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	 With the increasing popularity of self-driving cars, road-condition detection systems have 
become a significant research focus. Traffic sign detection, which is a crucial component of 
these systems, directly affects the safety of both drivers and pedestrians. Owing to the urgent 
requirement for efficient traffic sign detection for autonomous driving applications, achieving 
high-performance and rapid responses for long-distance sign detection is crucial. You only look 
once v7 (YOLOv7) is a one-stage object detection model that offers excellent detection speed but 
faces challenges in long-range detections owing to the inherent loss of small-object features in 
its convolutional and maxpooling layers. To address these challenges, we propose enhancements 
for YOLOv7 by integrating a space-to-depth convolution module to better preserve small-object 
features and an attention mechanism to help it focus more effectively on relevant objects. We 
further enhanced it by adding extra detection heads specifically designed to extract small-object 
features and incorporated Gaussian noise to enhance its robustness. The improved model was 
evaluated on the National Taiwan University of Science and Technology Taiwan traffic sign 
dataset, which comprises 29 types of traffic sign. The results demonstrated the effectiveness of 
these enhancements, improving the mAP50 of YOLOv7 from 59.5 to 84.7% and offering a 
significantly better traffic sign detection performance.

mailto:hsiach@niu.edu.tw
https://doi.org/10.18494/SAM5347
https://myukk.org/


3708	 Sensors and Materials, Vol. 37, No. 8 (2025)

1.	 Introduction

	 With continuous hardware improvements and advancements in computer-vision algorithms, 
autonomous-driving systems have become a popular research area in recent years. The core 
technologies necessary for a fully autonomous-driving vehicle include pedestrian,(1,2) vehicle 
detection,(3,4) lane detection,(5) and traffic sign detection.(6,7) Traffic signs are crucial for 
warning, prohibiting, and guiding vehicles and pedestrians to ensure road safety and prevent 
accidents. Therefore, the effective detection of these signs is essential for autonomous vehicles to 
protect both drivers and pedestrians. Additionally, it is crucial for these vehicles to identify 
traffic signs from a sufficient distance to enable ample reaction times. However, long-range 
detection is challenging owing to limited RGB camera resolutions and pixel information, which 
directly affect the quality of the information acquired. Even without compression, camera 
resolution significantly affects the information that can be obtained from a given scene.
	 Figure 1 illustrates the challenge we address in this study. Accurate traffic sign detection is 
vital for driver safety and autonomous driving systems, as misinterpreting or failing to recognize 
signs can lead to dangerous situations. Detecting signs from a distance is crucial, allowing 
drivers and automated systems time to process and react appropriately. However, this introduces 
challenges. Signs appear smaller from afar, reducing their pixel representation in images. This 
decreased resolution can distort or obscure features, especially in poor lighting or weather. In 

Fig. 1.	 (Color online) Comparison of the inferences of the original YOLOv7 (top) and the modified version 
proposed in this study. (Bottom) Inferences for a mountainous scene.
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extreme cases, signs may become unrecognizable, compromising detection model reliability. 
Complex environments, such as urban areas with dense traffic and varied backgrounds, 
exacerbate this issue. Therefore, developing models that can accurately detect small, distant 
traffic signs under these conditions is critical for ensuring robust, long-distance detection and 
enhancing road safety. In this work, we collected 4970 photos from roads in Taiwan 
encompassing prohibition (seven categories), restricted (two categories), mandatory (three 
categories), warning (10 categories), indicative (five categories), and auxiliary (two categories) 
signs, obtaining a total of 29 sign classes. These photos were captured at various locations, 
including urban neighborhoods, highways, and mountain paths. This dataset, which is referred 
to as the National Taiwan University of Science and Technology (NTUST) Taiwan traffic 
dataset, was used in the experiments.
	 In summary, in this paper, we present significant contributions to the field of object detection, 
particularly in traffic sign recognition. The findings of this study are crucial for enhancing road 
safety and improving object recognition models’ performance. (1) To address the issue of small-
object features gradually disappearing during feature extraction in the backbone, we 
implemented the space-to-depth (SPD) convolution module. This approach better preserves 
detailed features. (2) To enhance small-object detection, we added a detection head to the 
underlying backbone. We also incorporated Gaussian noise during training to improve model 
robustness. Additionally, we integrated a Simam attention mechanism into the head, helping the 
model focus on objects of various sizes in complex scenes. (3) To validate the model’s 
performance on Taiwan traffic signs, we created the NTUST Taiwan traffic dataset by collecting 
diverse traffic scenes in Taiwan. We then used this dataset to improve the model’s performance 
on Taiwan-specific traffic signs.

2.	 Related Work

2.1	 Object detection

	 AlexNet,(8) a graphics processing-unit-based convolutional neural network (CNN) introduced 
in 2012, demonstrated groundbreaking image classification performance, ushering in 
revolutionary developments in the field of computer vision. This advancement spurred interest 
in exploring the potential of computer vision for more complex tasks such as object detection and 
segmentation, making deep learning (DL) a popular research area. Object detection methods can 
be broadly classified as one- and two-stage approaches, with the latter exhibiting better 
performance. The two-stage approach involves generating candidate frames and then feeding 
them into a pretrained classification model,(9–11) or the classic machine learning (ML) 
method.(12–13) This intuitive and effective approach has laid the foundation for object detection 
methods, leading to the development of models such as faster region-based CNNs (R-CNNs),(14) 
and feature pyramid networks (FPNs) that offer(15) high detection accuracies. Additionally, 
although two-stage methods are slower than one-stage methods, they offer superior accuracy. In 
recent years, one-stage object-detection models, such as you-look-only-once (YOLO) models,(16) 
have achieved outstanding performance and efficiency, leading to their widespread adoption.
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2.2	 Traffic sign detection

	 Traffic sign recognition is a long-standing task and early studies relied on traditional 
computer vision techniques to locate and identify traffic signs.(12) In such techniques, the color 
distribution of a sign (e.g., red for warning and blue for compliance) is typically analyzed and 
then the sign area is segmented using feature descriptors such as a histogram of oriented 
gradients (HOG).(13) Subsequently, classic ML techniques such as support vector machine 
(SVM),(17) k-nearest neighbor classification (KNN), and random forest techniques were 
employed to classify the signs. Owing to significant technological advancements in recent years, 
CNNs have been increasingly employed for traffic sign recognition. These DL methods offer 
better sign recognition performance by leveraging features beyond simple color and HOG 
analysis. Recently, many researchers have focused on optimizing the YOLO model for traffic 
sign recognition by adjusting its internal structure to improve its accuracy and efficiency.(18–20)

2.3	 Small-object detection

	 Small-object recognition is a branch of object recognition tasks that emerged after the 
maturation of object recognition technology. In recent years, with the development of 
applications such as unmanned aerial vehicles, the identification of small objects has become an 
important area of research. One of the biggest challenges in small-object recognition is that only 
a limited number of features can be used to locate and identify objects. Taking YOLO as an 
example, although we will not discuss its feature pyramid in-depth, generally, the input image 
data usually extract features through convolutional and maxpooling layers. However, after going 
through these two modules, some small features are gradually lost, especially when we use 
multiple convolution modules and maxpooling layers to extract features. This problem is 
particularly important.
	 The most direct way to improve the model’s performance in recognizing small objects is to 
strengthen its feature extraction capabilities.(15) This can be achieved by directly introducing 
detection heads for small objects or optimizing the model.(21) On the other hand, integrating the 
attention mechanism can help improve the model’s performance in detecting small objects. 
Through the introduction of contextual information,(22) the model can perform more accurate 
detection based on the information surrounding an object. The super-resolution method,(23) 
which can repair the features of objects with insufficient information and improve their 
recognizability, is another effective me. Additionally, by generating more samples of smaller 
objects,(24) we can expand the training data in a relatively simple and intuitive manner, allowing 
the model to learn more completely during the training process. This strategy helps the model 
obtain more complete information about small objects and improve its performance in practical 
applications.

2.4	 Attention mechanism

	 In 2017, researchers such as Wang et al. reported their study,(25) in which they used attention 
modules stacked layer by layer, with each module focusing on a single feature of information. 
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However, continuing to stack these modules can have detrimental effects on the model. 
Eventually, they introduced the concept of residual networks, which gave rise to the first model 
of the attention mechanism.
	 Then, Hu et al. came out with squeeze-and-excitation network (SEnet)(26) and integrated the 
attention module they developed into the common CNN model at that time, which greatly 
improved the accuracy of the model. However, unlike SEnet, the convolutional block attention 
module (CBAM)(27) model focuses not only on the channels of the feature map but also on the 
spatial features of the set of channels via the two-layer attention mechanism. This allows CBAM 
to obtain better results than SEnet. The main goal of integrating the attention mechanism into 
the model is to enable the model to focus more on object features while reducing attention to 
irrelevant objects. This attention mechanism is also widely used in multiple tasks,(28–30) 
highlighting the importance of such a mechanism.

2.5	 Feature map perturbation

	 Under normal circumstances, potential noises are hidden in the photos taken. Although 
humans cannot directly detect these noises, they are potential interferences that can negatively 
impact detection or classification models. To solve this problem, before training a model, 
Gaussian noise or salt and pepper noises are usually introduced into an image to augment the 
data, thereby improving the robustness of the model. It is also one of the simplest practices in 
early ML.
	 However, this approach does not fully consider the impact of noise on the model. Therefore, 
in a previous paper,(31) it was proposed to directly introduce random information into a feature 
map. In this way, the neural network can be perturbed more directly, thereby improving the 
robustness of the model. This method is used to solve both model overfitting(32) and insufficient 
data problems.(33) More importantly, this approach imposes no additional computational burden 
during inference and can improve model accuracy with existing resources.

3.	 Proposed Methodology

	 YOLOv7(34) introduces several key improvements that enhance both the speed and accuracy 
of object detection. For instance, it leverages the efficient layer aggregation network (ELAN) 
structure to boost the model’s feature learning capacity while maintaining computational 
efficiency. Additionally, it employs dynamic label assignment (DLA) to improve the detection of 
objects of varying sizes. The model also incorporates the cross stage partial (CSP) structure to 
reduce computational costs and uses the FPN and path aggregation network (PAN) for multiscale 
feature fusion, further enhancing its capability to detect objects of different scales.
	 We propose an enhanced version of YOLOv7, which features an improved backbone and 
head and offers better performance in detecting small symbols; its structure is shown in Fig. 2. 
First, we introduce an SPD convolution module to replace the original convolution and 
maxpooling layers to mitigate the loss of small features. Second, we integrate the simple 
parameter-free attention mechanism (SimAM),(35) which is located before spatial pyramid 
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pooling cross stage partial (SPPCSP),(34) and input the head of the feature map; after the feature 
integration module (FIM), we apply SimAM during the downward propagation of the feature 
map from the backbone. This mechanism enables the model to primarily focus on the important 
parts of an object. Third, we introduce additional detection heads to extract small features to 
further boost the small-object detection capability of YOLOv7 and enhance the head FIM (EHC 
FIM). By perturbing the feature map during training, we improved the inference performance 
without increasing the computational complexity. These improvements were aimed at enhancing 
the model’s efficiency in identifying small signs.

3.1	 Simple attention module

	 In this section, we discuss in detail the integration and operating principles of SimAM,(35) in 
YOLOv7. Traffic signs typically occupy only a small part of an image with considerable 
background information. The primary purpose of AM is to help the model focus on traffic signs 
to enhance its detection accuracy for these signs. The main advantage of SimAM is that it is 
parameter-free. Therefore, unlike traditional AMs, SimAM does not involve numerous 

Fig. 2.	 (Color online) Framework of the improved YOLOv7 proposed in this study. (a) The SPD module replaces 
the upsampling and maxpooling layers in the original backbone, significantly enhancing the preservation of small-
object characteristics. (b) SimAM is integrated into FIM, enabling the model to focus more effectively on object 
features. (c) Additional object detection heads are added to enhance the recognition performance for small objects. 
The FIM of the small-object detection head is also improved to increase the model robustness.
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parameters or computational elements, such as convolutional layers, normalization, and 
activation functions, and it instead implements AM through mathematical functions. Thus, it 
simplifies the model structure, reduces unnecessary computational loads, and improves 
computation efficiency. 
	 The traffic sign detection process involves the following steps: first, the input image passes 
through the backbone network that extracts object features from them layer-by-layer and then 
passes these features to higher levels through up-sampling to detect larger objects until they 
reach the final output layer. After processing the feature pyramid, the feature map in the head is 
combined with the backbone feature map at the corresponding level. Note that SimAM is 
employed before the feature map is input into the head and during its downward transmission to 
enhance the object attention at each level of the feature pyramid.
	 The AM model uses neurons from different areas to enhance the information intensity of 
certain neurons, thereby improving the detection and recognition performance of the model.  
AM is defined as
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these parameters are defined as
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By computing wt and bt as well as the mean and variance of each channel, we can effectively 
reduce the additional computational burden resulting from the iteration. The attention is 
expressed as
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Finally, a sigmoid function is applied to all *
te  values to prevent them from becoming excessively 

large, and the result is denoted as E, which is then applied to the input feature map X to obtain X  
as
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3.2	 SPD module

	 In this section, we explain the integration of the SPD layers(36) in YOLOv7. Conventional 
CNNs typically offer limited detection performance for small objects. Sunkara and Luo(36) 
focused on classical convolution operations and noted that they can ignore small pieces of 
information, thereby affecting the model’s capability to learn excellent features for small objects 
or minute details. In YOLOv7, the size of the feature map is halved at each higher level of the 
feature pyramid to allow the high-level pyramid to learn the features of the large objects. 
However, the features of the small objects are lost during this process. Additionally, it offers 
suboptimal traffic sign recognition performance because the system must remotely recognize 
vehicles and signs. The traffic signs are generally small in photographs captured from sufficient 
distances. As shown in Fig. 3, we replaced the staggered convolution and pooling layers with 
SPD layers to ensure that the features of small objects can be preserved to the maximum extent.

3.3	 Tiny layer enhancement

3.3.1	 Normal tiny layer 

	 The successful detection of road signs from a distance requires the processing of small 
objects. YOLOv7 was developed using the Common Objects in Context (COCO) dataset 
comprising images with dimensions of 640 × 640 pixels, and any object with a side length of <32 
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pixels was considered a tiny object. The object sizes typically ranged from 30 to 60 pixels. 
Additionally, the NTUST Taiwan traffic sign dataset comprised images of 1280 × 712 pixels; 
however, we resized them before inputting them into the model, with the expected object sizes 
ranging from 30 to 60 pixels. Therefore, we focused on capturing the features of smaller objects 
by adding more object detection heads. Moreover, the model can obtain more detailed 
information on small objects at the bottom of the feature pyramid, leading to better performance 
for the traffic dataset.

3.3.2	 Enhanced tiny layer 

	 With the additional sensing heads, the model can better detect tiny objects. Compared with 
the original detection layer of YOLOv7, our improved detection head was closer to the lower 
layers. However, the convolutional layers are not very deep at these lower levels. Because our 
data were extracted directly from a camera without preprocessing, the images may have 
contained noise, which can affect the capability of the sensing head to extract features from the 
objects. Therefore, we introduced Gaussian noise into the detector head for small objects to help 
it adapt to various environments, thereby improving the model’s robustness.

3.4	 Experimental results

	 In this subsection, we describe the experiments conducted using the NTUST Taiwan traffic 
sign dataset to evaluate the performance of the modified YOLOv7 model. Furthermore, ablation 
experiments were conducted to evaluate the effect of each model component.

Fig. 3.	 (Color online) Illustration of the SPD module operation.
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3.4.1	 Datasets

	 The NTUST Taiwan traffic sign dataset included road images from city centers, highways, 
and mountain roads. We installed a camera inside a car directly under the rearview mirror; the 
camera specifications are listed in Table 1. The images included various types of traffic sign, 
including prohibition, mandatory, restricted, warning, instruction, and auxiliary signs, with a 
total of 29 categories and more than 4970 images of 1280 × 712 pixels. As shown in Fig. 4, 
datasets comprising outdoor images often suffer from data imbalances, and the dataset employed 
in this study is no exception. It featured significant quantity differences among the different 
categories, with small objects posing additional challenges. 
	 Figure 5 illustrates some data samples from the NTUST Taiwan traffic sign dataset, which 
were collected outdoors. Some sign categories are unique to certain mountainous road sections, 
which made their collection particularly challenging. Additionally, urban settings pose greater 
complexities than suburban settings, with occlusions owing to high traffic volumes being the 
most prevalent issue. Furthermore, business district signs are often misidentified because their 
colors and symbols are similar to those of advertising signs. These challenges are compounded 
by the difficulty of detecting small objects, particularly for images captured from a distance.

3.4.2	 Implementation details

	 The proposed YOLOv7-based model resizes the input images to 640 × 640 pixels. The 
weights from the official pretrained model were used as the initial training weights, and most 

Table 1
Camera specifications.
Chip 1/1.8" CMOS chip
Color Multicolor
Max resolution 2048 × 1536 pixels
Pixel size 3.45
Frame rate 55 fps

Fig. 4.	 (Color online) Statistical distribution of each traffic sign class in the dataset.
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training settings were adopted from conventional YOLOv7 configurations. During our 
experiments, we disabled the left- and right-flipping in the official configuration file. The model 
exhibited good convergence performance after 200 epochs on our dataset. During inference, we 
used a batch size of 32 and a confidence threshold of 0.3. Additionally, the experiments were 
conducted on a system comprising an NVIDIA 2080ti 11G GPU.

4.	 Results and Discussion

4.1	 Main experiment

	 We successfully improved the accuracy of YOLOv7 on the Taiwan traffic sign dataset by 
integrating SimAM and the SPD, and tiny-layer enhancement modules. As shown in Table 2, the 
proposed YOLOv7 model showed a significantly improved accuracy compared with the 
conventional YOLOv7 model without substantially increasing the computation time. 
Specifically, the SPD convolution module performed exceptionally well because our dataset 
primarily comprised small objects, making it well-suited for this task. Additionally, ideal results 
were obtained by introducing disturbances into the feature maps of the small-object detection 
heads. However, this approach increases the computational complexity owing to the large 
dimensions of the underlying feature maps. Therefore, our task entailed a higher computational 
effort owing to the considerable number of small objects in our dataset. The results are listed in 
Table 2.

Fig. 5.	 (Color online) Sign types and corresponding labels included in the NTUST Taiwan traffic sign dataset.
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4.2	 Ablation studies

	 We analyzed how various component combinations affect the performance of YOLOv7 on 
the NTUST Taiwan traffic sign dataset. We first evaluated the performance of each module 
individually and then combined the most effective results. In the following sections, we will 
discuss these results in detail, demonstrating that each component contributed positively to the 
overall performance.

4.2.1	 SimAM attention module

	 The YOLOv7 model was divided into three main areas (L1, L2, and L3) and SimAM was 
employed in each area. In L1, it was incorporated from the trunk to the head, whereas in L2, it 
was integrated into the head and propagated through the feature map from the top to the bottom. 
This enabled the model to focus more on objects of various sizes, thereby enhancing its 
capability to handle and detect small objects effectively. Finally, in L3, SimAM was integrated 
into the bottom-up propagation process of the underlying features of the model. This allowed the 
passing of the object features detected at lower levels to higher levels, thereby enhancing the 
capability of the model to capture large objects. As indicated by the results listed in Table 3, this 
design enabled the model to adapt better to objects of different sizes at different levels, thereby 
improving its detection performance.

4.2.2	 SPD module

	 We used the SPD convolution module to replace the bottom-up upsampling modules in the 
backbone and head to reduce the loss of small-object features during upsampling. Table 4 
presents the crossover results of the experiments for the NTUST Taiwan traffic sign dataset. 
Surprisingly, in the first experiment, wherein all maxpooling modules were replaced with SPD-
Conv blocks, we did not achieve the best results. We believe that this may be due to the potential 
noise disrupting the underlying layer, resulting in significant differences in image output. 
However, not all results were unsatisfactory. Satisfactory results were obtained in the second 
experiment, wherein the SPD module was added to the backbone of YOLOv7, indicating that the 
SPD module can be effectively applied to each layer to retain more detailed features.

4.2.3	 Enhanced tiny layer 

	 We added more sensing heads to the original YOLOv7 model to enhance its detection 
performance for tiny objects. Accuracy can be improved by obtaining feature information 

Table 2
Results of the conventional and proposed YOLOv7 models for the NTUST Taiwan traffic sign dataset.
Method Precision (%) Recall (%) mAP50 (%) mAP50:95 (%)
YOLOv7 71.3 61.4 59.5 45.5
This work 90.0 81.8 84.7 64.7
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directly from the lowest layer. YOLOv3(37) and its future versions primarily use feature pyramids 
to obtain object features of different sizes, perform feature extraction, and pass the extracted 
features to the next layer. During this feature transfer process, the size of the entire feature map 
decreases gradually, leading to a gradual loss of the characteristics of small objects. Using the 
detection head directly at the bottom layer is a simple and effective method for improving 
recognition performance for small objects. Although this approach enhances accuracy, it 
requires feature size reduction, especially for feature maps close to the bottom layer, which can 
affect the inference and training time. Additionally, Gaussian noise was introduced in the 
detection head to enhance the model resilience. We added noise with a gamma standard 
deviation at various levels and identified the appropriate values for our dataset and the small-
object detection head, which improved the small-object detection performance (see Table 5).

5.	 Conclusions

	 In this study, we effectively enhanced the YOLOv7 model for small-traffic-sign detection by 
integrating three additional modules and testing the model on the Taiwan NTUST traffic sign 
dataset. Although we successfully improved the model’s mAP50 from 59.5 to 84.7%, there are 
potential limitations to consider. The added complexities, such as tiny detector heads, Gaussian 
noise, and SPD convolution, could increase the computational load, potentially affecting real-
time performance, especially in resource-limited environments. Additionally, although the 
dataset primarily focused on long-distance traffic sign detection, it may not fully represent 

Table 3
Ablation experiment results for SimAM.

L1 L2 L3 Precision (%) Recall (%) mAP50 (%) mAP50:95 (%) Time (ms)
✓ 77.5 64.0 64.0 48.2 4.4
✓ ✓ 81.4 74.6 73.7 56.2 4.5
✓ ✓ ✓ 75.9 74.4 71.3 54.0 4.8

Table 4
Ablation experiment results for the SPD convolution module.
Layer Precision (%) Recall (%) mAP50 (%) mAP50:95 (%) Time (ms)
1-7 82.0 72.7 72.6 54.9 6.3
1-5 79.7 80.7 79.5 60.5 6.1
1-3 78.1 77.2 75.6 58.7 6.3
3-5 80.4 81.3 80.0 61.0 4.3

Table 5
Ablation experiment results for the enhanced tiny layer.
γ Precision (%) Recall (%) mAP50 (%) mAP50:95 (%) Time (ms)
0 82.4 78.7 78.4 59.7 5.5
0.005 85.4 78.7 79.5 61.0 5.5
0.01 84.2 83.6 82.4 63.6 5.5
0.02 82.7 81.2 80.4 61.7 5.5
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diverse real-world conditions, such as varying weather and lighting scenarios. Future work 
should aim to optimize the model’s computational efficiency and expand the dataset to include 
more challenging environments, thereby enhancing both the speed and robustness of the model 
in practical applications.
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