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The rapid development of IoT, cloud computing, and Al in recent years has benefited smart
homes tremendously. However, camera footage showing facial images of users from smart
homes has raised security hazards. When a user’s facial image is stolen, it can undermine the
security of facial data verification. An effective alternative solution is to replace biometrics
based on facial data with those based on finger-vein features. Finger-vein biometrics are difficult
to counterfeit, steal, or wear out. However, current technology for recognizing finger-vein
characteristics is limited by challenges in extracting features when using a fewer number of
parameters, which tends to decrease the model’s recognition performance. To address these
problems, we propose a lightweight efficient focal aggregation model for finger-vein recognition
(EFA-FV), which is based on the efficient focal aggregation block (EFAB) and vision transformer
(ViT). The EFAB module not only lets the EFA-FV model effectively extract global features
from finger-vein characteristics through the ViT architecture, but it also provides the proposed
model with the generalization capability characteristic of a convolutional neural network model.
As a result, the EFA-FV model with fewer parameters can be smoothly trained on a database
with relatively few samples, enhancing the performance of the finger-vein recognition model.
The experimental results indicate that the proposed finger-vein model achieved correct
identification rates of 99.90 and 99.83% on the FV-USM and MMCBNU-6000 public databases,
respectively, while maintaining a smaller number of parameters of only about 0.60 M. This
makes it the most successful system available in comparison with those in previous studies.

1. Introduction
Recent developments in the IoT, cloud computing, and Al have allowed the technology in the

smart home domain to advance extensively, prompting significant attention from researchers.(!)
Smart home systems can monitor family members’ activities through numerous cameras
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positioned around the home, allowing users to keep track of household activities at all times.
These cameras can recognize users’ hand gestures to facilitate interaction with various
devices.>?) However, the deployment of many cameras in smart homes for monitoring users’
daily behaviors exposes users’ facial images to risks of theft, potentially compromising the
security of identity recognition systems based on facial data being collected.®) Furthermore, the
physiological or behavioral traits used in biometric recognition technology possess
characteristics such as universality, distinctiveness, permanence, and collectability, which make
users’ biometric features difficult to modify once they are stolen. This leads to a prolonged risk
of identity theft, thus raising concerns about the privacy and security of biometric recognition
technologies based on extrinsic biological characteristics.®) In contrast, finger-vein features
located beneath the surface of the skin are difficult to steal, forge, or wear down, which makes
finger-vein recognition an effective alternative to traditional identity verification methods.(®
However, vein-based biometric recognition technologies still have some drawbacks, mainly
from the methods used to capture finger-vein images. Low-cost near-infrared (NIR) cameras are
typically used to acquire finger-vein images, but poor lighting conditions could lead to
overexposure or insufficient brightness, resulting in missing finger-vein features. Additionally,
if users rotate or move their fingers while finger-vein images are being taken, the amount of
infrared exposure can change, affecting the captured features. These issues result in varied
finger-vein features, leading to errors in identity recognition.

To address the issues of image translation and illumination variations, which lead to the loss
of vein features, and to develop a lightweight model suitable for practical finger-vein recognition
applications, in this study, we developed a lightweight efficient focal aggregation model for
finger-vein recognition (EFA-FV), which is constructed on the basis of the efficient focal
aggregation block (EFAB) and vision transformer (ViT) architectures. The proposed finger-vein
recognition model not only effectively extracts finger-vein features but also significantly reduces
model parameters, thereby enhancing the feasibility of deploying the model in real-world
environments. The contributions of this study are summarized as follows:

* In this study, we developed a lightweight deep-learning model for finger-vein recognition
named EFA-FV, which is based on the EFAB and VIiT architectures. The proposed model
effectively extracts global finger-vein features while maintaining a smaller number of model
parameters, thereby stabilizing the recognition performance of the finger-vein model.

* An efficient focal aggregation module (EFAM) with a multiscale feature aggregation
mechanism is introduced to effectively capture the long-range dependency (LRD) of finger-
vein images, thereby enhancing the adaptability of the model to image variations such as
illumination changes and finger rotations.

» The proposed finger-vein recognition model achieves correct identification rates (CIRs) of
99.90 and 99.83% on the FV-USM and MMCBNU-6000 databases, respectively, while
effectively reducing the number of model parameters to approximately 0.60 M. Consequently,
the model is particularly suitable for deployment in resource-constrained yet security-critical
applications, such as smart homes and mobile devices.
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2. Related Work

To enhance the feature extraction capability of the proposed EFA-FV model, in this study, we
investigated and analyzed previous research in finger-vein recognition. Hsia et al.(”) proposed an
improved lightweight convolution neural network (ILCNN) for finger-vein recognition, which
has a smaller number of model parameters. Although the improvement provided significant
advantages for deployment in real-world environments, it increased the risk of losing feature
information, thereby limiting the model’s capability for feature extraction. On the other hand,
Liu et al.® introduced the multiscale and multistage residual attention network (MMRAN) for
finger-vein recognition. The MMR AN model enhanced the diversity of vein features through a
residual architecture, but its complex design extended the gradient path, resulting in reduced
learning efficiency.?) Devkota and Kim(!?) proposed an SE-DenseNet-HP model that combined
a channel attention mechanism and hybrid pooling for finger-vein recognition. Since this method
employed a DenseNet model with high computational complexity(!) for extracting finger-vein
features, it is prone to overfitting issues when there is insufficient training data. Furthermore,
Ke and Hsia'? introduced a lightweight dual-attention convolutional neural network (LDA-FV)
constructed through a dual-attention-based inverted residual block. Although the LDA-FV
model enhances the extraction capability of global features through an attention mechanism, it
still cannot handle LRD information; thus, it is difficult for the LDA-FV model to cope with
complex environmental changes in images. Li and Zhang(!'¥ proposed an FV-ViT model based
on the ViT architecture, which captures the multiscale features of finger veins and the LRD
information between features through the multihead self-attention mechanism (MHSA).(4
Through this, the model’s capability to extract the structure and features of finger veins is
enhanced. However, the use of the MHSA within the vanilla ViT for feature extraction
significantly increased the model’s computational complexity, leading to difficulties in deploying
the model in practical environments.

Previous finger-vein models for designing lightweight architectures have primarily employed
multibranch structures to enhance the model’s capability to capture diverse finger vein features
or utilized MHSA mechanisms to capture the LRD information of finger vein features. These
approaches aim to mitigate feature loss caused by translation or illumination variations in finger-
vein images. However, increasing the number of model branches or incorporating MHSA
mechanisms often leads to higher computational complexity and a larger number of parameters,
thereby increasing the costs associated with model training and deployment. To address these
challenges, in this study, we developed an EFAM module capable of multiscale feature
aggregation and global feature perception. This module effectively enhances the model’s
capability to learn diverse finger vein features while simultaneously capturing LRD information,
thereby improving the stability of feature recognition in finger vein models.
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3. Proposed Lightweight Finger-vein Recognition Model
3.1 Overall architecture

To enable the finger-vein recognition model to maintain a small number of parameters while
effectively extracting features from finger-vein images, we developed the EFA-FV model in this
study. It was constructed on the basis of the EFAB module and the ViT architecture for finger-
vein recognition. The modules within each stage of the EFA-FV model were stacked at a 1:1:3:1
ratio to effectively enhance the CIR of the model.!>) Our proposed EFA-FV model is shown in
Fig. 1(a).

Initially, the model converts finger-vein images into patches using overlapping patch
embeddings constructed using depthwise separable convolutions.(!®) This transformation enables
the EFA-FV model to exploit the inherent inductive bias properties of the convolutional
architecture. The local correlation of the finger-vein feature map is then enhanced, as well as the
model’s generalization capability. Subsequently, the EFA-FV model extracts global features
from the finger-vein feature map through the proposed EFAB module, allowing the model to
effectively capture important features in the finger-vein image. This results in a robust and
effective finger-vein model. Figure 1(b) demonstrates the EFAB module within the EFA-FV
model.

The EFAB module first normalizes the finger-vein features and then utilizes the EFAM to
aggregate multiscale finger-vein features. Through this, the original finger-vein features are
modulated accordingly. This process enables the EFA-FV model to filter important finger-vein
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Fig. 1.  (Color online) Finger-vein recognition model developed in this study. (a) Diagram of the EFA-FV model.
(b) Diagram of the EFAB module within the EFA-FV model.
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features using multiscale information. These operations allow the EFA-FV model to have the
capability of the ViT architecture to capture LRD information and to retain the generalization
capability of the convolutional neural network (CNN) architecture.!”) Then, the EFAB module
normalizes the extracted global features of the finger-vein features by employing a multilayer
perceptron (MLP) to map the features into a high-dimensional space for feature extraction. This
approach not only enhances the feature representation capability of the EFA-FV model but also
effectively captures the relationships among the finger-vein features.

3.2 EFAM

To enable the proposed EFA-FV model to extract global features while maintaining an
efficient training process, in this paper, we introduce an EFAM module capable of aggregating
multiscale features and effectively perceiving LRD information, as shown in Fig. 2. This module
integrates the inductive bias of CNN with the capability of ViT to extract global features,
enabling the EFA-FV model to effectively learn the correlations among finger-vein features and
enhance its feature representation capability for finger-vein recognition. Initially, the EFAM
module performs feature transformation on the finger-vein features using pointwise convolution
(PWConv)(1®) to map the features into a higher-dimensional feature space while enabling
effective feature extraction. Subsequently, the EFAM module divides the transformed finger-
vein features on the basis of channel dimension. Then, these are used as query features and the
basis for feature aggregation in subsequent computations. During the feature aggregation phase,
the EFAM module extracts spatial dimension information from the finger-vein features using
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Fig. 2. (Color online) Proposed architecture of EFAM.
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depthwise convolution (DWConv).(1®) This enables the model to learn more discriminative
spatial features, thereby enhancing its representation capability. By employing DWConv with
different kernel sizes, the EFAM module can extract multiscale finger-vein features and perceive
wide-range features from the finger-vein feature map; thus, the model’s understanding of finger-
vein images is further improved. Next, the EFAM module merges the finger-vein features of
different scales and inputs the combined features into PWConv for feature transformation. This
process integrates the extracted finger-vein features from different kernel sizes and produces an
attention map for the subsequent filtering of important finger-vein features. In the feature
interaction phase, the EFAM module utilizes the Hadamard product to combine the attention
map generated during the feature aggregation phase with the query features. This allows the
selection of important finger-vein features. Finally, the EFAM module applies PWConv to the
filtered finger-vein features for feature transformation, enhancing the model’s feature
representation capability and improving the recognition performance of the EFA-FV model.

4. Experiment Results and Comparison
4.1 Finger-vein databases

The current study utilized the FV-USM{%!®) and MMCBNU-6000 public databases®?) for
training and testing the proposed EFA-FV model. The following sections provide a detailed
introduction to these public databases.

4.1.1 FV-USM Database(8

For this database, a NIR LED with a wavelength of 850 nm was employed to collect finger-
vein images from 123 participants (N = 83 for males and N = 40 for females) aged 20 to 52 years.
The fingers used for collecting the infrared finger-vein images were the 1) left index, 2) left
middle, 3) right index, and 4) right middle fingers. These fingers are considered distinct classes,
resulting in a total of 492 classes within the database. Six images of each finger were collected in
a session, and each participant attended another session two weeks later. The database has a total
of 5904 infrared finger-vein images with a resolution of 640 x 480. Before training the model,
the database was divided into training, validation, and test sets for model evaluation at a ratio of
4:1:1 for each dataset.

4.1.2 MMCBNU-6000 Database?

Similar to the above, this database used an NIR LED with a wavelength of 850 nm to collect
infrared finger-vein images with a resolution of 640 x 480. Samples were collected from 100
participants (N = 83 for males and N = 17 for females) aged 16 to 72 years from 20 different
countries. For the database, 10 finger-vein images were collected for each participant’s left and
right index, middle, and ring fingers. These fingers were considered distinct classes, resulting in
600 identity classes and 6000 finger-vein images. Before training the model, the database was
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divided into training, validation, and test sets for model evaluation, with a ratio of 3:1:1 for each
dataset.

4.2 Experimental setting and results

In terms of hyperparameters, in this study, we set the image size to 112, the batch size to 32,
and the number of epochs to 40, using AdamW as the model optimizer, with an initial learning
rate set to 0.0002. Finally, the overall finger-vein model was trained using the PyTorch Toolbox
on a system equipped with an NVIDIA RTX 3090 Ti graphics processing unit. Furthermore, to
assess the overall performance of the model, C/R was used as the metric to evaluate the model’s
security, as shown in Eq. (1). A higher CIR indicates greater security in recognition, whereas a
lower CIR suggests reduced security.

Mumber af correcthy idenrifiad roses .
Toral number of idarified cones

(1

104 (1)

The feasibility of the proposed EFA-FV model in the finger-vein recognition task was
validated using the FV-USM public database. The experimental results showed that the EFA-FV
model achieved a CIR of 99.90% on the FV-USM database, with a total of only 0.60 million
parameters, as shown in Table 1. Compared with previous state-of-the-art finger-vein models,
the EFA-FV model not only effectively reduced the number of parameters but also maintained a
high CIR. This means that the EFA-FV model can perform identity recognition effectively while
providing better computational efficiency, making it more suitable for deployment in practical
application scenarios. Furthermore, the results revealed that the EFA-FV model can effectively
extract discriminative features from low-quality finger-vein images and use them for accurate
identity recognition, demonstrating its superior performance in handling low-quality images.

The identification accuracy of the EFA-FV across a diverse age distribution in the database
was evaluated using the MMCBNU-6000 database. From the experimental results, the proposed
EFA-FV model achieved a CIR of 99.83% on the MMCBNU-6000 database, as shown in Table
2. Compared with previous state-of-the-art finger-vein models, the EFA-FV model proposed in
this paper had an improvement of 0.13% in terms of the C/IR metric. On the basis of the above
results, it can be concluded that the proposed EFA-FV model can effectively perform identity

Table 1
Comparison of the proposed model with those in previous research on the FV-USM database. In the table, CIR
denotes the correct identification rate, and Params denote the number of parameters.

Method CIR (%) Params (M)
ILCNN® 99.82 1.23
MMRAN® 96.07 3.51
LDA-FV(1? 99.90 1.20
Semi-PFVN® 94.67 3.35
EfficientNet-B0??) 99.70 4.64
FV-RSAZ) 99.90 8.70

EFA-FV (This work) 99.90 0.60
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Table 2

Comparison of the proposed model with those in previous research on the MMCBNU-6000 database.
Method CIR (%)

ILCNNO 99.25

LDA-FV(? 99.70

EfficientNet-B0??) 89.44

AGCNN@Y 91.06

PVTv2-B0? 86.53

EFA-FV (This work) 99.83

Table 3

Ablation studies on the FV-USM database to evaluate the effectiveness of the proposed EFAM. Specifically, the
experimental conditions included training finger-vein recognition models with and without EFAM, denoted as w/
EFAM (using the proposed EFAM) and w/o EFAM (using the original MHSA mechanism), respectively.

Method EFAM CIR (%) Params (M)
. w/o 99.70 0.84
EFA-FV(This work) W/ 99.90 0.60
Table 4
Ablation studies on the MMCBNU-6000 database to evaluate the effectiveness of the proposed EFAM.
Methods EFAM CIR (%) Params (M)
. w/o 99.58 0.86
EFA-FV(This work) w/ 99.83 0.61

recognition on a database with a wide age distribution, further revealing its recognition
capability for users across different age groups.

To verify the effectiveness of the proposed EFAM, in this study, we designed two
experimental conditions on the basis of a traditional MHSA mechanism and the EFAM and
performed ablation studies using two public databases: FV-USM and MMCBNU-6000.
Experimental results demonstrated that the finger-vein recognition model incorporating the
proposed EFAM achieved superior recognition performance, achieving CIRs of 99.90 and
99.83% on the FV-USM and MMCBNU-6000 databases, respectively, as shown in Tables 3 and
4. Specifically, compared with the traditional MHSA mechanism, the proposed EFAM improved
the CIR by 0.20% on FV-USM and 0.25% on MMCBNU-6000, while simultaneously reducing
the number of parameters by 0.24 and 0.25 M, respectively. These results highlight the fact that
the proposed EFAM not only enhances the feature representation capability of the finger-vein
recognition model by leveraging the inductive bias inherent in CNN architectures but also
effectively achieves model lightweighting.

5. Conclusions

In this study, we developed an EFA-FV architecture on the basis of the EFAB module and the
ViT architecture for lightweight finger-vein recognition. The performance of the EFA-FV model
was evaluated using both the FV-USM and MMCBNU-6000 public databases simultaneously.
The EFAB module proposed in this paper enabled the EFA-FV model to obtain the characteristics
of the ViT architecture, extract global features of finger-vein characteristics, and achieve the
generalization capability of a CNN. Owing to this, the EFA-FV model was effectively trained on
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databases with limited samples while simultaneously enhancing the performance of the finger-
vein recognition model. According to the experimental results, the proposed EFA-FV model
achieved CIRs of 99.90% on the FV-USM database and 99.83% on the MMCBNU-6000
database, with only about 0.60 M parameters. These results indicate that the EFA-FV model not
only demonstrated superior C/Rs on both the FV-USM and MMCBNU-6000 public databases
but also maintained a small number of parameters. Owing to the lightweight design of the EFA-
FV model and its high CIRs, it is less susceptible to hardware limitations and is well-suited for

high-security application scenarios, such as smart homes and mobile devices.
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