildfire smoke detection on the embedded Xavier platform, YOLOv5 
was adopted as the core AI model. Compared with YOLOv8, YOLOv5 offers greater 
compatibility, simpler structure, and smoother TensorRT optimization for deployment in 
resource-constrained environments. Moreover, it is officially supported in NVIDIA’s 
DeepStream SDK, which enhances its reliability for real-time inference in embedded disaster 
detection systems.
	 Figure 1(a) shows the system architecture for onboard wildfire smoke detection. The Jetson 
Xavier module serves as the AI inference engine, whereas the Pixhawk unit is used to interface 
with UAV or sensor systems for control and coordination. These devices were not used for image 
acquisition, but for deployment testing and validation of the model in embedded scenarios.
	 The training dataset was obtained from the Wildfire Smoke Dataset provided by Roboflow, 
which includes real wildfire smoke images annotated for object detection. The dataset contains 
imagery collected in part by High Performance Wireless Research and Education Network 
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under the support of the United States National Science Foundation, and it is suitable for training 
models to recognize early smoke patterns associated with wildfires.

2.1	 Dataset preparation for wildfire detection

	 The use of catastrophe data for machine learning purposes can be developed and implemented 
in a variety of ways. We provide a detailed explanation and practical guide to loss function 
optimization, particularly for those unfamiliar with AI.
	 In terms of data acquisition, the dataset is crucial for training AI and deep learning models. 
Typically, the data is divided into three categories: training, validation, and testing. The purpose 
and role of each dataset are as follows:
	 •	 Training dataset: This is used to train the model, during which the model learns patterns in 

the data and adjusts its weights. 
	 •	 Validation dataset: This is employed during training to evaluate the model’s performance and 

prevent overfitting. This dataset helps assess the model’s learning process and ensures it does 
not memorize the data. 

	 •	 Test dataset: This is used to evaluate the model’s final performance. It is not involved in the 
training or validation phases, and its purpose is to assess the generalizability of the model to 
new, unseen data.

	 The dataset distribution is as follows: 519 training samples (70.0%), 147 validation samples 
(19.9%), and 74 test samples (10%). The file structure is shown in Figs. 2(a) and 2(b).

2.2	 YOLO model architecture and training configuration

	 The theoretical methods we employed are as follows: focal loss was developed to prioritize 
challenging examples during the model’s learning process, particularly when dealing with 
unbalanced datasets. The formula for focal loss is

Fig. 1.	 (Color online) (a) Embedded computer environment A (Jetson Xavier AGX & Pixhawk V6X) and (b) 
embedded computer environment B (Jetson Xavier NX & Pixhawk 4).

(a) (b)
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	 focal loss p p pt t t t� � � � �� � � ��� �
1 log , 	 (1)

where pt is the predicted probability value, with pt = p for positive examples (γ = 1) and pt = 1 − p 
for negative examples (γ = 0). αt is the weighting factor for positive/negative examples, increasing 
the weight of positive examples to improve model performance on unbalanced data. γ is the 
damping factor, where a larger value reduces the model’s loss on easy-to-predict samples while 
emphasising difficult samples.
	 The modified focal loss function is applied to the YOLOv5 model as 

	 L p p pfocal l l
l

N
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�
�� �

1
1

log ,for each prediction 	 (2)

where α and γ are used to adjust the learning process for difficult examples in the unbalanced 
dataset.
	 Next, the weights of the loss functions are adjusted to enhance the performance of the 
YOLOv5 model. These weights determine the model’s focus on specific loss factors during 
training. The weights for each element of the loss function are defined as 

	 total box box obj obj cls clsL L L Lλ λ λ= ⋅ + ⋅ + ⋅ .	 (3)

	 •	 Bounding box loss weight (λbox): This weight reduces the difference between the predicted 
bounding box and the actual box. Adjusting this value allows the model to focus on the accuracy 
of bounding box predictions. 
	 •	 Object loss weight (λobj): This assesses how well the model detects the presence of objects. 
Increasing this weight makes the model focus more on detecting objects, which is crucial for 
identifying ambiguous objects such as smoke. 

Fig. 2.	 (Color online) (a) Dataset file structure and (b) dataset usage flowchart.

(a) (b)
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	 •	 Class loss weight (λcls): This evaluates how well the model predicts the class of detected 
objects. By reducing this weight, the model can focus more on object detection and bounding 
box accuracy, and less on class prediction. 
	 Bounding box loss (Lbox) is based on the intersection over union (IoU) between the predicted 
and actual boxes, whereas the object presence loss (Lobj) evaluates the probability that an object 
exists. The class prediction loss (Lcls) measures the difference between the predicted and actual 
class labels. 
	 The mathematical explanation of the modified code is that the settings of α and γ in the 
adjusted loss function are based on the focal loss formula, which prioritizes hard samples during 
training. The weights in the loss function (λbox, λobj, and λcls) determine which aspects the model 
focuses on during learning. In this implementation, γ = 1.2 increases the weight of difficult 
samples, but the value is kept moderate to maintain training stability. Here, α = 0.5 boosts the 
contribution of positive examples, ensuring the model learns more effectively from them, while γ 
= 1.2 assigns more weight to hard examples without compromising training stability. The 
modified weight settings are as follows: λbox is increased to 1.15, λobj is increased to 1.30, and λcls 
is reduced to 0.85. These adjustments ensure that the model places greater emphasis on detecting 
bounding boxes and objects, ultimately leading to more accurate detection outcomes. This 
process guides the YOLOv5 model to focus on challenging objects, such as smoke and smog, 
while allowing for the flexible optimization of the model’s performance through the loss 
function.

3.	 Results

3.1	 Adjusting the weights of the YOLO loss function

	 The data reveals a precision of 0.91 and a mAP50 of 0.929 for the YOLO model with 50% 
overlap, which is notable. This model represents the unoptimized YOLO model. After training, 
the results can be checked using val.py, which often shows near-identical results to those from 
the final stage of train.py. Table 1 shows the results after optimizing the model, based on the 
guide outlined in Sect. 2.
	 The optimization results show a significant improvement in precision, which increased from 
0.910 to 0.937 after adjusting the loss function and applying focal loss. This led to a reduction in 
the rate of false positives and an improvement in prediction accuracy.
	 Recall initially decreased from 0.912 to 0.876 in the model with the adjusted loss function, 
but the focal loss model improved its Recall to 0.939. mAP50 was highest in the focal loss model, 

Table 1
AI model performance scorecard.

Precision Recall mAP50 mAP50-95
YOLOv5 0.910 0.912 0.928 0.548
Loss function (weighted) 0.928 0.876 0.915 0.517
Loss function (weighted) 
+ Focal loss model 0.937 0.939 0.949 0.540
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reaching 0.949, indicating excellent results with a narrow IoU. However, mAP50-95 remained 
similar to that of the original YOLOv5 model, at 0.548 and 0.540, respectively.
	 From the analysis, the focal loss model stands out as optimal, exhibiting the best performances 
in terms of Precision, Recall, and mAP50. However, the improvement in mAP50-95 is marginal, 
suggesting that there is still room for enhancing performance across different IoU criteria, 
potentially through data augmentation, IoU-based loss function adjustments, and similar 
techniques. Figure 3 presents a performance evaluation graph of the deep neural network 
(DNN), demonstrating its training stability and detection accuracy over time.
	 For practical applications, the recommended model is the focal loss model, as it offers a good 
balance between Precision and Recall with high overall performance. Future improvements can 
focus on data augmentation to increase IoU diversity, which can improve mAP50-95. 
Additionally, incorporating learning methods that consider different IoU criteria during training 
can further optimize the model’s performance.

3.2	 Application and effects of focal loss on YOLO model

	 The model that combined weighted loss and focal loss delivered the best performance. We 
further trained this model with the results shown in Table 2.
	 When analyzing the impact of epoch numbers on optimization, Precision peaked at 0.942 at 
Epoch 200, showing the best reduction in the rate of false positives. However, at Epoch 100, 
Precision dropped to 0.913, suggesting potential overfitting or instability in the early stages of 
learning.

Fig. 3.	 (Color online) Deep neural network performance evaluation graph (Precision, Recall, and F1 score).

Table 2
Model performance scorecard by number of epochs.

Precision Recall mAP50 mAP50-95
Epoch 50 0.937 0.939 0.949 0.540
Epoch 100 0.913 0.924 0.942 0.561
Epoch 200 0.942 0.905 0.952 0.545
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	 Recall peaked at 0.939 at Epoch 50, detecting the truest positives, but decreased as the 
number of epochs increased, dropping to 0.905 by Epoch 200. This decline likely reflects 
overfitting, limiting the model’s ability to generalize.
	 The highest mAP50 score of 0.952 was achieved at Epoch 200, with Epoch 50 also delivering 
a high score of 0.949, indicating that additional epochs do not always guarantee better results.  
	 The mAP50-95 score peaked at 0.561 at Epoch 100, which was the best across the various 
IoU criteria. Epochs 50 and 200 showed slightly lower mAP50-95 scores of 0.540 and 0.545, 
respectively.
	 On the basis of these results, Epoch 50 provides a balanced and stable performance, offering 
high Precision, Recall, and mAP50 with relatively low mAP50-95. Epoch 100 excels in mAP50-
95, providing strong performance across multiple IoU criteria, although with reductions in 
Precision and Recall. Epoch 200 achieves the highest Precision and mAP50 but suffers from 
reduced Recall and mAP50-95.
	 In conclusion, as shown in Fig. 4, the DNN demonstrates stable performance across various 
training conditions. Epoch 50 offers the best overall balance of Precision and Recall, making it 
suitable for general use. Epoch 100 is recommended when performance across multiple IoU 
criteria is a priority. Epoch 200 is most appropriate when maximizing Precision and mAP50 is 
essential, although the risks of reduced Recall and potential overfitting should be considered.

4.	 Discussion

	 In particular, the model trained with class-weighted loss and focal loss showed a noticeable 
improvement in mAP50-95 compared with the baseline YOLOv5. Since mAP50-95 evaluates 
detection performance across a wide range of IoU thresholds, the improvement suggests that the 
model is better at detecting small or faint smoke regions, which are critical in the early stages of 
wildfire development.

Fig. 4.	 (Color online) Deep neural network analysis graph.
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	 Therefore, the numerical gains are not just statistical but reflect a meaningful improvement in 
the practical early detection capability of the model in real-world wildfire scenarios. A more 
detailed examination of the YOLO model is presented below. Initially, YOLO processes the 
input image by dividing it into an S-by-S grid. It then performs two key operations. First, each 
grid cell is assigned two bounding boxes. The model learns the center, height, width, and 
confidence value of each box, akin to the bounding box regression in R-CNN. Second, a 
classification task is performed for each grid cell. Classes are defined on the basis of the dataset, 
and the model calculates the probability that each grid cell belongs to a particular class. The 
class with the highest probability is then assigned to the grid. After these two steps, irrelevant 
data is discarded, and the results of training the YOLO algorithm are generated.
	 Figure 5 shows the result of applying the proposed wildfire smoke detection model to a real 
wildfire video recorded in a mountainous area in South Korea. The model successfully detects 
the smoke region with a bounding box and confidence score, demonstrating its inference 
capability on real-world data. This result visually supports the model’s applicability to practical 
wildfire monitoring scenarios.
	 Focal loss is an extension of the standard cross-entropy loss. It calculates the difference 
between the predicted class probability distribution (as per the cross-entropy loss model) and the 
true labels. Cross-entropy loss yields a smaller value when the prediction is closer to the true 
label, and a larger value when the prediction is further from the truth. Focal loss, however, is 
specifically designed to give more weight to difficult examples—those the model struggles to 
predict. It is especially effective in addressing the issue of class imbalance, which is common in 
many datasets.

Fig. 5.	 (Color online) Smoke detection (DNN).
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	 In summary, while cross-entropy loss calculates the loss equally for all examples, focal loss 
shifts focus toward the more challenging examples by increasing their weight. This ensures that 
the model places greater emphasis on those predictions that are difficult to make, improving 
performance on hard-to-detect objects.
	 The use of focal loss in YOLOv5 helps mitigate the problem of data imbalance. In typical 
object recognition tasks, there is often an overwhelming number of background pixels and fewer 
objects in each image. This imbalance can lead the network to focus excessively on the 
background in easy examples, resulting in poor performance when detecting more difficult 
objects.
	 Various strategies are employed to optimize performance, such as tuning the loss function, 
implementing data augmentation, optimizing the hyperparameters, enhancing the model 
structure, applying regularization techniques, and planning learning strategies. Focal loss is one 
such strategy, built upon cross-entropy loss but with greater emphasis on difficult examples and 
reduced emphasis on easy ones. This shift allows the network to focus on the challenging 
examples that it previously failed to predict accurately, ultimately improving the model’s 
performance.
	 Focal loss is particularly useful for small-object detection and unbalanced datasets, offering 
more reliable and accurate detection results. The advantages of incorporating focal loss in 
YOLOv5 include a reduction in the rate of false negatives, improved model stability, and 
enhanced mAP. Fewer false negatives mean that the model better detects objects by prioritizing 
challenging ones. Greater stability in model learning helps reduce issues with unstable training, 
especially on unbalanced datasets, while the improvement in mAP boosts model performance in 
terms of both Precision and Recall.
	 These performance gains were most prominent at epoch 50 in our experiments; however, this 
result is dependent on the characteristics of the specific dataset used. For datasets with different 
properties, the optimal number of training epochs may vary and should be determined 
accordingly.

5.	 Conclusions

	 We explored AI-based wildfire smoke detection using the YOLOv5 object detection 
framework, enhanced with class-weighted and focal loss techniques. Through the comparative 
analysis of training statistics, we identified that epoch 50 provided the most stable and balanced 
performance across Precision, Recall, and mAP50, making it the optimal choice for general 
applications. Epoch 100 is preferable when the mAP50-95 performance is prioritized, while 
epoch 200, although achieving higher precision, increases the risk of overfitting.
	 These findings demonstrate the practical applicability of customized loss functions and 
training strategies within the YOLOv5 architecture for geospatial AI in disaster detection. 
Furthermore, the results provide a foundation for improving dataset quality and selecting 
appropriate training configurations for real-time wildfire monitoring systems. Future research 
will focus on multi-disaster datasets and deploying lightweight models in embedded 
environments to ensure faster and more reliable inference.
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