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	 Manual railway inspection, being both time-consuming and labor-intensive, no longer meets 
the demands of modern railway maintenance, where efficiency and precision are essential. To 
address this issue, an automatic rail fastener detection system is proposed based on the 
lightweight You Only Look Once version 3 (YOLOv3)-tiny architecture is proposed. This 
approach not only leverages the speed advantages of YOLOv3-tiny but also incorporates 
generative adversarial networks (GANs), along with three of its variants, Wasserstein Generative 
Adversarial Network (WGAN), Divergence Generative Adversarial Network (WGAN-div), and 
Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP), to augment 
the dataset and alleviate the problem of limited defective fastener samples. The quality of the 
generated images is quantitatively evaluated using peak signal-to-noise ratio (PSNR), structural 
similarity (SSIM), Fréchet inception distance (FID), and inception score (IS) metrics. These 
synthetic samples are then integrated into the original dataset to train the YOLO models in a 
joint learning process. Experimental results show that, after GAN-based augmentation, 
YOLOv3-tiny, YOLOv3, YOLOv7-tiny, and YOLOv7 achieve mAP0.5 scores of 97.3, 98.7, 98.6, 
and 98.5% respectively, with particularly significant improvements observed in mAP95. These 
results demonstrate the effectiveness of the proposed method in addressing data imbalance and 
enhancing both model accuracy and generalization. In addition, analysis of computational 
complexity and inference speed indicates that YOLOv3-tiny, with only 14.3 Giga Floating Point 
Operations (GFLOPs) of computational load, achieves an inference speed of 138.9 Frames Per 
Second (FPS). This high level of real-time performance, combined with high accuracy, makes 
YOLOv3-tiny a highly suitable choice for deployment on edge devices in practical railway 
inspection applications.
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1.	 Introduction

	 Track fasteners are one of the important components of the track system. Their main function 
is to securely fix the rails to the sleepers. When trains are running at high speed, the rails are 
subject to vibration from the wheels for a long time, and the track fasteners are prone to defects 
such as damage and loss. These defective track fasteners will seriously affect the safety of the 
railway transportation system. Therefore, regular inspection of track fasteners and replacement 
of damaged track fasteners are important tasks.
	 The traditional inspection method of track fasteners is to have inspectors walk along the 
railway and visually identify whether there are abnormalities. This method not only consumes 
much labor cost but is also time-consuming. In addition, inspectors can be affected by factors 
such as bad weather and physical fatigue, resulting in misjudgments or omissions. Therefore, it 
is necessary to develop an accurate and fast inspection method for tracking fasteners.
	 In recent years, computer vision and deep learning technology have developed rapidly. Deep 
learning technology has been widely used in railway inspection, such as track fastener and rail 
surface defect detection. However, insufficient defect samples or imbalanced data will seriously 
affect the accuracy and robustness of deep learning networks.(1–3)

	 To solve the above problems, we conduct track fastener detection based on You Only Look 
Once version 3 (YOLOv3) and YOLOv3-tiny. Owing to the scarcity of track fastener defect 
samples, we use a generative adversarial network (GAN) to generate track fastener defect 
samples to overcome the problem of scarcity of track fastener defect samples. Furthermore, the 
image recognition system can be seamlessly integrated into edge-computing-enabled cameras, 
enabling real-time detection and facilitating the transmission of detection results via network 
communication for advanced processing and analysis.
	 The main contributions of this article are as follows.
(1)	A track fastener detection method based on YOLOv3-tiny is proposed.
(2)	The problem of insufficient samples of track fastener defects is solved through GANs.
(3)	Multiple sets of experiments on the track fastener dataset are conducted. Experimental results 

prove that the proposed method effectively solves the problem of insufficient track fastener 
defect samples and helps improve the accuracy of model detection.

2.	 Related Work

2.1	 YOLO

	 In recent years, many researchers have developed detection models based on deep learning in 
various fields. Wei et al. proposed an improved model, TLMDDNet, based on YOLOv3 to 
address the complexity issues in traditional image processing methods. By reducing the feature 
scale in the convolutional layers, the model enhances detection accuracy. Experimental results 
show that the mean average precision (mAP) reaches 99.2%.(4) Feng et al. proposed a railway 
track defect detection method based on the YOLOv8 model. This method enhances the model’s 
ability to recognize features of different sizes by incorporating the SPD-Conv module into the 
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backbone network and integrating the EMA attention mechanism into the neck part. The 
improved model achieved a 5.7% increase in mean accuracy compared with the original 
YOLOv8n.(5) Li et al. proposed a multilevel, end-to-end rail surface defect detection method. 
The method first performs precise rail extraction based on the standard deviation of edge pixels, 
then combines differential box counting (DBC) and the GrabCut algorithm for defect 
segmentation, improving the speed and accuracy of detecting complex defects. Finally, YOLOv2 
is used for defect recognition. The method achieves a mean accuracy of 97.11%.(6) Cheng et al. 
proposed a lightweight network based on YOLOv5-lite for railway track damage detection. The 
network reduces the number of parameters and the amount of computation by using BF_
MBConv, enhances feature extraction with the SE mechanism, suppresses redundant features 
with DropBlock, and improves feature fusion with Shuffle convolution. By introducing the 
Focal-EIoU loss function and incremental data processing techniques, the detection accuracy 
and efficiency are significantly improved, achieving an 8.13% performance increase compared 
with the original YOLOv5-lite.(7) Wang et al. proposed the RSG-YOLO model, which was 
specifically designed for crack detection of the track slab. The model introduces a 
reparameterized dual-fusion feature pyramid structure, which effectively enhances feature 
extraction capabilities and reduces data loss. Additionally, the SIoU loss function is used to 
replace the traditional CIoU, which not only reduces the degree of freedom of the loss function 
but also significantly accelerates the model’s convergence speed. Experimental results show that 
the mAP of RSG-YOLO reaches 94.66%, an improvement of 3.08% over that of YOLOv7.(8)

2.2	 GAN

	 Deep learning models require a large amount of data for training. However, in the detection 
of track fastener defects, defect samples are scarce, whereas normal samples are abundant, 
causing data imbalance. This will cause the model to be biased towards normal samples and to 
ignore defects, thus affecting detection performance. Goodfellow et al. proposed a GAN in 2014, 
whose architecture includes a generator and a discriminator.(13) During the training process, the 
generator continuously generates fake images in an attempt to make the discriminator misjudge 
them as real images; while the discriminator continues to learn to improve its ability to 
distinguish real images from fake ones. This process of competing with each other is like a 
confrontation. GANs have become a popular method for generating photorealistic images. 
GANs have spawned many variations and are widely used in a variety of tasks.
	  Zhao et al. proposed a GAN-based transP2P network for supervised image data enhancement 
to solve the problem of insufficient data in the diamond tool sharpening process. This method 
can quickly generate a large number of reliable samples containing target defects, effectively 
combine the distribution structure of training data, and generate a large amount of valuable data 
for a small number of defect images, overcoming the challenge of insufficient data.(9) Liu et al. 
proposed a synthetic dataset generation method based on GAN and the 3-D CRH380A model for 
electric multiple unit defect detection, which solved the problem of lack of training data. This 
method improved the detection accuracy by generating synthetic data, especially when it is 
difficult to collect low-frequency defect data.(10) Zhang et al. proposed a bolt defect image 
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Fig. 1.	 (Color online) Experiment flow chart.

generation method (DP-GAN) based on a dual discriminator architecture and a pseudo-
enhancement strategy to solve the problem of scarce bolt defect samples in transmission lines. In 
this method, a residual discriminator network was introduced and combined with a dual 
discriminator GAN architecture to preserve image features and enhance the diversity of 
generated images. An image fidelity assessment method was designed to improve image quality 
by screening high-quality fake samples. In addition, the proposed pseudo-enhancement training 
strategy used fake samples to enhance the few-sample dataset, solving the problem of insufficient 
generation quality caused by the scarcity of bolt defect images.(11) Geng et al. proposed a method 
that combines a deep convolutional GAN (DCGAN) and a seam carving algorithm to solve the 
problem of small-sample water-cooled wall defect detection. This method uses a seam carving 
algorithm to prevent DCGAN from overfitting, generates high-quality images, and utilizes a 
convolutional neural network for intelligent detection.(12)

3.	 Methods

	 To address the substantial labor and time required for traditional manual inspection of 
railway fasteners, we propose a method that integrates GANs with deep learning techniques to 
develop an automated rail fastener detection system, as shown in Fig. 1. A key challenge arises 
from the scarcity and difficulty of obtaining defective fastener samples, which leads to a data 
imbalance problem that negatively affects model training and detection accuracy. In this 
research, a dataset comprising both normal and defective rail fastener images was first collected 
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and curated. Three GAN-based models, GAN, Wasserstein Generative Adversarial Network 
(WGAN), and Divergence Generative Adversarial Network (WGAN-div), were then trained to 
generate representative images of defective and missing fasteners to augment the data. By 
combining synthetic and original images, multiple enhanced datasets were constructed with the 
goal of alleviating data imbalance. In the model training stage, both the original and augmented 
datasets were used to train YOLOv3 and YOLOv7 object detection models, followed by a 
performance comparison and analysis. Final validation was conducted on a separate test set to 
evaluate detection effectiveness in real-world scenarios. The experimental results show that data 
augmentation through GANs significantly improves the ability of the models to recognize 
defective and missing fasteners while also enhancing overall detection accuracy and stability. 
These outcomes demonstrate the potential for implementing a highly efficient and practical 
automated inspection system for railway fasteners.

3.1	 GANs

	 GANs, proposed by Goodfellow et al. in 2014, represent an innovative training framework 
for generative models,(13) as illustrated in Fig. 2. GANs utilize an adversarial learning approach 
by simultaneously training two neural networks, the generator and the discriminator. The 
generator is responsible for producing samples that resemble the real data distribution, while the 
discriminator determines whether the input data is real or generated by the generator. These two 
networks compete during training, and the system reaches an optimal balance when the samples 
produced by the generator are convincing enough to fool the discriminator.
	 In practical implementation, both the generator and discriminator are constructed using fully 
connected layers. The generator takes random noise as input and processes it through multiple 
fully connected layers combined with batch mormalization and leaky ReLU activation functions, 
ultimately producing simulated images via a Tanh activation function. The discriminator, on the 
other hand, flattens the input image into a one-dimensional vector and passes it through several 
fully connected layers with leaky ReLU activations, outputting a probability between 0 and 1 
using a sigmoid function to indicate whether the input is real or generated.
	 During training, the discriminator’s loss function is composed of the classification errors for 
both real and generated samples and is optimized through backpropagation. The generator 

Fig. 2.	 (Color online) GAN architecture diagram.
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updates its weights based on the discriminator’s feedback to maximize the probability that the 
discriminator classifies its outputs as real, i.e., ( )( )D G z  approaches 1. The overall training 
process can be formulated as a minimax optimization problem:(14)

	 ( ) ( ) ( ) ( ) ( )( )( )~ ~min max , log log 1x Pdata x z Pz zG D
V D G E D x E D G z  = + −    , 	 (1)

where the goal of the discriminator is to make the predicted value ( )D x  for real data xxx 
approach 1, indicating a high probability that the input is authentic. At the same time, for the 
samples generated by the generator ( )G z , the discriminator aims to make ( )( )D G z  approach 0, 
meaning it can correctly identify them as fake. Conversely, the generator seeks to make ( )( )D G z  
approach 1, so that its generated samples are more likely to be misclassified as real by the 
discriminator. Through this adversarial training process, the generator continually improves the 
realism of its outputs, while the discriminator enhances its ability to distinguish between real 
and synthetic data. Eventually, both models reach a dynamic equilibrium through this 
competitive interaction.
	 Accordingly, the loss functions for the generator and the discriminator respectively can be 
expressed as 

	 ( )( )( )log 1
zG z pL E D G z∼
 = −  ,	 (2)

	 ( )( ) ( )( )log log 1
r zD x p z pL E D x E D z∼ ∼   = − − −    ,	 (3)

where E denotes the expected value. The generator minimizes the expectation of 
( )( )( )log 1 D G z− , aiming to make ( )( )D G z  as close to 1 as possible so that the generated 

samples are misclassified as real. The discriminator, in contrast, seeks to maximize the 
probability of correctly identifying real samples while minimizing the likelihood of incorrectly 
classifying generated samples as authentic.

3.2	 YOLOv3

	 We use YOLOv3 and YOLOv3-tiny to conduct track fastener defect detection experiments. 
YOLOv3 is a single-stage target detection algorithm that does not need to generate candidate 
areas, thus improving the speed of object detection. The network architecture of YOLOv3, which 
can be divided into three parts, backbone, neck, and head, is shown in Fig. 3.
(a)	Backbone
	� The backbone network of YOLOv3 introduces the Darknet53 network structure, which uses a 

residual network and multiple convolution operations to enhance the ability to extract image 
features. The function of the residual network is to superimpose features of different 
dimensions, which helps the network model detect targets of different sizes. Not only that, the 
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residual network uses skip connections, which effectively alleviates the vanishing gradient 
problem caused by adding convolutional base layers.

(b)	Neck
	 In the neck network of YOLOv3, the feature pyramid network (FPN) is used for feature 

fusion. FPN uses horizontal connections and upsampling operations to fuse high-dimensional 
features with low-dimensional features to obtain global features.

(c)	Head
	 The head network consists of a CBL module and a convolutional layer. The CBL module is 

used to integrate the prediction information, and the convolutional layer is used to adjust the 
number of channels. After feature fusion, the neck network passes three different sizes of 
features to the head network for prediction and selects the best bounding box through 
nonmaximum suppression to obtain the final prediction result.

4.	 Experiments

4.1	 Dataset

	 The dataset used in this study was obtained from the open-source platform Roboflow.(15) It is 
categorized into three classes: normal fasteners, missing fasteners, and damaged fasteners, with 
320, 48, and 41 images, respectively. All images have a resolution of 40 × 640 pixels. Figure 4 
shows sample images from each category.

Fig. 3.	 (Color online) YOLOv3 architecture diagram.
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4.2	 Experiment platform

	 All experiments in this study were conducted using the same hardware equipment and under 
the same environmental conditions, as shown in Table 1.

4.3	 Evaluation metrics

	 In this study, precision, recall, mAP0.5, and mAP0.95 were adopted as evaluation metrics for 
assessing the performance of the YOLO algorithm. The corresponding equations for calculation 
are

	 TPP
TP FP

=
+

,	 (4)

	 TPR
TP FN

=
+

,	 (5)

	 ( ) ( )1

0
AP P d R= ∫ ,	 (6)

	
1

1 n

i
i

mAP AP
n =

= ∑ .	 (7)

	 P stands for precision, R for recall, and AP for average accuracy. mAP0.5 represents the 
average accuracy of each category when the IoU threshold is 0.5. mAP0.95 represents the 
average accuracy of each category when the IoU threshold is 0.95.(16)

	 To generate high-quality images of rail fastener defects, we use the evaluation metrics peak 
signal-to-noise ratio (PSNR), structural similarity (SSIM), Fréchet inception distance (FID), and 
inception score (IS) to evaluate the images generated by each GAN.

(a) (b) (c)

Fig. 4.	 Sample images of the dataset used in this experiment for three categories: (a) normal fasteners, (b) missing 
fasteners, and (c) damaged fasteners.
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	 The FID is a metric that measures the difference between the distributions of generated and 
real data obtained by calculating the covariance matrix and mean values. A lower FID score 
indicates that the distribution of generated data is closer to that of real data, resulting in better 
generation quality.(17) The FID calculation formula is(18)

	 ( )0.52
2  r g r r g r gFID Tµ µ

 
= − + + − 

 
∑ ∑ ∑ ∑ .	 (8)

ur represents the average value of real image features, ug the average value of generated image 
features, rΣ  the covariance value of real image features, and gΣ  the covariance value of generated 
image features.
	 The PSNR function is an evaluation metric for the reconstruction quality in image processing. 
The PSNR is calculated as(19)

	 ( )22 1
10log

n

PSNR
MSE

−
= ,	 (9)

	 ( )2
1

1 n

i i
i

MSE g p
n =

= −∑ ,	 (10)

where MSE is the mean square error between g and p. Here, g represents the generated image 
and p represents the real image.
	 The SSIM function is used for measuring the similarity between two images. Assuming that 
x is a real image and y is a generated image, the SSIM between x and y can be expressed as(20)

	 ( ) ( )( )
( )( )

1 2
2 2 2 2

1 2

2 2
, x y xy

x y x y

c c
SSIM x y

c c

µ µ σ

µ µ σ σ

+ +
=

+ + +
,	 (11)

where ux represents the mean of 𝑥, uy the mean of 𝑦, 2
xσ  the variability of the x data, and 2

yσ  the 
correlation of the 𝑦 data. uxy is the degree of correlation between 𝑥 and 𝑦. The constants c1 and c2 
are used to prevent instability during the calculation process.

Table 1 
Hardware and software.
Operating System Windows 11
CPU 13th Gen Intel(R) Core(TM) i5-13500H
GPU Nvidia RTX4060
RAM 64 GB
Python 3.8
Pytorch 1.12
CUDA 11.3
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	 The IS is a metric used to evaluate synthetic images. The higher the IS is, the better the 
synthesized image is. The calculation formula is (21)

	 ( ) ( ) ( )( )( )~exp | ||
datax p xIS E DKL p y x p y =   ,	 (12)

where x ~ pdata means that x is an image sample from pdata. p(y|x) represents the category 
distribution predicted by the generative model for the image x. p(y) represents the image 
distribution generated by the generative model. DKL represents the Kullback–Leibler divergence 
of the generated image, which is used to measure the difference between the category 
distribution p(y|x) of a single image and the overall distribution p(y).

4.4	 Experimental results

	 Owing to the significantly lower number of missing and damaged fastener samples than of 
normal fasteners, the dataset suffers from an imbalanced distribution that affects the overall 
performance of deep learning models. To overcome this problem, we use 48 images of missing 
fasteners and 41 images of damaged fasteners as training data for three types of GANs, namely, 
GAN, WGAN, and WGAN-div. The training images are resized to 640 × 640 pixels, and each 
model is trained for a total of 5000 epochs. After training is completed, the models are used to 
generate additional defective fastener images, as shown in Figs. 4 and 5.
	 Figures 5 and 6 respectively show the original dataset and the defective and missing fastener 
images generated by GAN, WGAN, and WGAN-div. A visual comparison reveals noticeable 
differences in image quality among the three types of GANs. Overall, GAN demonstrates 
superior performance in both types of generation tasks, particularly in terms of structural clarity 
and texture preservation. Details such as the edge contours of fasteners, the background elements 
of tracks and ballast, as well as the visual transitions and contrast in missing fastener regions, 
are rendered with high fidelity. The generated images exhibit a natural appearance and closely 
resemble real-world images, offering strong visual distinguishability and potential for practical 
applications.
	 In contrast, although WGAN enhances image contrast in certain cases, it frequently suffers 
from issues such as local darkness, blurred details, and structural distortions, which hinder the 
identification and interpretation of defect areas. Images generated by WGAN-div often exhibit 
excessive blurriness and signal distortion, resulting in poorly defined boundaries between 
fasteners and their background. These deficiencies significantly reduce the overall usability of 
the images.
	 The results of a comprehensive analysis indicate that GAN produces the highest-quality 
images within the context of this study. Not only does it enrich the dataset with greater diversity 
and realism, but it also enables the detection models to learn more representative features for 
identifying abnormalities. These findings highlight the practicality and robustness of GAN for 
data augmentation in scenarios with limited sample availability.
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(a) (b) (c) (d)

Fig. 5.	 Defective fastener images generated using a GAN: (a) original dataset image, (b) GAN, (c) WGAN, and (d) 
WGAN_div.

Fig. 6.	 Missing fastener images generated using GANs: (a) original dataset image, (b) GAN, (c) WGAN, and (d) 
WGAN_div.

(a) (b) (c) (d)
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	 To objectively evaluate the quality and performance of different GANs in generating images 
of defective rail fasteners, we adopt multiple evaluation metrics. The experimental results are 
presented in Table 2. In terms of PSNR, the GAN model achieved the best performance with a 
score of 22.16, indicating that its generated images are more similar to real images at the pixel 
level. Regarding SSIM, the WGAN model obtained the highest score of 0.627, suggesting a better 
ability to preserve SSIM. For the FID metric, the GAN model recorded the lowest value of 
196.499, demonstrating that its generated images are the closest to real images in terms of 
feature distribution and thus exhibit greater realism. As for the IS metric, the WGAN-div model 
achieved the highest score of 2.1048, indicating a relative advantage in image diversity and 
recognizability. Overall, each model shows strengths across different evaluation dimensions.
	 Table 3 presents the evaluation results for the generation of missing fastener images. The 
GAN model achieved a PSNR of 23.25 and an SSIM of 0.707, outperforming the other two 
models in both pixel-level reconstruction and SSIM. It also recorded the lowest FID score of 
132.978, indicating that its generated images are most similar to real images in terms of feature 
distribution, and therefore exhibit higher realism. Although the WGAN-div model obtained the 
highest IS score of 2.323, reflecting a slight advantage in terms of image diversity and 
recognizability, the GAN model demonstrated the most consistent performance across most 
evaluation metrics. These results indicate that the GAN model holds a relative advantage in the 
task of generating images of missing rail fasteners.
	 To verify whether the synthetic defect samples of rail fasteners generated using the proposed 
image generation methods can effectively improve the performance of detection models, we first 
utilized GAN, WGAN, and WGAN-div to generate 272 images of missing fasteners and 279 
images of damaged fasteners. These generated images were then combined with the original 
dataset to form three augmented datasets. Each augmented dataset consisted of three categories, 
with 320 images per category, resulting in a total of 960 images per dataset.
	 Subsequently, YOLOv3, YOLOv7, and their lightweight variants, YOLOv3-tiny and 
YOLOv7-tiny, were trained using both the original dataset and three augmented datasets. The 
results obtained from the original dataset were used as the baseline for comparative analysis. All 

Table 3
Evaluation metric scores for missing fastener images generated by various GAN algorithms (GAN, WGAN, and 
WGAN_div).

PSNR SSIM FID IS
GAN 23.25 0.707 132.978 1.862
WGAN 16.65 0.375 230.823 1.655
WGAN_div 15.65 0.223 312.880 2.323

Table 2
Evaluation metric scores for damaged fastener images generated by various GAN algorithms (GAN, WGAN, and 
WGAN_div).

PSNR SSIM FID IS
GAN 22.16 0.447 196.499 2.033
WGAN 19.49 0.627 224.852 2.089
WGAN_div 14.76 0.429 230.349 2.105
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models were trained under identical settings, including 1000 training epochs, a batch size of 16, 
an input image resolution of 640, and an initial learning rate of 0.01. The performance of each 
model across different datasets was then analyzed and compared. The experimental results are 
presented in Table 4.
	 In general, the inclusion of GAN-generated samples significantly improved the detection 
performance across all models, with the most prominent enhancement observed in the mAP0.95 
metric. Specifically, mAP0.95 increased from 62.2 to 73.0% for YOLOv3-tiny, from 62.3 to 
73.6% for YOLOv3, from 62.9 to 73.3% for YOLOv7-tiny, and from 63.3 to 72.6% for YOLOv7. 
In addition, most models also showed improvement in precision, recall, and mAP0.5, indicating 
that GAN-based augmentation effectively enhances both model accuracy and generalization.
	 In contrast, WGAN-based augmentation resulted in moderate improvements in mAP0.5 and 
recall in some models, but often led to decreased precision, which limited its overall 
effectiveness. WGAN-div showed better performance in terms of recall, reaching over 97% in 
some models. However, its precision remained lower, and the improvement in mAP0.95 was not 
as significant as that achieved using GAN.
	 In summary, among the three augmentation methods, the GAN-based approach yielded the 
most notable enhancement in overall detection performance, particularly in mAP0.95. These 
findings demonstrate the strong potential of GAN-generated samples in addressing data 
imbalance and improving model generalization for the task of rail fastener defect detection.
	 Since we use GAN to expand the original rail fastener dataset, it can effectively improve the 
training performance of each version of the YOLO model, so that they all have good detection 
accuracy. On the premise that the accuracy rate meets the standard, the computational 
complexity (giga floating point operations, GFLOPs) and inference speed (frames per second, 
FPS) of the model are further compared to evaluate its real-time performance in practical 

Table 4
Performances of YOLOv3-tiny, YOLOv3, YOLOv7-tiny, and YOLOv7 models trained on the original dataset and 
three augmented datasets.
Model Dataset Precision (%) Recall (%) mAP0.5 (%) mAP0.95 (%)

YOLOv3-tiny

original dataset 93.6 97.0 96.9 62.2 
original dataset + GAN 95.4 96.5 97.3 73.0 

original dataset + WGAN 92.2 88.5 94.6 63.2 
original dataset + WGAN-div 91.2 94.6 96.2 63.9 

YOLOv3

original dataset 90.6 88.8 93.4 62.3 
original dataset + GAN 95.2 97.3 98.7 73.6 

original dataset + WGAN 92.2 90.9 95.8 64.2 
original dataset + WGAN-div 90.3 97.1 96.4 66.2 

YOLOv7-tiny

original dataset 87.2 93.1 93.5 62.9 
original dataset + GAN 97.3 97.1 98.6 73.3 

original dataset + WGAN 93.8 90.2 96.5 64.4 
original dataset + WGAN-div 89.9 96.7 96.8 64.8 

YOLOv7

original dataset 96.1 85.5 94.0 63.3 
original dataset + GAN 95.7 98.6 98.5 72.6 

original dataset + WGAN 90.2 91.4 94.8 62.4 
original dataset + WGAN-div 89.5 97.7 95.8 64.1 
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applications. According to the experimental results in Table 5, YOLOv3-tiny achieves an 
inference speed of up to 138.9 FPS with only 14.3 GFLOPs of computation, which is significantly 
better than those of the other models, showing that it is lightweight while still having a high 
degree of real-time performance, making it particularly suitable for scenarios with strict speed 
requirements such as rail fastener detection.
	 Finally, Fig. 7 shows the results of detection using GAN to generate images to expand the 
original dataset and train YOLOv3-tiny. According to the results, the proposed rail fastener 
detection method can effectively detect rail fastener defects.

5.	 Conclusions

	 We proposed an automated rail fastener inspection method based on YOLOv3-tiny, which 
integrates edge computing devices with cameras for practical deployment in real-world rail 
fastener inspection tasks. In the experiments, a self-collected dataset containing damaged and 
missing rail fasteners was used to train GAN, WGAN, WGAN-div, and Wasserstein Generative 
Adversarial Network with Gradient Penalty (WGAN-GP) models in order to generate defect 
images and address the issue of data imbalance. To evaluate the quality of the generated images, 
four metrics were employed for analysis and comparison: PSNR, SSIM, FID, and IS. 
Subsequently, the defect images generated by the three image synthesis methods were used to 
augment the original dataset. The augmented datasets were then used to train four object 
detection models, namely, YOLOv3-tiny, YOLOv3, YOLOv7-tiny, and YOLOv7. The detection 
performances of these models were compared against their counterparts trained on the original 

Table 5
GFLOPs and FPS performance of different YOLO models with the GAN augmented dataset.

GFLOPs FPS
YOLOv3-tiny 14.3 138.9
YOLOv3 261.8 24.1
YOLOv7-tiny 13.0 101.1
YOLOv7 103.2 31.2

(a) (b) (c)

Fig. 7.	 (Color online) Test results of YOLOv3-tiny with the test dataset (original dataset + GAN): (a) fasteners are 
normal, (b) fasteners are missing, and (c) fasteners are damaged.
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dataset without augmentation. Experimental results indicated that the defect images generated 
by GAN achieved the best performance across all image quality evaluation metrics and 
effectively enhanced the detection performance of the various YOLO models. Among them, the 
YOLOv3-tiny model not only achieved a high accuracy of 97.3% in terms of mAP at 0.5 but also 
demonstrated superior real-time performance with an inference speed of 138.9 FPS, significantly 
outperforming the other models. Overall, the proposed method effectively addresses the data 
imbalance problem while maintaining both detection accuracy and inference speed. This 
demonstrates its high feasibility and practical value for real-time rail fastener inspection tasks.
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