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	 With the rapid development of automated optical inspection (AOI) technology and imaging 
sensor systems, image-based coffee bean quality inspection has emerged as an effective 
alternative to manual sorting. High-resolution imaging sensors are capable of capturing critical 
surface features of coffee beans, including texture, color, and structural patterns, thereby 
providing rich input for downstream intelligent classification algorithms. However, most existing 
research has concentrated on green beans, while labeled datasets for roasted beans remain 
scarce. This imbalance severely restricts the generalization capability of trained models in real-
world applications. To address this issue, a class-aware unsupervised domain adaptation (UDA) 
framework based on the vision transformer (ViT) architecture is proposed. The framework 
simultaneously aligns the feature distributions between the source domain (green beans) and the 
target domain (roasted beans), while enhancing class-level consistency during training. This 
design effectively mitigates domain shifts induced by variations in coffee processing stages, 
thereby improving model robustness in cross-domain scenarios. In addition, to enhance 
deployment efficiency and operational practicality in intelligent sensing environments, a model 
compression strategy is further introduced. By leveraging the modular dependency structure 
inherent in transformer-based architectures, we developed an approach that integrates structured 
pruning with knowledge distillation (KD) to significantly reduce model complexity while 
preserving classification performance. Experimental results confirm that the proposed method 
delivers high classification accuracy and generalization capability, demonstrating its potential 
for deployment in image-based coffee bean quality inspection systems.

1.	 Introduction

	 Coffee is one of the most economically valuable commodities in the global beverage market, 
offering health benefits such as enhanced mental concentration and promoting metabolism when 
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consumed in moderation. However, the presence of defective beans that are not properly 
removed during the processing stage can negatively affect the flavor profile and even pose 
potential health risks to consumers. Traditional inspection methods heavily rely on manual 
operations, which are not only labor-intensive and inefficient but also susceptible to subjective 
judgments, rendering them unsuitable for large-scale production environments. With the 
advancement of automation and computer vision (CV) technologies, automated optical 
inspection (AOI) systems that integrate high-resolution imaging sensors with CV algorithms 
have been widely adopted for quality assessment in the food and coffee industries,(1,2) providing 
an effective alternative to manual sorting. Imaging sensors are capable of capturing critical 
surface characteristics of coffee beans, including texture, color, and shape, which serve as the 
input for intelligent decision-making algorithms. When combined with lightweight models 
deployed on edge devices, this overall system enables real-time classification and defect 
detection, significantly enhancing both production line efficiency and inspection accuracy.
	 In the context of integrating AI and sensor technology, data-driven learning models have 
become the dominant tools for quality inspection tasks. Particularly when labeled data are 
abundant, such models can effectively extract latent patterns and structures from sensory data. 
Deep neural networks (DNNs), as the dominant learning architecture in recent years, have also 
been effectively applied to coffee bean quality inspection tasks.(3–7) Nevertheless, DNN-based 
models typically require large-scale labeled datasets for supervised learning, for which it is often 
assumed that the training and testing data are drawn from the same underlying distribution. 
When deployed in real-world scenarios where the target domain exhibits substantial distribution 
shifts from the source domain, model performance often deteriorates significantly.(8) In the 
context of coffee bean quality inspection, most existing studies have focused primarily on green 
coffee beans, while research targeting roasted coffee beans remains limited. Moreover, publicly 
available labeled datasets of roasted beans are extremely scarce. Given the substantial differences 
in appearance, color, and surface characteristics between green and roasted beans, the 
distribution discrepancy between the source and target domains poses significant challenges for 
conventional supervised learning models, severely limiting their generalization capability in 
cross-domain tasks.
	 To address this challenge, transferring knowledge from a source domain with abundant 
labeled data to a target domain lacking annotations has become an important and challenging 
research problem. Domain adaptation (DA) techniques aim to enhance the transferability of 
models across different data distributions, particularly in scenarios where the target domain 
contains limited or no labeled data. Among various DA approaches, unsupervised domain 
adaptation (UDA) has emerged as a key solution with the primary objective of learning domain-
invariant representations through feature adaptation strategies that align the feature distributions 
between the source and target domains. Existing UDA methods can generally be categorized 
into two main approaches. The first category adopts explicit feature alignment strategies, which 
minimize the statistical distance between the source and target domains to achieve cross-domain 
feature alignment.(9) The second category is inspired by generative adversarial networks (GANs), 
leveraging adversarial learning mechanisms combined with a domain discriminator to implicitly 
align feature distributions across domains.(10,11)
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	 However, despite the widespread application of UDA techniques across various cross-domain 
tasks, their performance remains subject to several challenges and limitations. Most UDA 
methods assume that the source and target domains share an identical label space. Nevertheless, 
in real-world scenarios, label information in the target domain is often unavailable or incomplete. 
Moreover, in situations where label shifts(12) or shifts in the support(13) exist between domains, 
learning domain-invariant representations becomes theoretically challenging, and such strategies 
may fail to guarantee effective cross-domain transfer performance.(14) In addition, many existing 
UDA methods primarily focus on aligning the global feature distributions between domains, 
while overlooking the class-specific characteristics of individual samples. This class-agnostic 
learning approach often results in the failure to learn discriminative feature representations, 
thereby limiting the performance of the model in downstream tasks such as classification.(15,16)

	 To address the aforementioned challenges, a class-aware UDA framework based on the vision 
transformer (ViT)-tiny architecture is proposed for coffee bean quality inspection. The 
framework begins by utilizing a label predictor and a domain classifier within an adversarial 
learning setup to align the feature distributions between the source and target domains. During 
each training iteration, after achieving feature alignment, the system further employs a self-
training (ST) mechanism to enhance class-level consistency. High-confidence samples are 
selectged from the target domain to generate pseudo-labels, which are then incorporated into the 
training dataset. This iterative pseudo-labeling process effectively improves the model’s 
generalization capability in the roasted bean domain. Furthermore, to reduce model complexity, 
a lightweight strategy is introduced that integrates structured pruning and knowledge distillation 
(KD), tailored to the strong interdependences across transformer layers. Structured pruning is 
first applied to the pretrained ViT-tiny model to remove redundant parameters and compress the 
model. Subsequently, KD is employed to transfer knowledge from the original teacher model to 
the compressed student model, achieving a balance between classification accuracy and 
inference efficiency.

2.	 Related Approaches

2.1	 ViT

	 Convolutional neural networks (CNNs) are characterized by local connectivity and weight 
sharing, which allow them to achieve excellent performance in image feature extraction tasks. 
Along with the continuous evolution of neural network architectures, various classic CNN 
structures have been proposed, among which the residual neural network (ResNet) is a prominent 
representative. ResNet effectively addresses the degradation problem commonly encountered in 
very deep networks by introducing identity mapping mechanisms, allowing for the construction 
of deeper and more easily trainable models. Consequently, ResNet has become one of the 
mainstream architectures widely adopted in CV applications. On the other hand, in the field of 
natural language processing (NLP), the transformer architecture, which is based on the self-
attention mechanism, has emerged as the dominant model paradigm.(17) Owing to its superior 
computational efficiency and scalability, transformer-based models have been successfully 
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scaled to unprecedented sizes, and there is still no evidence of performance saturation with 
increasing model size or dataset scale. This trend highlights the tremendous potential of 
transformer architectures for future development across various AI domains.
	 Inspired by the remarkable success of transformer architectures in the field of NLP, ViT(18) 
was the first architecture in which the standard transformer framework is directly applied to 
image recognition tasks. ViT divides an input image into fixed-size patches and flattens each 
patch into a one-dimensional vector, which is then linearly projected into an embedding vector 
as the input to the transformer encoder. This design is analogous to the token processing 
mechanism in NLP tasks, where the image is transformed into a sequence of patch embeddings 
to facilitate global information modeling and learning, as illustrated in Fig. 1. To preserve the 
spatial information of the input image, ViT introduces position embeddings to encode the 
original location of each patch. The overall architecture consists of multiple layers of multihead 
self-attention and feed-forward networks, with each layer incorporating layer normalization 
(LN) and residual connections. During the training phase, ViT employs a multilayer perceptron 
(MLP) head for image classification, while in the fine-tuning stage, it can optionally adopt a 
single-layer linear classifier. Compared with conventional CNNs, ViT is more capable of 
capturing long-range dependences and modeling global relationships within images. 
Consequently, it has demonstrated competitive performance on large-scale image datasets and 
has emerged as one of the most prominent architectures in recent visual representation learning 
research.

2.2	 UDA techniques

	 UDA is one of the key techniques for enabling models to generalize across different domains. 
Most UDA algorithms aim to reduce the domain gap between the source and target domains by 
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Fig. 1.	 (Color online) The architecture of ViT.
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aligning their feature representations, thereby improving the model’s prediction performance on 
the target domain. Domain-adversarial training of neural networks (DANNs)(19) is one of the 
representative approaches in UDA. As illustrated in Fig. 2,(19) the architecture of DANN consists 
of three main components: a feature extractor (Gf), a label predictor (Gy), and a domain classifier 
(Gd). Through adversarial learning, DANN maps data from both the source and target domains 
into a shared feature space, thereby learning domain-invariant representations. During the 
training process, the label predictor is optimized to minimize the classification cross-entropy 
loss on the labeled source domain samples. The domain classifier is trained to minimize the 
domain confusion loss, which corresponds to correctly classifying whether the input features 
come from the source or target domain. In contrast, the feature extractor is optimized to 
maximize the classification error of the domain classifier, thereby promoting domain confusion. 
A gradient reversal layer (GRL) is introduced between the feature extractor and the domain 
classifier to enable adversarial training. This mechanism facilitates the simultaneous 
optimization of the label classification task and the domain alignment task, allowing the network 
to learn discriminative yet domain-invariant features during training.

2.3	 ST

	 ST(20) is a learning technique that utilizes a pretrained classifier, trained on a small amount of 
labeled data, to perform inference on unlabeled samples. High-confidence samples are selected 
and assigned pseudo-labels, thereby increasing the proportion of labeled samples within the 
training dataset. These pseudo-labeled samples, together with the original labeled data, are then 
used to retrain the classification model in order to further enhance its classification capability. 
However, conventional ST methods are typically applicable only when the source and target data 
samples are drawn from the same underlying distribution, without the presence of domain 
discrepancy between them.

input x

class label y

domain label d

feature extractor (Gf)

domain classifier (Gd)

label predictor (Gy)
Loss L

Loss Ld
Gradient 

reversal layer

Fig. 2.	 (Color online) Architecture of DANN.



3790	 Sensors and Materials, Vol. 37, No. 8 (2025)

	 Given a labeled dataset  and an unlabeled dataset xu u
N� �� � �1, where the number of 

unlabeled samples is much larger than that of labeled samples, i.e., N ≫ M, the ST process 
proceeds as follows. First, an initial classifier model f* is trained using the labeled dataset. The 
trained classifier f* is then applied to the unlabeled samples to generate corresponding predicted 

labels, resulting in a pseudo-labeled dataset x yu u
u

N
,� �� �

�1
. Subsequently, samples with high 

prediction confidence are selected in accordance with a predefined confidence threshold. These 
high-confidence pseudo-labeled samples are removed from the unlabeled dataset and 
incorporated into the labeled dataset. The classifier is then retrained using the updated labeled 
dataset to refine the model parameters. This process can be iteratively repeated according to the 
practical application requirements until the model converges. The overall procedure of the ST 
algorithm is illustrated in Fig. 3.

2.4	 Model compression technique

	 For the improvement of the usability and computational efficiency of DNNs in resource-
constrained environments, model compression techniques have become an important research 
direction. Techniques such as pruning(21) and KD(22) can effectively reduce the computational 
complexity, energy consumption, and model size while maintaining accuracy comparable to that 
of the original model. These techniques significantly optimize the deployment performance of 
DNN models in practical applications.

2.4.1	 Pruning

	 Pruning is a commonly used model compression technique(21) to remove redundant or less 
important parameters from a model while maintaining its performance. By eliminating 
insignificant weights during the training process, one can construct a sparse model structure, 
allowing zero-valued parameters to be ignored during inference. This enables more efficient 
computation and reduces inference latency, as illustrated in Fig. 4. Essentially, pruning is 

Fig. 3.	 Pseudocode of the ST algorithm.

Given a labeled dataset

using the labeled dataset
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regarded as an optimization strategy that balances the trade-off between model size and 
prediction performance. The typical pruning process involves three main steps: first, a large-
capacity full model is trained to ensure sufficient representation capability; second, parameters 
or channels are ranked according to their importance, and those with minimal impact on the 
model output are removed to obtain a compact lightweight model; finally, the pruned model is 
fine-tuned to recover any performance degradation caused by pruning.

2.4.2	 KD

	 The core concept of KD lies in transferring the knowledge learned by a pretrained, high-
capacity teacher model to a more compact student model with fewer parameters, in order to 
enhance the predictive capability of the latter.(22) During the training process, the student model 
is trained using a combination of supervision signals: the one-hot encoded ground-truth labels 
from the original training dataset and the soft probability distributions generated by the teacher 
model through a softmax function. These two components are jointly optimized within a 
weighted loss function, which constitutes the overall KD objective, as defined in 

	 ( )1KD hard softL L Lα α= ⋅ + − ⋅ .	 (1)

	 In this formulation, α is a weighting factor that controls the relative importance between the 
hard-label loss and the soft-label loss during the overall training process. Specifically, Lhard 
denotes the conventional cross-entropy loss computed with the one-hot encoded ground-truth 
labels for the classification task, while Lsoft represents the softened cross-entropy loss based on 
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Fig. 4.	 (Color online) Illustration of the pruning process.
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the probability distributions predicted by the teacher model. The overall architecture and 
workflow of the KD process are illustrated in Fig. 5.

3.	 System Design

	 We propose a cyclic DA framework, referred to as Cycle UDA-ST (CUDA-ST), which 
decomposes the overall learning task into two sequential subtasks: UDA and ST. These two 
stages are alternately executed an iteratively to progressively optimize the model performance. 
In addition, the system is specifically designed considering edge computing environments 
commonly encountered in intelligent sensing applications. To address the constraints of such 
deployment scenarios, the architecture incorporates structured pruning and KD strategies, 
thereby reducing model complexity and enabling high-accuracy quality inspection with low 
computational cost.

3.1	 Cross-domain feature alignment strategy

	 In the application of coffee bean quality inspection, existing methods often rely on a large 
amount of labeled green coffee bean data to train classification models. However, labeled 
datasets for roasted coffee beans are extremely limited. Furthermore, the inherent differences in 
characteristics and appearance between green and roasted beans make it difficult for classifiers 
trained solely on green beans to be directly applied to the quality inspection of roasted beans. To 
enhance the model’s capability for cross-domain feature alignment, we develop a UDA-based 
feature alignment strategy. The overall framework consists of three main modules: a feature 

Pretrained

Fig. 5.	 (Color online) Overall architecture and workflow of the KD process.
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extractor, a label predictor, and a domain classifier. The feature extractor is implemented using a 
lightweight ViT-tiny model, which is responsible for extracting shared feature representations 
from both source (green beans) and target (roasted beans) domain images. The label predictor 
performs quality classification on the basis of the extracted features, while the domain classifier 
determines the domain origin of the feature vectors. An adversarial training strategy is adopted 
in this architecture. Specifically, a GRL is introduced to encourage the feature extractor to 
simultaneously enhance the classification capability of the label predictor and generate features 
that are indistinguishable for the domain classifier. By maximizing the classification error of the 
domain classifier, the system implicitly aligns the feature distributions between the source and 
target domains, as illustrated in Fig. 6.
	 In this architecture, the primary objective of the feature extractor is to learn feature 
representations that prevent the domain classifier from effectively distinguishing between the 
source and target domains. The optimal parameter set of the feature extractor, denoted as *

fθ , is 
obtained by minimizing the overall loss function.

	 * min
f

f dL L
θ

θ λ= − ⋅ 	 (2)

	 The label predictor is responsible for predicting the quality category corresponding to the 
input data, and its training relies solely on the labeled samples from the source domain. In Eq. 
(3), *

pθ  denotes the optimal parameter set of the label predictor, and L represents the cross-
entropy loss computed on the labeled source domain samples.

	
* min

p
p L

θ
θ = 	 (3)

	 The domain classifier is a binary classifier designed to determine the domain membership of 
the input feature vectors. Its training objective is to minimize the domain classification loss. In 
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Fig. 6.	 (Color online) Cross-domain feature alignment strategy based on UDA.
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Eq. (4), *
dθ  denotes the optimal parameter set of the domain classifier and is optimized by 

adjusting the parameter set θd to minimize the domain confusion loss Ld.

	
* min

d
d dL

θ
θ = 	 (4)

3.2	 ST for enhanced class-level alignment

	 In each training iteration, after completing the feature alignment process, the system further 
applies the ST mechanism to perform pseudo-labeling on the high-confidence samples from the 
target domain. The generated pseudo-labeled samples are incorporated into the training dataset 
to enhance the model’s class-level alignment capability. This step improves class consistency 
and enhances the model’s generalization on the target domain. The overall process is illustrated 
in Fig. 7.

3.3	 Model compression strategy based on pruning and KD 

	 In this study, a lightweight ViT-tiny model is adopted as the backbone architecture of the 
feature extractor. To further enhance the model’s deployability in embedded environments or 
real-time application scenarios, we design a lightweight strategy that integrates pruning and KD 
to effectively reduce the model complexity while maintaining satisfactory performance. As 
illustrated in Fig. 8, the proposed approach first applies structured pruning to the pretrained 
ViT-tiny model to remove redundant parameters, resulting in a compact student model. 
Subsequently, the KD mechanism is employed to transfer knowledge from the large-capacity 
teacher model to the student model, guiding the student model to learn both the output 
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Fig. 7.	 (Color online) Class-level alignment enhancement using ST.
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distributions and implicit knowledge from the teacher model, thereby further improving its 
classification accuracy.

4.	 Experimental Results and Discussion

	 In this study, the development of deep learning models was implemented using PyTorch 2.3.1 
and Python 3.12.4. All experiments were conducted on a workstation equipped with an Intel® 

Core™ i7-9750H processor, 16 GB DDR4 RAM, and an NVIDIA GeForce RTX 2060 GPU to 
accelerate the computation.

4.1	 Coffee bean dataset

	 In this study, the green coffee bean dataset from Coffee-cobra(23) was utilized as the source 
domain. It contains a total of 4,626 images of green coffee beans, including 2,149 images of 
normal beans and 2,477 images of defective beans. The defective beans include various types of 
defects such as floater beans, black beans, sour beans, and broken beans. To prevent the model 
from being biased towards defective samples during the training process, an up-sampling 
technique was applied to augment the number of normal bean images, ensuring a balanced 
distribution between normal and defective classes and improving the stability of classification. 
For the target domain, the roasted coffee bean dataset was collected from Aistudio-Baidu,(24) 
which contains 590 images of roasted beans, with 295 images each for normal and defective 
beans. Examples of the dataset samples are shown in Fig. 9. In general, green coffee beans 
exhibit a lighter color, a smooth surface, and relatively uniform shapes. In contrast, roasted 
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Fig. 8.	 (Color online) Lightweight processing procedure of the ViT-tiny model.
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beans undergo significant changes after the roasting process, resulting in a darker color, oily and 
cracked surfaces, and highly diverse shapes. These substantial differences in appearance and 
characteristics between green and roasted beans pose significant challenges for cross-domain 
coffee bean quality inspection tasks.
	 To evaluate the classification performance of the proposed model, the green coffee bean 
dataset was partitioned into 80% for the training set and 20% for the testing set, ensuring a fair 
assessment of the model on unseen data. In addition, to improve the robustness of the model, 
various data augmentation techniques were applied during the training process. These 
techniques include random cropping, rotation, flipping, and color jittering, which effectively 
increase the diversity of the input data. Such augmentation strategies enhance the model’s 
tolerance to data variations and improve its adaptability to different scenarios and cross-domain 
datasets.

4.2	 Model architecture design and training strategy

	 To develop an efficient and generalizable coffee bean quality inspection model, we adopt the 
ViT-tiny model as the backbone network and design an integrated training strategy that 
combines UDA and ST. This approach is aimed at enhancing the model’s adaptability to cross-
domain scenarios. The following sections provide a detailed description of the architecture 
design of the backbone network and the implementation of the proposed training strategy.

4.2.1	 Model architecture design

	 In this study, the ViT-tiny model, which contains a relatively small number of parameters, is 
adopted as the backbone network for feature extraction. To meet the requirements of the task, the 
input size of the ViT-tiny model is adjusted to 128 × 128 × 3, with the patch size set to 8 × 8. 
Moreover, to facilitate the extraction of more discriminative feature representations, the original 
classification head of the ViT-tiny model is removed during model initialization. Instead, the 
feature vectors output from the intermediate layers are directly utilized as the input for the 
subsequent modules. 

Fig. 9.	 (Color online) Sample images from the dataset: (a) normal green coffee beans, (b) defective green coffee 
beans, (c) normal roasted coffee beans, and (d) defective roasted coffee beans.



Sensors and Materials, Vol. 37, No. 8 (2025)	 3797

	 The label predictor is designed with five fully connected (FC) layers, each followed by a 
rectified linear unit (ReLU) activation function. This module takes the 192-dimensional feature 
vector extracted by the feature extractor as input and performs multiple nonlinear transformations 
to output a binary classification result for coffee bean quality assessment. Similarly, the domain 
classifier is also constructed with five FC layers, with each layer followed by batch normalization 
and a ReLU activation function to stabilize the training process and enhance the nonlinear 
representation capability. The domain classifier finally outputs a single scalar value, which is 
used to determine the domain membership of the input feature.

4.2.2	 Model training strategy

	 The proposed model training process in this study is divided into three stages to progressively 
optimize domain-invariant representation learning and enhance cross-domain adaptability. In 
the first stage, the feature extractor and the label predictor are trained using the stochastic 
gradient descent (SGD) optimizer combined with the cross-entropy loss function, enabling the 
model to effectively learn classification on the source domain data. In the second stage, the 
domain confusion loss defined in Eq. (4) is introduced to train the domain classifier. At the same 
time, the feature extractor and the label predictor are fine-tuned using the overall loss function 
defined in Eq. (2) to further improve feature alignment between the source and target domains. 
In the third stage, using the confidence threshold defined in Eq. (5), the system selects pseudo-
labeled samples with high prediction confidence from the target domain and incorporates them 
into the training dataset. This step is aimed at improving the classification performance on the 
target domain. The second and third stages are alternately performed iteratively, allowing the 
model to progressively strengthen its adaptability and generalization performance on the target 
domain by jointly leveraging domain feature alignment and the ST mechanism.

	 	 (5)

Here, zu denotes the predicted confidence score, and yu represents the pseudo-label assigned to 
the target domain sample xu, and k is the index of the class. In our experiments, the temperature 
coefficient 𝑇 is empirically set to 3, and the confidence threshold for selecting high-confidence 
samples is set to 0.9.

4.3	 Experimental evaluation of CUDA-ST for coffee bean quality inspection

	 To verify the effectiveness of the proposed CUDA-ST framework in cross-domain quality 
inspection tasks, we conduct generalization experiments using images of green coffee beans as 
the source domain and images of roasted coffee beans as the target domain. This experimental 
setting simulates a real-world domain shift scenario to evaluate the model’s generalization 
capability on the target domain.
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4.3.1	 Effectiveness of CUDA-ST in coffee bean quality inspection

	 The aim of the experiment is to establish whether the proposed CUDA-ST framework can 
effectively learn domain-invariant representations through UDA while leveraging the ST 
mechanism to enhance class consistency. The goal is to address the domain shift problem 
between the green bean and roasted bean datasets. To determine the optimal weighting 
configuration, we adjusted the weight ratio between L and Ld in the total loss function defined in 
Eq. (2), and observed the performance of the model under adversarial learning. The experimental 
results are summarized in Table 1. When the weight parameter λ = 0, the model only minimizes 
the cross-entropy loss of the label predictor. In this case, the model achieves an accuracy of 
99.07% on the source domain, but only 66.78% accuracy on the target domain, indicating that 
the model can correctly classify green beans but suffers from a significant domain shift when 
applied to roasted beans. As the value of λ increases, the model progressively emphasizes the 
domain confusion loss of the domain classifier, encouraging the feature extractor to learn 
domain-invariant representations. When λ = 1.0, the model maintains a high accuracy of 99.42% 
on the source domain, while the accuracy on the target domain is significantly improved from 
66.78 to 96.95%. Further raising λ to 1.1 or 1.2 results in only minor fluctuations in source-
domain accuracy without additional gains on the target domain. Taken together, these 
observations indicate that λ = 1.0 provides a well-balanced trade-off between classification 
fidelity and domain alignment, with the 96.95% target-domain accuracy appearing to 
approximate the model’s practical performance ceiling under the present experimental setting.

4.3.2	 Feature distribution visualization analysis

	 To further validate whether the proposed CUDA-ST framework enables the model to learn 
domain-invariant representations and align the originally distinct feature distributions between 
the source and target domains, we conducted a feature distribution visualization analysis. 
Specifically, we extracted 192-dimensional feature vectors from the output of the last encoder 
layer of the ViT-tiny model. The t-SNE method was then employed to project the high-

Table 1
Accuracy variation in coffee bean quality inspection with different λ values.
λ Source data accuracy Target data accuracy
0.0 99.07 66.78
0.1 99.07 64.92
0.2 98.37 72.03
0.3 98.49 89.66
0.4 98.49 93.56
0.5 99.42 94.92
0.6 98.95 96.95
0.7 99.19 95.59
0.8 99.30 96.78
0.9 99.30 96.10
1.0 99.42 96.95
1.1 99.30 96.95
1.2 99.53 96.95
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dimensional feature distributions into a two-dimensional space for visualization, allowing us to 
observe the changes in feature distributions more intuitively. Figure 10 illustrates the distribution 
differences of green bean and roasted bean samples in the feature space before and after applying 
CUDA-ST. As shown in the figure, before applying CUDA-ST, the feature distributions of the 
two domains were clearly separated, indicating that the model failed to capture domain-shared 
representations effectively. In contrast, after applying CUDA-ST, the feature distributions of the 
two domains became highly overlapped in the feature space, with their classwise distributions 
tending to be more consistent. This result demonstrates that the proposed feature alignment and 
class consistency enhancement mechanisms in CUDA-ST successfully enabled the label 
predictor, originally trained only for green bean classification, to correctly recognize the quality 
of roasted beans as well. Consequently, the model achieved the goal of domain generalization.

4.4	 Local interpretable model-agnostic explanations (LIME)-based explainable model 
analysis 

	 Deep learning models typically consist of millions to billions of parameters, resulting in 
extremely complex internal mechanisms that are difficult for humans to intuitively understand. 
This inherent black-box property makes it challenging for users to grasp the decision-making 
logic of the model, thereby limiting its interpretability in practical applications. To address this 
issue, we utilized the LIME framework(25) to analyze the model’s decision basis for coffee bean 
quality inspection. Through LIME analysis, we can better understand which visual features the 
model relies on when making quality predictions. Figures 11(a) and 11(b) respectively present the 
LIME-based interpretation results for green bean and roasted bean images. The analysis reveals 
that for high-quality coffee beans, the model primarily focuses on the overall shape and color 

Fig. 10.	 (Color online) Visualization of feature distributions for green bean and roasted bean samples before and 
after applying CUDA-ST. Blue circles represent high-quality green beans, red circles represent high-quality roasted 
beans, blue crosses represent defective green beans, and red crosses represent defective roasted beans. (a) Before 
applying CUDA-ST, there are significant differences in both feature distributions and classwise distributions 
between green beans and roasted beans. (b) After applying CUDA-ST, the feature distributions of green beans and 
roasted beans completely overlap, and the classwise distributions are well aligned.
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uniformity of the beans. In contrast, for low-quality coffee beans, the model tends to concentrate 
on local defects, such as surface blemishes, discoloration, or abnormal shapes.

4.5	 Model lightweighting

	 To further reduce model complexity and improve inference efficiency, we applied structured 
pruning to the ViT-tiny model to obtain a more compact and practical version for deployment. 
Considering the strong interlayer dependences inherent in transformer architectures, we adopted 
the dependency graph (DepGraph) method(26) to analyze the dependence relationships between 
different layers of the model and to perform groupwise pruning of tightly coupled parameters. 
The experimental results are summarized in Table 2. When the pruning ratio was set to 0.1, both 
the model size and the number of parameters were significantly reduced. After applying KD for 
fine-tuning, the classification accuracy on both the source and target domains was maintained at 
over 96%. These results demonstrate that even on the already lightweight ViT-tiny model, the 
combination of DepGraph-based pruning and KD fine-tuning can effectively reduce model 
complexity while preserving excellent classification performance.

5.	 Conclusions

	 In this study, we proposed a deep learning framework for coffee bean quality inspection that 
adopts the ViT-tiny model as its backbone and integrates UDA with an ST strategy. The 
framework effectively narrows the feature distribution gap between green and roasted beans 
while reinforcing class-level alignment, thereby improving generalization in cross-domain 
settings. To enable deployment on embedded and real-time platforms, a lightweight scheme 
combining structured pruning and KD was introduced to compress the ViT-tiny model, 
achieving a favorable balance between classification accuracy and inference speed. Experimental 

(a) (b)

Fig. 11.	 (Color online) Visualization of model explanations generated by LIME for coffee bean quality inspection. 
(a) Green coffee bean image. (b) Roasted coffee bean image.

Table 2
Classification accuracy comparison of the model before and after lightweighting.

Pruning ratio Vol (MB) Parameters (M) Fine-tune with KD
Source Acc (%) Target Acc (%)

Base 21.75 5.43 99.42 96.95
0.1 19.48 4.86 97.33 96.10
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results show that the framework raises roasted bean classification accuracy from 66.78 to 
96.95%; even after compression, it maintains an accuracy greater than 96% for both bean types, 
confirming its practicality for field deployment.
	 Potential directions for future research include the integration of multispectral and 
hyperspectral imaging to uncover chemical and structural cues beyond the reach of conventional 
RGB sensors, which could further enhance the sensitivity and precision of coffee bean defect 
detection. In addition, deploying the compressed inspection network on resource-constrained 
edge accelerators and subjecting it to real-time, in-line evaluations on industrial conveyor belts 
would permit a rigorous characterization of latency, throughput, and long-term stability under 
production conditions.
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