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	 Acupressure is a valuable method for maintaining good health and also helps in the overall 
regulation of bodily functions and the promotion of physical fitness. In this paper, we propose a 
real-time interactive healthcare system for acupoint analysis based on augmented reality (AR). 
We utilized the edge computing of the Jetson Nano J1010 development board, and employed 
MediaPipe technology and an acupoint mapping algorithm to display acupoints on the screen. 
By using our proposed deep neural network (DNN)-based hand gesture recognition, we achieved 
AR-based interaction with acupoints. Users can view the locations of the corresponding 
acupoints on the body and the descriptions of the acupoints through gestures. Additionally, we 
developed a mobile app that enables interaction with the system via Bluetooth technology. Users 
can select the symptoms they wish to understand, and the system will display acupoints that can 
alleviate those symptoms. We also developed a bidirectional encoder representations from 
transformers (BERT)-based AI consultation, which utilizes the open-source conversational 
receive, appreciate, summarize, ask (RASA) natural language understanding (NLU) to 
determine the user’s intents from input on the mobile app. When the intent is related to medical 
content, the information is passed to a BERT model for diagnosis analysis, determining possible 
diseases or symptoms and providing corresponding recommended acupoints for symptom relief. 
This aids users in making preliminary judgments about their own conditions. All AI diagnostic 
information is transmitted to the server side, where physicians can view user information 
through a website. By visualizing the data through charts, physicians can quickly understand the 
user’s condition and further save medical resources. This acupoint-analysis-based healthcare 
system offers a safe, convenient, and efficient solution for health management, particularly 
valuable for individuals lacking experience and medical knowledge. We hope that by using this 
proposed system, users will feel like they have a virtual healthcare advisor at their disposal.

1.	 Introduction

	 Acupressure is a valuable method for maintaining good health, which relies on specific 
acupoints distributed throughout the body. These acupoints can be targeted to address a wide 

mailto:yxzhao@nqu.edu.tw
https://doi.org/10.18494/SAM5356
https://myukk.org/


3724	 Sensors and Materials, Vol. 37, No. 8 (2025)

range of ailments while also contributing to the overall regulation of bodily functions and the 
promotion of physical fitness. However, for many people, especially beginners, the challenge lies 
in accurately locating these acupoints, often necessitating guidance from books or experienced 
practitioners. In this paper, our goal is to provide users with a quick and easy means to identify 
the precise locations and functions of acupoints on their hands and heads, empowering them to 
harness the therapeutic potential of acupressure efficiently. This accessibility can aid in 
alleviating symptoms promptly and potentially preventing the development of diseases.
	 Therefore, we propose a real-time interactive healthcare system for acupoint analysis based 
on augmented reality (AR). Our system employs the advanced capabilities of the Jetson Nano 
J1010 development board, specifically its edge computing technology. Additionally, we have 
integrated MediaPipe technology, enabling AR interaction with acupoints. Users can now 
visualize the exact locations of these acupoints on their own bodies, enhancing their 
understanding and application of acupressure techniques.
	 Beyond this, we have developed a user-friendly mobile app that seamlessly connects to a 
smart mirror via Bluetooth. This app allows users to select specific symptoms they wish to 
address. Once chosen, the device provides real-time feedback by highlighting the relevant 
acupoints that can offer relief for those specific symptoms. This intuitive interface simplifies the 
acupressure process, making it accessible to a broader audience. However, our system’s 
capabilities do not stop at visual aids and symptom management. We have taken it a step further 
by incorporating state-of-the-art AI diagnosis technology using receive, appreciate, summarize, 
ask (RASA) and bidirectional encoder representations from transformers (BERT). This means 
that the system can analyze user input, identify potential diseases or symptoms, and offer 
personalized recommendations for acupoints that can provide targeted symptom relief. We hope 
that by using this proposed system, users will feel like they have a virtual healthcare advisor at 
their disposal.

2.	 Related Work

2.1	 Acupoints recognition and visualization

	 Acupoints are essential elements in traditional Chinese healthcare, and in recent years, AI 
technology has made significant progress in acupoints recognition. Early approaches utilized 
convolutional neural networl (CNN) models and mathematical calculations or edge detection to 
infer acupoints locations,(1,2) while current models such as MediaPipe can obtain human body 
coordinate points. Previous studies have used 3D morphable models (3DMMs) to display facial 
acupoints,(3) but their complex computational requirements limit real-time operation. MediaPipe 
Face Mesh is a real-time facial landmark detection system that uses machine learning to predict 
the 3D positions of 468 facial keypoints. Compared with 3DMMs, MediaPipe performs better 
and is suitable for running on various devices. Recent research has also used MediaPipe for 
facial acupoint display(4) but with limited functionality.
	 In this study, we further improve on the foundation of MediaPipe, implementing not only 
facial acupoint display but also hand acupoints, acupoints classification, and gesture interaction, 
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providing users with a more comprehensive experience. In recent years, AI has made significant 
progress in various fields such as natural language processing (NLP), image recognition, visual 
retrieval, and medical image analysis.(5,6) Especially in the past few years, with the rapid 
improvement of computer specifications and the growth of talents in various domains, the power 
of AI has been strengthening year by year. In the following sections, we will introduce the 
relevant technologies used in this research.

2.2	 RASA natural language understanding (NLU)

	 RASA is the primary tool proposed by Bocklisch et al. for understanding and interpreting 
semantic meaning.(7) RASA Core takes the output of RASA NLU and applies machine learning 
models to generate reply messages for virtual assistants. By analyzing keywords entered by the 
user, RASA effectively determines the user’s intent, enabling the AI chatbot to provide 
appropriate responses. This approach allows users to interact with the chatbot and receive 
relevant information on the basis of their inputs. The implementation demonstrated how RASA 
can be employed to interpret user intentions and facilitate meaningful interactions within the 
context of a serious game designed for intraosseous access training.
	 In recent years, many studies have used RASA to design chatbots and apply them in many 
fields.(8–10) There is also research on integrating chatbots into social networks,(11) web pages,(12) 
and serious games.(13) Gupta et al. proposed a RASA-based chatbot for disease detection.(14) 
They used the RASA chatbot to collect user-provided symptoms and utilized machine learning 
classification models, such as the support vector machine (SVM) and Naive Bayes classifiers, to 
identify potential illnesses. Their YAML ain't markup language (YAML) system architecture 
effectively integrated natural language processing techniques, and testing with a symptom 
dataset demonstrated the chatbot’s capability to accurately detect diseases on the basis of user 
inputs.
	 In this paper, we use RASA for initial symptom assessment. Different from the above, we 
enhance the diagnostic accuracy by incorporating BERT after RASA’s preliminary judgment. 
BERT allows us to determine the specific disease associated with the user’s symptoms in greater 
detail. Additionally, our system can recommend appropriate acupoints for the user to press, 
providing a more comprehensive and precise consultation experience.

2.3	 BERT

	 BERT is a pretrained deep learning model for NLP developed by Google,(15) extending from 
the Transformers decoder.(16) BERT is capable of the bidirectional encoding of sentences, 
considering the contextual information of all words in the sentence. This allows BERT to exhibit 
excellent performance in various NLP tasks, including sentiment analysis, machine translation, 
keyword extraction, and question-answering systems.
	 The commonly used BERT architecture consists of 12 transformer layers, which is a neural 
network architecture that effectively learns long-range dependencies. BERT employs a technique 
called adaptive learning during training, enabling the model to dynamically adapt to different 
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input lengths of sentences. Additionally, BERT utilizes residual connections and self-attention 
mechanisms, allowing the model to capture the relevance of individual words within sentences 
better. Through the BERT model, we aim to infer the user's diseases on the basis of conversations 
and provide corresponding acupoints displayed on the human body.
	 In recent years, there have been many studies applying BERT to disease detection and 
prediction, such as the detection of Alzheimer’s disease,(17,18) crop diseases,(19,20) and Lyme 
disease.(21,22) In this paper, we use the BERT model to infer the user’s disease on the basis of 
conversations and search for the corresponding acupoints on the human body through a database.

3.	 System Design

3.1	 System architecture

	 In this paper, we propose a real-time interactive healthcare system for acupoint analysis 
based on AR, which can recognize acupoints on the user’s hands and head, and assist users in 
learning and understanding acupoints knowledge. The system consists of four main components: 
the software, hardware, server, and mobile sides. The system architecture is shown in Fig. 1.
	 The hardware side of the system utilizes the edge computing of the Jetson Nano J1010 
development board and interacts with the user through a webcam. The software side is developed 
using PyQt and utilizes MediaPipe to obtain the coordinates of the human body. With the help of 
algorithms, the obtained coordinate points from MediaPipe are mapped to the acupoints on the 
head and hands. This allows the display screen to show the acupoints, enabling users to learn 
and understand acupoint knowledge. Additionally, the system includes an Android app that users 
can download. Through this app, users can conduct AI consultations and record their physical 
condition and related information. During the consultation, the app connects to the server side to 
perform AI consultations. The server side utilizes NLU to interpret user inputs and determine 
their physical condition. The user’s information is stored on the server. Doctors can log in to the 
server through a web interface to quickly understand the user’s physical condition and related 
information. This design enables doctors to quickly gain understanding of the user’s physical 
condition, improving diagnostic efficiency, and allows users to conveniently access medical 

Fig. 1.	 (Color online) System architecture.
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assistance. Overall, the developed system provides an interactive AR acupoints healthcare 
solution, combining hardware, software, server, and mobile components to enhance acupoints 
learning, AI consultations, and efficient healthcare delivery.
	 The system flowchart is illustrated in Fig. 2. First, we utilize a webcam to capture the user’s 
hand data. This data is then sent to the Jetson Nano J1010 for processing. In Data Analysis, we 
utilize the hand and head landmark provided by the Mediapipe holistic model. Through our 
proposed acupoint mapping algorithm, we project the acupoints onto the human body. On the 
other hand, we designed a deep neural network (DNN)-based gesture recognition system that 
enables the user to easily operate the entire system. Users can view the desired acupoints 
locations or issue commands to control the product with ease. Additionally, we employ 
asynchronous output to provide users with a smoother visual interaction with their hand 
acupoints in AR.
	 Jetson Nano is a low-cost, low-power AI edge computing device from NVIDIA, which can 
provide AI system development for autonomous machines and edge computing. It is primarily 
targeted for creating embedded systems that require high processing power for machine 
learning, machine vision, and video processing applications, and is now widely used in various 
fields such as robotics, computer vision, intelligent image analysis, and AIoT. Since the Jetson 
Nano is the smallest device in the Jetson series, and owing to its low cost and low power 
consumption characteristics, we chose the Jetson Nano J1010 as the edge computing device for 
this system. MediaPipe is a multimedia machine learning model application framework 
developed by Google Research. It is very lightweight, making it easy to deploy on small single-
board computers such as Raspberry Pi and Nvidia Jetson Nano. In practical applications of the 
system, the Jetson Nano mainly runs MediaPipe, MLP, and acupoint mapping algorithm 
calculations, which is a very ideal solution for its computing performance.

Fig. 2.	 (Color online) System flowchart.
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3.2	 Acupoint mapping algorithm

	 MediaPipe is an open-source framework designed specifically for complex perception 
pipelines leveraging accelerated inference (e.g., GPU or CPU) and already offers fast and 
accurate, yet separate, solutions for human pose, hand tracking, face landmarks, hand landmarks, 
and gesture recognition tasks.(23) MediaPipe Holistic provides a unified topology for 
groundbreaking 540+ keypoints (33 pose, 21 per-hand, and 468 face landmarks) and achieves 
near real-time performance on mobile devices. In this section, we describe the use of MediaPipe 
to detect face and hand landmarks, as shown in Fig. 3.
	 We use the unit “cun” as the unit of acupoint displacement.(24) Cun is a traditional Chinese 
unit of length (its traditional measure is the width of a person’s thumb at the knuckle, whereas 
the width of two forefingers denotes 1.5 cun and the width of four fingers side-by-side is three 
cuns). We map the landmarks identified by MediaPipe to specific acupoints, as shown in Fig. 4.
	 Our hand and head localizations utilize position data from a database, which includes 
reference MediaPipe coordinate positions, relative distances to the coordinate positions, and 
acupoint names. The acupoint mapping flowchart is shown in Fig. 5.
	 To map the acupoints, we should calculate the rotation angles of the head and hands. We use 
the topmost landmark and the bottom landmark as the base axis to calculate the rotation angles, 

Fig. 3.	 (Color online) Example of face and hand landmarks.

Fig. 4.	 (Color online) Example of cun unit measurement and landmark mapping.
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as shown in Figs. 6(a) and 6(b). We also adjusted the distance of the acupoints according to the 
bones of different people, as shown in Fig. 6(c). Since the acupoints on the front and back sides 
of the human hand are different, to display the acupoints correctly, we take the bottom of the 
palm, the thumb, and the pinky of the three points of hand landmarks 0, 5, and 17 to create two 
vectors and calculate their normal vectors, which are used to determine the front and back sides 
of the hand, as shown in Fig. 6(d).
	 Our proposed acupoint mapping algorithm is shown in the following equations. The rotation 
angles of the head and hand are calculated using Eq. (1) through the base axis. The front or back 
side of the hand is determined by calculating the normal vector using Eq. (2). When the head or 
hand rotates, a transfer matrix is generated on the basis of the amount of rotation of the base 
axis, as shown in Eq. (3). The other acupoints can be rotated according to this transfer matrix 
and precisely mapped to the corresponding acupoints. An example of the hand acupoint mapping 
is shown in Fig. 7.
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Fig. 5.	 Acupoint mapping flowchart.
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Here, φ is the rotation angle, 1v


 is the vector of the base axis before the rotation, 2v


 is the vector 
of the base axis after the rotation, n  is the normal vector that determines the front or back side 
of the hand. 1s



 and 2s


 are the vectors of the hand landmarks 0 to 5 and 0 to 17, respectively. x' 
and y' represent the coordinate points after acupoint mapping, x and y represent the coordinate 
points from MediaPipe, c denotes the unit cun calculated from hand landmarks 5 and 6, and Tx 
and Ty represent the offsets of the acupoints relative to the landmark. Simply put, Eq. (1) is used 
to calculate the rotation angle, Eq. (2) is used to determine the front or back side of the hand, and 
Eq. (3) is used to calculate the coordinates by scaling and offsetting. Finally, by comparing the 
relative positioning points from the database with the hand localization points provided by 
MediaPipe, the acupoints can be accurately displayed on the screen and scaled on the basis of 
distance. The development of this customized algorithm ensures reliable acupoint mapping.

Fig. 6.	 (Color online) Calculation of rotation angle and palm direction: (a) head rotation, (b) hand rotation, (c) cun 
unit, and (d) palm direction.

Fig. 7.	 (Color online) Example of hand acupoint mapping.

(a) (b)

(c) (d)
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3.3	 Hand gesture recognition

	 The Hand Gesture Recognition Image Dataset (HaGRID) is a dataset for hand gesture 
recognition images.(25) In this section, we use the data from HaGRID to extract the six types of 
gesture image to be used by our system, and use MediaPipe to find the hand landmarks of these 
images. The extracted dataset contains a total of 28,304 samples. We built a DNN model to train 
these data, as shown in Fig. 8. The input for this model consists of 42 features, including 21 
points of landmark coordinates for each hand.
	 Since the input features are coordinate positions, a simple three-layer DNN model is 
sufficient to quickly classify the current gesture into its corresponding type. The output layer 
uses the Softmax function and consists of six classes: menu, select, cancel, right, left, and no 
gesture. The hand gesture recognition functionality enables users to interact more conveniently 
with the device, enhancing the overall user experience of the product.

3.4	 Mobile-based remote control

	 We provide Bluetooth connectivity between the mobile device and our system, where the 
system is the server side and the mobile device is the client side, as shown in Fig. 9. Through 
Bluetooth pairing, users can conveniently view the corresponding acupoints for their symptoms 
and access detailed information about the desired acupoints. When the user activates the 
Bluetooth pairing function, the mobile device acts as an RFCOMM server and generates a 
specific UUID for identification during the connection. This UUID, along with the device name, 
is encoded into a QR code and displayed on the mobile device. The user simply needs to place 
the QR code displayed on the mobile device within the field of view of the webcam. The Jetson 

Fig. 8.	 (Color online) DNN model architecture of hand gesture recognition.
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Nano, equipped with built-in Bluetooth functionality, scans and decodes the QR code, thereby 
obtaining the device’s MAC address and server UUID. The Bluetooth pairing functionality 
transforms the mobile device into a convenient control interface, allowing users to effortlessly 
operate and access the desired acupoints information. This design not only provides a more 
intuitive and interactive interface but also enhances usability by increasing convenience.

3.5	 Interactive user interface (UI)

	 We input information into the system as described in Sects. 3.3 and 3.4 above, which is 
transmitted to the main thread of the system through event functions. This design helps prevent 
race conditions and critical sections between different threads, ensuring the proper handling of 
data. Once the main thread is reached, the system evaluates the output. This evaluation may 
involve operations based on predefined logic or conditions. On the basis of the evaluation result, 
the state will execute the corresponding method. The methods may involve updating the display 
content of the system, adjusting system settings, or performing other relevant operations. If 
specific transition conditions are met, the state instructs the state machine to perform a state 
transition. State transitions may involve entering another state or executing different operational 
flows. Additionally, the state can also notify the UI controller to switch UIs. This allows the 
screen display to change on the basis of the system’s requirements and state variations. The 
system control architecture is shown in Fig. 10. The state can also send events to other threads. 

Fig. 9.	 Bluetooth connection flowchart.
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These events can trigger specific operations in other threads or perform specific tasks. For 
example, these events can be used to control the model’s activation, notifying relevant threads to 
execute model-related operations.

3.6	 BERT-based AI consultation

	 We used BERT to build our AI consultation server and constructed a RASA chatbot on the 
server as shown in Fig. 11. When a user asks about a disease or symptom with an intention on a 
mobile device, the trained BERT model will provide corresponding effective acupoints on the 
basis of the user’s inputs and display these points via AR, allowing the user to further alleviate 
their symptoms through acupressure.
	 For the design of the AI consultation function, we use the BERT pretrained model of BERT-
Base-Chinese to build our BERT-based AI consultation.(26) Google provides two basic models of 

Fig. 10.	 System control architecture with the interactive UI.
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BERT: BERT-Base and BERT-Large. The BERT-Base-Chinese pretraining model proposed by 
Google uses the BERT-Base version of the framework, and owing to too many BERT-Large 
parameters, the pretraining cost is too high, so in most experiments, the BERT-Base Chinese 
version of the model structure is used. This BERT-Base-Chinese model consists of 12 layers, 768 
hidden units, and 12 attention heads, with a parameter size of 110 MB. Before training the 
model, we initialized the token input of the BERT model and incorporated data collected from 
Wikipedia. Our dataset included dialogue information associated with 109 disease categories 
and symptoms related to these diseases, totaling 623 records. We used this data to fine-tune the 
model, which involved connecting a new simple classifier to the last layer of BERT to identify 
the disease category on the basis of the user’s input.

4.	 Experimental Results

4.1	 System demonstration

	 In this paper, we propose a real-time interactive healthcare system for acupoint analysis 
based on AR. Our system utilizes the Jetson Nano J1010 development board with edge 
computing technology as shown in Fig. 12. Users can interact with the acupoints on their own 
bodies through the AR technology and enhance their understanding and application of 
acupressure techniques. Additionally, by scanning a QR code, the device pairs with a mobile 
phone via Bluetooth. This allows users to view acupoints related to specific symptoms on their 
mobile phone or access detailed information about each acupoint.
	 With our proposed acupoint mapping algorithm and AR technology, we can ensure that the 
acupoints are accurately displayed on the screen as shown in Fig. 13, and those on the head are 
not obscured by a mask. The system recognizes the user’s gesture and operates the system 
through our proposed hand gesture recognition as shown in Fig. 14. At the same time, the system 
interacts with the acupoints and views their functional descriptions through AR technology as 
shown in Fig. 15.

Fig. 11.	 (Color online) Architecture of BERT-based AI consultation.



Sensors and Materials, Vol. 37, No. 8 (2025)	 3735

	 The proposed BERT-based AI consultation requires both responses and inputs to be in 
Chinese. Users can perform AI consultation through the app, which queries the RASA server to 
obtain relevant information and updates the database with the consultation details. If the BERT 
model is uncertain about the disease based on the entered symptoms, the RASA will return the 
top three possible diseases associated with those symptoms, as shown in Fig. 16.
	 The results of the AI consultation are stored in a cloud database, and the physician can view 
the patient's data by accessing the database, as shown in Fig. 17. We categorize the user's 
symptoms and organize symptom information into graphical information. This graphical 

Fig. 12.	 (Color online) System demonstration with Jetson Nano J1010.

Fig. 13.	 (Color online) Examples of acupoint display based on AR.
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Fig. 14.	 (Color online) Demonstration of system operation on the proposed hand gesture recognition: (a) no gesture, 
(b) select gesture, (c) menu gesture, and (d) cancel gesture.

Fig. 15.	 (Color online) Demonstration of AR-based interaction with acupoints.

Fig. 16.	 (Color online) Demonstration of BERT-based AI consultation with RASA.

(a) (b)

(c) (d)
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information provides the physician with a quick overview of the patient’s current condition, 
which saves the physician time in organizing and analyzing the data and provides a more 
intuitive and clear visual presentation.

4.2	 Optimization of acupoint mapping algorithm

	 Our proposed acupoint mapping algorithm is based on MediaPipe and applied to hand and 
head acupoint mapping. Taking hand landmark detection as an example, the hand landmark 
detection provided by MediaPipe uses a single-shot detector model called BlazePalm, which 
achieves an average accuracy of 95.7% in palm detection. Its training data was manually 
annotated from ~30 K real-world images with 21 3D coordinates, rendering a high-quality 
synthetic hand model over various backgrounds and mapped to the corresponding 3D 
coordinates. Therefore, it can ensure that the hand landmarks can be correctly found under 
different backgrounds and light sources. The effectiveness of the acupoint mapping algorithm is 
shown in Fig. 18. The hand acupoints adhere to fixed positions and do not shift owing to hand 
rotation or other gestures. This demonstrates the accuracy and effectiveness of our acupoints 
mapping algorithm.
	 Although the MediaPipe Face Mesh can provide 468 features, which are sufficient for us to 
quickly correspond them to the face acupoints, this method also consumes a lot of time for 
computing performance. Therefore, we would like to propose an optimized way to save more 
computing resources and improve the system speed under the edge computing based on real-
time computing. In this section, we propose an accelerated detection of face acupoints. We use 
the six features provided by the MediaPipe Face Detector and map these features to face 
acupoints by training a DNN model as shown in Fig. 19.
	 The input of the DNN model for accelerated acupoint mapping consists of six features, 
including the landmarks of the right eye, left eye, nose tip, mouth center, right ear tragion, and 

Fig. 17.	 (Color online) Cloud data management platform for AI consultation.
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left ear tragion, while the output is the 15 points of the facial acupoints. As mentioned above, we 
recorded 468 mapping data to train this model. The model parameters are 150 epochs, 16 batch 
sizes, and a learning rate of 0.001, and use the categorical cross-entropy loss function in Eq. (4). 
We use the mean absolute error (MAE) metric to calculate the output error. The results of the 
network training are 1.314e−4 for the loss and 6.582e−3 for the MAE, as shown in Fig. 20, which 
is about 0.02 cun on average after our calculation. As the calculation of facial feature points is 
reduced from 468 to 6, the computing speed of the system is significantly improved, as shown in 
Table 1. Although this method can significantly increase the computing speed of the system, it 
also reduces the accuracy slightly, so we have designed the system to allow users to choose 
which method they want to use for acupoint mapping. We hope that by proposing this method, 
users will be able to choose the best way to use the system according to their own needs.

	 ( )
1

l ˆ= og
n

i i
i

Loss y y
=

− ⋅∑ 	 (4)

Here, n is the number of classes, yi is the truth label, and ˆiy  is the output for the ith class.
	 Our system uses a general webcam for video capture. General webcams have built-in 
automatic light correction to adapt to various light sources, so the environmental lighting has 
little effect on system recognition. Since the image size input to MediaPipe is 480×320, which is 

Fig. 18.	 (Color online) Example of acupoint mapping algorithm.

Fig. 19.	 (Color online) Example of accelerated acupoint mapping.
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much smaller than the resolution of general webcams, the camera resolution has also little 
impact on system recognition. On the other hand, MediaPipe uses a large number of images with 
complex backgrounds during training, so it has a certain robustness in recognizing complex 
backgrounds.

4.3	 Model training of hand gesture recognition

	 We used the network architecture and dataset from Sect. 3.3 to train the DNN model for hand 
gesture recognition with parameters of 150 epochs, 16 batch sizes, and a learning rate of 0.001, 
and used the categorical cross-entropy loss function. By observing the loss function during 
training, we can see a gradual decrease in loss and a corresponding increase in accuracy, 
indicating good learning performance of the model, as shown in Fig. 21. The DNN hand gesture 
recognition model in this project achieved an impressive accuracy rate of up to 90%. This 
indicates that our model can accurately classify the user’s gestures into six predefined types 
(menu, select, cancel, right, left, no gesture). Such high accuracy provides reliable hand gesture 
recognition functionality for our application, enabling users to perform corresponding operations 
smoothly. Monitoring the loss function and accuracy ensures that the training process and 
results of the model meet the intended goals. This technology exhibits high accuracy in hand 

Fig. 20.	 (Color online) Loss curve during DNN model training.

Table 1
Performance comparison of accelerated acupoint mapping.
Acupoint mapping Face mesh Face detector + DNN
Time per frame (TPF) 1.96e−1 5.9e−2
Frames per second (FPS) 5.1 16.9
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gesture recognition, providing a solid foundation for the successful implementation of this 
project.

4.4	 Model training of BERT-based AI consultation

	 We used the BERT pretrained model and dataset from Sect. 3.6 to train the BERT network for 
our AI consultation with parameters of 72 epochs and 10 batch sizes. Our disease dataset has a 
total of 623 records, which includes dialogue information associated with 109 disease categories 
and symptoms related to these diseases. Table 2 shows examples from our disease dataset. We 
divided the dataset into an 80% training set and a 20% testing set to fine-tune the BERT model. 
By observing the variation of the loss function in Fig. 22, we can see a gradual decrease in the 
loss function, indicating an improvement in the model’s learning performance.
	 We set the training to terminate when the loss function is lower than 0.1. During the training, 
we recorded four model metrics: accuracy, precision, recall, and F1 score, as shown in Fig. 23. 
To ensure the credibility of the experiment, we performed 10-fold cross-validation, averaging the 
model metrics from the ten iterations as the final performance indicators. This approach helps 
reduce the impact of random variations in individual training sessions and provides a more 
comprehensive evaluation of the model’s performance. Our results showed that our model 
performed impressively in disease prediction, achieving an accuracy rate of nearly 80%. This 
means that our model can provide accurate predictions for the symptoms and disease categories 
entered by the user.

Fig. 21.	 (Color online) Loss curve during DNN model training.
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Table 2
Examples from the disease dataset.
Category Related symptoms
Influenza Fever, cough, sore throat, runny nose, muscle aches, fatigue, and headaches
Influenza Vomiting and diarrhea
Acute pharyngitis Sore throat, painful swallowing, and dysphagia
Heatstroke Dizziness, headache, thirst, shortness of breath, confusion

Fig. 22.	 (Color online) Loss curve during the BERT model training.

Fig. 23.	 (Color online) Loss curve during the DNN model training.
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5.	 Conclusions

	 In this paper, we proposed a real-time interactive healthcare system for acupoint analysis 
based on AR. We utilized the edge computation on the Jetson Nano J1010 development board to 
display the acupoints on the screen, using our proposed DNN-based hand gesture recognition 
and acupoint mapping algorithms, to interact with the acupoints through AR technology. We 
also developed a mobile application that can interact with the system via Bluetooth technology. 
In addition, we developed a BERT-based AI consultation to determine possible diseases or 
symptoms and provided corresponding recommended acupoints for symptom relief. All 
diagnostic information was stored on the server, and doctors can view user information through 
the website, further saving medical resources. On the basis of our experimental results, we 
discussed the accuracy of disease diagnosis and analyzed the performance of each network. The 
results showed high performance and accuracy of our proposed system. We hope that the 
proposed system can provide a safe, convenient, and efficient solution for personal healthcare 
management.
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