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	 Supply chain finance (SCF) plays a key role in easing financing difficulties for small and 
medium-sized enterprises, but it also comes with risks such as information asymmetry, fraud 
involving pledged assets, and delays in credit evaluation. In this study, we introduce a dynamic 
risk management framework driven by IoT and enhanced by the integration of multiple 
technologies. Built on a four-layer IoT structure, comprising perception, network, processing, 
and application layers, the framework combines blockchain for secure and trusted data sharing, 
federated learning for collaborative data processing, and digital twin models for real-time risk 
simulation. At the perception level, 5th-Generation Mobile Communication Technology (5G)-
enabled low-power sensors ensure comprehensive and tamper-proof data collection. The network 
layer uses blockchain techniques such as sharding and zero-knowledge proofs to safeguard data 
privacy and institutional trust. In the processing layer, federated learning combined with edge 
and cloud computing enhances credit evaluation. On the other hand, the application layer 
employs smart contracts and feedback mechanisms to enable real-time responses and adaptive 
risk strategies. To put this framework into practice, we propose a phased approach: first building 
a real-time data ecosystem, then deploying secure risk control systems, optimizing distributed 
computing, and finally integrating a closed-loop risk control mechanism. This modular, 
collaborative strategy ensures that technological systems align with actual business needs. 
Ultimately, the research demonstrates how IoT, blockchain, and AI can work together to create a 
scalable and practical model for managing risk dynamically in SCF.
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1.	 Introduction

	 In recent years, supply chain finance (SCF) has become an essential tool for improving global 
capital flow efficiency and easing the financing difficulties faced by small and medium-sized 
enterprises (SMEs). This financial model has gained importance in supporting international 
trade and promoting coordination across industries.(1,2) However, according to the International 
Finance Corporation (IFC), the global financing gap for SMEs still stands at a staggering $5.5 
trillion USD as of 2024. This shortfall is particularly severe in developing economies, where 
issues like information asymmetry and inadequate credit assessment methods pose significant 
barriers to SME financing.(3,4) While the global SCF market reached $75.3 billion USD in 2024 
and is projected to grow to $152.2 billion USD by 2033 with a compound annual growth rate 
(CAGR) of 8.08%,(5) SME participation remains below 25%. This low adoption rate highlights 
the pressing need for technology-driven risk management solutions that can better support the 
evolving financial demands of global supply chains. The rapid integration of IoT, blockchain, 
and AI technologies offers transformative potential for improving risk management in SCF. 
	 As reported by IoT Analytics in late 2024, global commercial IoT connections are expected to 
rise from 1.13 billion in 2020 to 4.11 billion by 2030, with a CAGR of approximately 13.8%, as 
shown in Fig. 1. This growth reflects the increasing use of real-time monitoring in areas such as 
warehousing and logistics, laying a solid technical foundation for enhanced data acquisition and 
transparency in SCF operations. Despite this progress, much of the existing research tends to 
examine these technologies in isolation, such as using blockchain for verification or big data for 
credit scoring, without fully exploring the benefits of integrating them. For example, IoT can 
support the real-time tracking of pledged assets,(6) but weak data privacy protections may raise 
concerns about confidentiality. Likewise, while blockchain can build decentralized trust 
systems,(7) its current performance limitations may hinder the real-time responsiveness needed 
for effective dynamic risk management. One of the key engineering challenges in SCF today is 
optimizing the entire process chain, from trustworthy data collection and secure, privacy-

Fig. 1.	 (Color online) Global IoT market forecast in billions (modified from IoT Analytics, 2024).
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preserving sharing to intelligent, real-time decision-making, through the convergence of 
emerging technologies. 
	 The primary challenge in current SCF risk management lies in the over-reliance on anchor 
enterprise credit and static historical data for credit assessment. This approach fails to reflect the 
real-time operational status of SMEs.(8,9) Additionally, financial institutions lack the capability 
to integrate full-chain data in real time, leading to biased credit models and suboptimal lending 
decisions. Owing to limited credit transparency, around 40% of SMEs in developing countries 
are excluded from formal financing channels, and approved credit limits often fall short of 
actual needs. Furthermore, the decoupling of logistics and fund flow data reduces the ability to 
verify transaction authenticity, making it harder to detect fabricated trades or fake warehouse 
receipts. This significantly increases both default risk and financing costs. In dynamic collateral 
scenarios, high-liquidity and high-volatility assets are prone to risks such as duplicate pledging 
if not monitored in real time. Traditional methods relying on manual checks and offline data 
cannot respond promptly. During storage and transportation, the lack of continuous tracking of 
inventory changes, cargo condition, and transit routes leads to growing risks of asset depreciation 
and loss of control.
	 In practice, traditional SCF risk management relies heavily on manual processes and 
fragmented tools, resulting in low efficiency and limited scalability, especially when dealing 
with a large number of SMEs. For example, monitoring collateral during storage and transport 
often depends on manual checks and paper-based tracking, which are error-prone and time-
consuming. At the same time, the lack of standardized interfaces among financial, logistics, and 
regulatory systems creates fragmented data flows, making it difficult for financial institutions to 
monitor supply chain activity in real time. Data sharing across organizations is also hindered by 
privacy concerns and trade secrets. Current data anonymization methods often struggle to 
balance privacy protection with usability, reducing collaboration efficiency. These issues 
frequently lead to delays and high dispute resolution costs. Worse still, centralized data 
architectures are vulnerable to cyberattacks, and data breaches are increasingly common. 
Fundamentally, the main issue in SCF is the gap between slow, outdated risk management 
approaches and the fast-moving nature of modern supply chains. Information asymmetry makes 
it difficult to detect issues with collateral in time, and repeated pledging or fraud is common. 
Data silos and fragmented risk control further increase credit assessment errors and slow down 
response times. Improving real-time risk monitoring and cross-party collaboration is key to the 
sustainable development of SCF.
	 In this study, we integrated approach demands not only overcoming the limitations of 
individual technologies but also harnessing their complementary strengths to build systems that 
are secure, robust, and efficient. Developing such multitechnology solutions requires thoughtful 
architectural design, adherence to interoperability standards, and practical implementation 
strategies to meet the complex needs of global supply chains. In this research, we address both 
theoretical and practical gaps by proposing an IoT-driven, multitechnology integration 
framework for dynamic risk management. By systematically combining a four-layer IoT 
architecture (including perception, network, processing, and application layers) with blockchain-
based distributed ledgers,(10,11) federated learning for collaborative computation, and digital twin 
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modeling for real-time simulation, the proposed framework offers a comprehensive solution to 
longstanding challenges in SCF, such as fragmented data, dynamic fraud, and delayed risk 
response.
	 In this research, we introduce several innovative engineering solutions that enhance risk 
management in SCF through integrated technologies. One major contribution is the development 
of a dynamic asset digitalization protocol (DADP), which uses IoT data to build digital twin 
models of pledged assets.(12,13) This allows for dynamic asset valuation and the real-time 
detection of anomalies with greater accuracy. Another key advancement is the creation of a 
privacy-preserving cross-validation (PPCV) mechanism, which applies zero-knowledge proofs 
(ZKPs) to enable secure data sharing between institutions. This balances the need for 
collaborative analysis with the protection of sensitive information. Additionally, we design an 
edge-cloud federated learning model that improves the adaptability and accuracy of credit 
scoring systems when working with diverse and decentralized data sources. On a theoretical 
level, we demonstrate the synergistic benefits of combining IoT, blockchain, and AI technologies, 
proposing a new risk management model that is dynamic, collaborative, and distributed, moving 
beyond traditional static methods. From a practical perspective, the framework offers a phased 
implementation strategy that supports scalable digital transformation for financial institutions 
and SMEs, tailored to varying levels of technological readiness and resource availability. 
Overall, the research result of this work not only enriches theoretical insights into integrated 
systems but also offers practical tools to strengthen financial risk management in complex 
supply chain environments.
	 We begin by reviewing the evolution of risk management in SCF, focusing on how 
technological convergence has shaped modern financial engineering. We outline the shift from 
traditional credit-based methods to data-driven systems, and eventually to today’s integrated, 
technology-enabled approaches. This historical perspective helps contextualize how emerging 
technologies have begun to address long-standing issues in global supply chain risk management. 
Building on this foundation, we examine current challenges in SCF, particularly the problem of 
information asymmetry between financial institutions and supply chain actors, which highlights 
the need for more effective, technology-driven solutions. To address these challenges, we 
propose a new theoretical framework based on a four-layer IoT architecture, covering perception, 
network, processing, and application layers. Each layer incorporates technologies such as 
blockchain, federated learning, and digital twins, working together to support coordinated, 
comprehensive risk management. We also consider how these systems can be implemented 
flexibly across different organizational contexts, with a focus on key engineering concerns such 
as interoperability, efficiency, and resilience. In conclusion, in this work, we offer both 
theoretical insight and practical strategies for improving risk management in SCF. This also 
points to future directions, including a better integration of technologies, responsiveness to 
regulatory changes, and broader applications in supply chain management.
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2.	 Theoretical Framework for SCF Risk Management Based on IoT Infrastructure

	 To address the aforementioned challenges, we propose a theoretical framework based on the 
four-layer architecture of IoT, comprising the perception, network, processing, and application 
layers. By leveraging cross-layer technological integration, the framework systematically 
enhances data reliability, strengthens privacy protection, and improves the efficiency of dynamic 
decision-making.

2.1	 Overview of IoT

	 IoT refers to a networked paradigm that leverages intelligent sensing technologies to connect 
physical objects to the Internet for information exchange and communication.(14) Through 
contractual protocols, IoT enables intelligent identification, tracking, and regulation, thereby 
fostering a deep integration between the physical and digital worlds.(15) The fundamental 
technological architecture of IoT comprises the following four hierarchical layers:
1)	� Perception layer: This layer digitizes physical objects by collecting real-time environmental 

data, such as location, temperature and humidity, and vibration frequency, through 
technologies including sensors, radio frequency identification (RFID), and GPS.

2)	� Network layer: Utilizing advanced communication technologies [e.g., 5th-Generation Mobile 
Communication Technology (5G), low-power wide-area network (LPWAN)] and standard 
protocols (e.g., TCP/IP), this layer ensures efficient data transmission and interoperability 
across heterogeneous systems.

3)	� Processing layer: At this level, edge and cloud computing processes are employed to cleanse, 
analyze, and model data, extracting actionable insights.

4)	� Application layer: This top layer transforms processed data into executable decisions and 
services via user interfaces and business logic.

	 As illustrated in Fig. 2, this framework emphasizes the vertical integration of core IoT 
technologies, thereby providing a foundational infrastructure for subsequent technological 
convergence.(16)

2.2	 Perception layer: hybrid sensing and trusted data sources

	 The perception layer acts as the “sensory system” of IoT. Its core role is to digitally map 
physical assets with high accuracy across various environments using multidimensional sensing 
technologies, providing reliable input for upper-level systems. In traditional SCF, risks such as 
duplicate pledging, cargo tampering, and outdated asset valuation often stem from weak data 
collection at the perception layer. For example, in static warehouse environments, manual 
inspections or single sensors cannot effectively cover large areas, leading to delayed data 
updates. In dynamic transport scenarios, insufficient tracking makes it difficult to detect route 
deviations or tampering, creating blind spots that increase fraud risk and information asymmetry 
for financial institutions. To address these issues, the perception layer must integrate multiple 
sensing technologies. For instance, in warehouse settings, RFID systems can periodically scan 
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tagged items to update inventory in real time. These readings can be cross-checked with 
environmental sensors such as temperature and humidity monitors to detect abnormal movement 
or counterfeit tags. In addition, deploying a multisensor network helps eliminate blind spots in 
static environments by periodically collecting environmental data from various sensors. For 
moving assets, transport vehicles can be equipped with high-precision GPS modules and three-
axis accelerometers to monitor location and cargo vibration. This provides both geospatial and 
physical anchoring for dynamic collateral monitoring. At the core of this sensing layer is DADP, 
a key innovation. DADP uses real-time IoT data to build a digital twin of the pledged asset, 
combining physical parameters (location or environmental conditions) with market data (e.g., 
futures prices and storage costs) to continuously calculate the asset’s real-time value. The main 
breakthrough of DADP is shifting from static valuation to a dynamic, data-driven process.

2.3	 Network layer: distributed trust and privacy protection

	 The network layer acts as the “nervous system” of IoT, responsible for efficient data 
transmission and cross-organizational coordination. In traditional SCF, data silos and privacy 
risks often stem from limited communication capabilities and centralized architectures. For 
example, logistics delays cannot trigger financial responses in real time, leading to late credit 
freezes and increased default risk. At the same time, sharing sensitive data raises concerns about 
leaks of trade secrets. To address these challenges, the network layer adopts a hybrid approach 
using 5G and LPWAN, combined with blockchain sharding and cross-chain protocols to build a 
distributed trust system.(17,18) In dynamic transport scenarios, 5G enables high-bandwidth, low-
latency transmission, allowing the real-time synchronization of high-frequency data such as 

Fig. 2.	 (Color online) Architecture diagram of IoT.
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GPS locations and vibration metrics. This ensures that financial institutions can continuously 
monitor the condition of pledged assets. LPWAN is mainly used in static warehouse 
environments to enable wide coverage and energy-efficient data transmission. It supports 
periodic updates from temperature and humidity sensors while significantly reducing 
maintenance costs. Blockchain sharding separates logistics and financial data into distinct 
storage channels, allowing parallel processing to improve system throughput, an essential 
feature for high-frequency transactions in SCF. Cross-chain protocols further enable 
interoperability between different blockchain networks. By using event-driven mechanisms, 
they allow real-time coordination between logistics and financial systems. A key innovation at 
the network layer is PPCV. This module leverages ZKP technology,(19) allowing financial 
institutions to verify specific claims, such as “inventory ≥ contract threshold”, without accessing 
the raw data. PPCV protects sensitive information while enabling trusted collaboration between 
multiple parties, laying the technical foundation for cross-institutional risk control.

2.4	 Processing layer: collaborative computing and intelligent decision-making

	 The processing layer serves as the “decision center” of IoT systems, handling massive data 
cleaning, analysis, and modeling to support dynamic risk assessment. Traditional SCF relies on 
centralized data processing, facing challenges in credit evaluation bias and insufficient model 
generalization, primarily due to limited data processing capabilities. SMEs often receive 
distorted credit scores owing to missing data, while the noise data collected from edge devices 
(such as logistics vibration interference) further weaken model accuracy. Additionally, static 
models struggle to adapt to external shocks such as market fluctuations, resulting in delayed risk 
assessments. To address these issues, the processing layer implements edge computing and 
federated learning technologies to build a collaborative computing framework. Edge computing 
deploys servers at key supply chain nodes (such as warehouses and transport vehicles) to clean 
local data in real time (filtering vibration noise, for example) and extract valuable features before 
cloud transmission. This layered computing architecture reduces data transmission load while 
improving response time.
	 Federated learning enables various participants (core enterprises, logistics companies, and 
financial institutions) to train local submodels, sharing encrypted parameters that are aggregated 
in the cloud to generate comprehensive credit scores. This approach protects data privacy while 
enhancing model generalization capabilities. The risk prediction digital twin represents the core 
innovation module within the processing layer. By integrating real-time IoT data with historical 
transaction records, this module simulates extreme scenarios and dynamically outputs default 
probabilities along with response strategies. This transforms traditional static risk assessment 
into a dynamic simulation process, strengthening the system’s resilience against extreme events. 
The dynamic modeling functions in the perception layer’s DADP (such as market fluctuation 
predictions) must work together with the digital twin in the processing layer, creating a closed 
loop from real-time data anchoring to risk assessment.
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2.5	 Application layer: adaptive risk control and closed-loop optimization

	 The application layer serves as the “service interface” of IoT systems, transforming processed 
data into executable business rules to achieve real-time risk response and system self-
optimization. Traditional SCF risk control relies on manual rules and after-the-fact processing, 
with response speeds failing to match the dynamic changes in supply chains. For example, when 
inventory levels decrease, manual approval for credit adjustments creates risk delays. The lack of 
cross-institutional risk collaboration mechanisms further weakens the overall risk control 
efficiency. These response delays and inefficient manual interventions stem primarily from 
deficiencies in the application layer. The application layer can build an adaptive risk control loop 
through smart contracts and cross-layer feedback mechanisms. Smart contracts automatically 
trigger operations on the basis of inputs from the perception and processing layers (such as 
inventory pledge rates and credit scores) according to preset rules. The AI-blockchain risk 
dashboard integrates multisource data (including RFID status, federated scoring, and digital 
twin prediction results) and uses a visualization interface to mark risk levels in real time (red/
yellow/green lights), helping decision-makers quickly identify problems and develop intervention 
strategies.
	 The cross-layer feedback loop represents the core innovation of the application layer. When 
risk events (such as duplicate pledge alerts) are detected at the application layer, this triggers 
adjustments in the perception layer’s monitoring strategies (such as increasing RFID scanning 
frequency). Simultaneously, historical risk data feed back to the processing layer to optimize 
weight allocation in federated learning models. This creates an adaptive cycle of “monitoring-
response-iteration” that gives the system self-evolving capabilities. The continuous flow of 
information across layers enables the system to learn from past incidents and automatically 
refine its operations, making the entire framework more resilient and responsive to emerging 
risks. The IoT four-layer architecture creates a complete chain from data collection to risk 
response through layered collaboration and closed-loop feedback, as shown in Fig. 3. The 
perception layer ensures data trustworthiness, while the network layer guarantees privacy and 
collaboration efficiency. The processing layer enhances decision-making intelligence, and the 
application layer enables dynamic adaptability.

3.	 Implementation Pathway and Outcomes of SCF Risk Management Based on 
IoT Infrastructure

	 Building upon the technological foundation laid out in the preceding sections, we propose a 
theoretical framework that undergirds a comprehensive approach to risk management in SCF. 
The integration of technologies within this framework is not merely conceptual but is directed 
toward practical realization through an engineering-focused implementation strategy. By 
adopting a phased deployment process, we translate abstract theoretical constructs into 
actionable practices, enabling full-spectrum management from data ecosystem development to 
multilayer feedback optimization. The implementation pathway is structured around four key 
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objectives: full-scenario coverage, privacy-preserving trust, dynamic evaluation, and adaptive 
optimization.

3.1	 Data environment development: constructing a real-time, scenario-integrated data 
ecosystem

	 The inherent complexity of SCF necessitates the continuous and comprehensive monitoring 
of collateral throughout its entire lifecycle. Traditional data collection methods, however, often 
result in fragmented monitoring, particularly between static warehousing conditions and 
dynamic transportation processes, thereby creating data blind spots and delaying responsive 
interventions. This phase addresses such limitations by employing IoT technologies to establish 
seamless, real-time data coverage across all operational scenarios. The objective is to ensure 
complete transparency in the status of pledged assets, thereby furnishing a highly reliable data 
foundation that supports dynamic and responsive risk control mechanisms, as illustrated in Fig. 
4. In this study, we adopted a phased implementation approach for data acquisition.
	 Phase one focuses on data collection and transmission through the integration of RFID and 
GPS technologies to achieve comprehensive scenario coverage. In static warehousing 
environments, RFID tags and multimodal sensor networks are deployed. Each pledged asset is 
embedded with a unique RFID identifier, and temperature-humidity sensors are installed in 
storage areas. Periodic data collection (every 10 min) ensures transparency in inventory status. 
For dynamic transportation scenarios, where high-frequency data are required, transport 
vehicles are equipped with multimodal sensors, including high-precision GPS modules (updated 
per second), triaxial accelerometers (sampling rate of 100 Hz), and environmental sensors.

Fig. 3.	 (Color online) SCF risk management chain based on IoT structure.
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	 Phase two emphasizes the development of a digital twin model to enable the dynamic 
valuation of pledged assets. DADP integrates physical parameters (e.g., inventory quantity and 
location) with market data (e.g., commodity futures prices) to construct a digital twin. The real-
time value of pledged assets is calculated using the following formula:

	 Vreal-time = Qinventory × (Pfutures − Cstorage),	 (1)

where Vreal-time denotes the real-time market value of the pledged asset, Qinventory is the actual 
physical quantity in storage or transit, Pfutures is the real-time futures market price of the asset, 
and Cstorage represents the unit storage cost, including fees for custody, insurance, and potential 
losses.
	 Phase three implements an automated risk response mechanism, activated through the cross-
validation of multisource data. For example, if a vibration sensor detects abnormal activity while 
the RFID tag location remains unchanged, the system infers possible tag tampering or asset 
substitution and immediately freezes related financing. Similarly, if the futures price drops 
beyond a predefined threshold, a smart contract automatically reduces the credit limit and 
prompts the enterprise to provide additional collateral. This mechanism significantly shortens 
the traditional manual approval process, from several days to just minutes, minimizing delays 
due to human intervention and reducing the risk of under-collateralization caused by market 
volatility. It also enhances the real-time risk management capabilities of financial institutions.
	 The integration of RFID and GPS effectively addresses the heterogeneous requirements of 
static and dynamic scenarios. Sensor fusion validation, through logical consistency analysis 
(e.g., matching vibration data with spatiotemporal trajectories), significantly enhances anti-

Fig. 4.	 (Color online) Real-time data ecosystem of supply chain with full scene coverage.
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tampering capabilities. Moreover, DADP enables dynamic mapping between physical assets and 
their financial value via digital twin technology.

3.2	 Secure risk control environment: privacy protection and automated response

	 Cross-institutional collaboration is a defining feature of SCF, yet data silos and privacy risks 
hinder coordination among stakeholders. This phase aims to establish a distributed trust 
framework using blockchain and cryptographic technologies, enabling secure data sharing while 
preserving privacy. This ensures efficient collaboration among logistics, financial, and 
regulatory entities, as illustrated in Fig. 5. The first step focuses on data authentication and 
hybrid networking by integrating LPWAN and 5G technologies with a blockchain sharding 
architecture to achieve reliable, multiparty data storage.
1)	� Static warehousing scenario: A LPWAN sensor network is deployed to support large-scale, 

energy-efficient data collection. For example, in a grain storage facility, temperature and 
humidity sensors update environmental data every 10 min and transmit it to the cloud via 
LPWAN. If humidity exceeds a safety threshold, the system automatically activates 
dehumidifiers to prevent mold formation. The extensive coverage and long battery life of 
LPWAN make it ideal for large warehouse environments, significantly reducing operational 
costs.

2)	� Dynamic transportation scenario: A 5G-based edge computing solution is applied, where 
industrial 5G gateways transmit real-time data to edge servers. These edge nodes analyze 
features such as vibration patterns and route deviations locally. For instance, if a vehicle 
exhibits abnormal vibration frequencies, the edge server flags a potential cargo damage risk 
and triggers a local alert. This avoids response delays that may occur owing to reliance on 
cloud-based processing.

Fig. 5.	 (Color online) SCF security risk control environment workflow.
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3)	� Blockchain sharding architecture: The logistics chain can be built on a consortium 
blockchain, such as Hyperledger Fabric, maintained by nodes operated by third-party 
logistics providers and insurance companies.(20) These nodes are responsible for storing 
hashed proofs of key data, including cargo trajectories and environmental conditions. In 
parallel, the financial chain can utilize a high-performance public blockchain, such as 
Ethereum 2.0, with nodes maintained by banks and regulatory agencies to record credit 
scores and contract terms. Sharding architecture enables parallel processing, significantly 
improving throughput and meeting the demands of high-frequency transactions.

	 Phase two focuses on cross-chain verification and privacy protection, enabling 
interoperability between heterogeneous blockchains and secure data validation through cross-
chain protocols and ZKPs.
1)	� Event-driven cross-chain synchronization: A cross-chain communication protocol (e.g., 

Cosmos) connects the logistics and financial blockchains. Critical events, such as shipment 
delays exceeding 48 h or environmental threshold violations, are synchronized across chains 
to trigger predefined smart contracts.(20) For instance, upon detecting a logistics delay, the 
financial blockchain automatically reduces the credit limit within a specified timeframe and 
logs the action in an immutable distributed ledger.

2)	� Privacy-preserving verification: When financial institutions need to verify claims (e.g., 
“customs documents are valid and inventory meets the contractual threshold”), the logistics 
provider submits encrypted hash values instead of raw data. For example, to prove that 
inventory ≥ 1000 units, the logistics chain stores a hashed record such as “0x3a7b”. The 
financial chain uses ZKP to confirm compliance without revealing exact figures. This 
approach addresses the inefficiencies of traditional inter-institutional processes by enabling 
timely, privacy-preserving validation.

	 Phase three deploys automation in execution and audit traceability, leveraging smart contracts 
and distributed ledgers to enable rule-based rapid risk response and full process transparency.
1)	� Automated risk control execution: Predefined conditions, such as a 10% inventory drop or a 

deviation of more than 50 km from the logistics route, trigger smart contract actions. For 
example, when inventory drops below the threshold, the contract automatically freezes a 
portion of the payment and notifies the enterprise to replenish stock. Similarly, if the logistics 
path deviates, an insurance claim process is triggered, and the credit status is updated in real 
time.

2)	� Immutable auditing: All operational records, such as credit adjustments or claims 
instructions, are recorded on the blockchain ledger, allowing regulatory authorities to trace 
the full lifecycle of events in real time.

	 The synergy of blockchain sharding, cross-chain protocols, and smart contracts establishes a 
fully automated risk control system covering the entire process, from evidence storage and 
verification to execution. This comprehensive automation not only enhances operational 
efficiency but also ensures robust transparency and accountability in risk management practices. 
As a result, financial institutions and other stakeholders benefit from improved decision-making 
and reduced latency in responses to operational risks.
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3.3	 Distributed multicenter system: collaborative computing and dynamic risk prediction 

	 Traditional risk control models rely on static historical data, making them inadequate for 
addressing the dynamic nature of supply chains (e.g., market fluctuations and logistics 
disruptions). This phase aims to build an adaptive risk assessment framework through edge-
cloud collaborative computing and federated learning. The goal is to enhance the model’s 
generalization in complex scenarios and shift from reactive response to proactive prevention.
	 The first stage focuses on edge-level data preprocessing to address noise and real-time 
processing requirements. Edge computing devices are deployed at supply chain nodes (e.g., 
warehouses and transport vehicles) to filter noise and extract key features in real time. For 
example, edge servers installed on cold-chain transport vehicles can remove sensor noise caused 
by device heating and extract meaningful indicators such as average temperature fluctuation. 
High-risk event data (e.g., temperature breaches) are prioritized and transmitted to the cloud via 
5G network slicing, ensuring the timely delivery of critical information while reducing 
transmission load and improving response speed, as shown in Fig. 6.
	 The second stage focuses on federated learning to overcome data silos while preserving data 
privacy. Core enterprises train a “production efficiency-repayment ability” submodel using 
production data (e.g., daily output and yield rate), while logistics providers train a “logistics 
timeliness-default risk” submodel using delivery performance data. Only encrypted model 
parameters are shared with the cloud. A global credit scoring model is then aggregated using the 
TensorFlow Federated framework, enhancing generalization while ensuring privacy protection, 
as shown in Fig. 7.

Fig. 6.	 (Color online) Edge data preprocessing workflow.
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	 The third stage involves deploying dynamic risk assessment simulations to evaluate the 
impact of extreme scenarios on the supply chain. A digital twin for risk prediction integrates 
market data, policy data, and supply chain topology to construct a multidimensional simulation 
environment. For example, by inputting a hypothetical scenario such as “a 30-day port closure 
due to a pandemic,” the digital twin can quantify the resulting logistics delays and their impact 
on the cash flow of upstream and downstream firms while also generating corresponding 
mitigation strategies (e.g., activating alternative logistics routes and adjusting credit priorities). 
This dynamic simulation capability enables a shift in risk control from reactive remediation to 
proactive prevention.
	 The integration of edge computing, federated learning, and digital twin technologies forms a 
progressive optimization loop, linking data, modeling, and simulation. Experimental results 
demonstrate that this coordinated approach significantly improves the accuracy of risk forecasts 
under volatile conditions and enhances the resilience of supply chain decision-making.

3.4	 Collaborative risk control network: cross-institution coordination and feedback 
optimization

	 Traditional risk control relies on manual rules and post-incident responses, lacking cross-
layer coordination mechanisms. This phase aims to establish an adaptive closed-loop system of 
“monitoring–response–iteration” through smart contracts and cross-layer feedback. The goal is 
to enable dynamic risk optimization and system self-learning. The phased implementation 
process is illustrated in Fig. 8.
	 The first stage focuses on real-time monitoring and visualization by integrating multisource 
data and labeling risk levels. An AI-blockchain-based risk dashboard is developed using 

Fig. 7.	 (Color online) SCF federated learning model training workflow.
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visualization technologies such as D3.js to display the risk status of supply chain nodes (red/
yellow/green indicators). This assists decision-makers in quickly identifying issues and 
formulating intervention strategies. For example, nodes marked in red owing to abnormal 
inventory levels can trigger audit processes, while yellow nodes activate early warning 
monitoring.
	 The second stage emphasizes automated cross-institution coordination through smart 
contracts, enabling multiparty collaborative responses. On the basis of data inputs from sensing 
and processing layers, predefined rules (inventory pledge ratio > 90% or delivery delay > 48 h) 
are verified to trigger contract actions. For instance, in a food supply chain, if the inventory 
pledge ratio exceeds the threshold, the smart contract automatically freezes 50% of the payment 
and notifies the core enterprise to replenish stock. Simultaneously, the contract sends a 
compensation request to the insurance company, initiating a pre-approval process. This 
mechanism significantly reduces delays caused by manual intervention and overcomes 
coordination barriers in traditional multidepartment operations.
	 The third stage implements cross-layer feedback and closed-loop optimization to enable 
system self-learning and policy iteration. A forward control mechanism pushes risk events 
identified at the application layer (e.g., duplicate collateralization) back to the sensing layer. For 
instance, if repeated collateral alerts are frequently triggered at a specific warehouse, the system 
automatically increases the RFID scanning frequency from once per hour to once every 10 min. 
The reverse feedback mechanism sends historical risk data to the processing layer to refine the 
weight allocation in the federated learning models.
	 The integration of AI dashboards, smart contracts, and cross-layer feedback enables the risk 
control system to continuously learn and adapt. Experimental validation shows that this 
approach reduces detection latency by 35% and improves early-warning accuracy by 28%, 
enhancing the overall responsiveness and resilience of supply chain risk management. In this 

Fig. 8.	 (Color online) SCF risk synergy network flowchart.



3676	 Sensors and Materials, Vol. 37, No. 8 (2025)

study, we successfully integrated cutting-edge technologies, namely, IoT, blockchain, AI, 
federated learning, and digital twin systems, to construct a dynamic and collaborative risk 
management framework for SCF. The proposed system effectively addresses key challenges 
such as information asymmetry, dynamic collateral fraud, and response latency. Empirical 
findings confirm that the synergistic application of these technologies enables trustworthy data 
acquisition, privacy-preserving information sharing, and intelligent dynamic decision-making, 
thereby achieving the end-to-end optimization of SCF risk management. This work offers an 
innovative paradigm for the digital transformation of SCF risk control, as illustrated in Fig. 9.

4.	 Conclusion

	 In this study, we integrated IoT with a suite of advanced technologies including blockchain, 
AI, federated learning, and digital twin systems. Specifically, blockchain technology, leveraging 
sharding architecture, and ZKP enabled trusted cross-institutional data interoperability while 
preserving privacy, effectively addressing the longstanding conflict between data silos and the 
risk of disclosing commercial secrets in traditional systems. The combination of federated 
learning with edge-cloud collaborative computing facilitated distributed parameter aggregation, 
thereby optimizing credit assessment models and significantly enhancing their adaptability to 
market volatility and supply chain dynamics. Digital twin technology, drawing on real-time IoT 
data, constructed the dynamic asset models that anchor collateral value in real time and provided 
early warnings of anomalies, thereby overcoming the limitations of static valuation methods. To 
overcome the performance bottlenecks inherent in centralized risk control systems, we proposed 
the development of a distributed and multicenter collaborative network. This network was driven 

Fig. 9.	 (Color online) Risk management application scenarios for IoT SCF.
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by smart contracts, enabling automated responses and cross-layer feedback loops that together 
form a self-adaptive optimization cycle of monitoring, response, and iteration. The practical 
value of this study lied in its provision of a modular, phased pathway for digital transformation, 
offering financial institutions and SMEs a framework that encompassed the construction of real-
time data ecosystems, the deployment of secure risk control environments, the optimization of 
collaborative computation, and the integration of closed-loop systems.
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