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	 Sensor-based X-ray imaging, made possible by high-sensitivity medical imaging sensors 
equipped with advanced detector materials, enables noninvasive and low-dose assessment of 
bone structures. Leveraging such sensor outputs, we applied deep learning and explainable AI 
methods to develop a sensor-driven module for osteoporosis detection. Three hundred fifty-nine 
hip X-ray images (hereafter referred to as sensor-based X-ray images) were collected to train and 
evaluate four convolutional neural networks. Among them, the unsegmented whole hip VGG16 
model achieved the highest classification accuracy of 76%. Gradient-weighted class activation 
mapping (Grad-CAM), shapley additive explanations (SHAP), and local interpretable model-
agnostic explanations (LIME) were applied to generate saliency heat maps, followed by pixel-
level consensus analysis to enhance interpretability. Retraining using the consensus-cropped 
images increased accuracy to 79% with corresponding 2–3% improvements in sensitivity, 
specificity, and F1-score. A web-based survey with orthopedic surgeons showed that the visual 
explanations improved clinical trust in 70% of cases. These results demonstrate that advanced 
sensor-based X-ray imaging technologies, combined with explainable deep learning, can serve 
as a practical decision-support module within intelligent medical sensing platforms, especially 
where dual-energy X-ray absorptiometry (DXA) is unavailable.

1.	 Introduction

	 With global population aging, many countries and regions face increasing healthcare 
challenges. According to the United Nations’ World Population Ageing report,(1) South Korea, 
Singapore, and Taiwan are among the fastest-aging societies. Aging significantly pressures 
healthcare systems, particularly due to osteoporosis, a common skeletal disease caused by age-
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related bone density loss.(2) Osteoporosis is often asymptomatic until fractures occur, with hip 
fractures posing the greatest risks of disability or mortality.(3) AI, especially deep learning, has 
recently shown great potential in medical imaging by demonstrating the ability to handle 
complex diagnostic tasks with high accuracy.(4–6) During the COVID-19 pandemic, deep 
learning models achieved promising results in classifying lung infections and predicting hip 
fractures from sensor-based X-ray images.(7,8) These advances suggest that intelligent healthcare 
and sensor-driven medical analysis will become key areas for AI development. The hip X-ray 
images used in this study were generated by advanced flat-panel detector sensors employing 
high-efficiency scintillator materials, which convert X-ray photons into high-resolution digital 
signals. These sensor technologies provide the fine structural details necessary for AI-based 
osteoporosis screening, and their integration with AI can extend diagnostic capabilities to point-
of-care and resource-limited settings.
	 Against this backdrop, early detection of osteoporosis becomes critical yet remains 
challenging owing to limitations in conventional diagnostic methods. Currently, dual-energy 
X-ray absorptiometry (DXA) is the gold standard for osteoporosis diagnosis owing to its 
precision and stability. However, its high cost limits widespread access, and diagnosis often 
occurs only after fractures. Comparative studies indicate that quantitative computed tomography 
(QCT) is less accurate and poses higher radiation risks, making it a suboptimal alternative.(9) To 
address these limitations, deep learning models have been applied for osteoporosis screening 
with encouraging accuracy.(10) While existing models have achieved reasonable levels of 
accuracy, the continuous development of novel architectures raises the potential for further 
improvement through updated transfer learning strategies and advanced data preprocessing 
techniques. However, the integration of deep learning also introduces challenges related to the 
opacity of decision-making processes, including concerns over decision authority and ethical 
implications.(11) As a result, the incorporation of explainable artificial intelligence (XAI) has 
become essential, and it remains to be investigated which XAI methods are most effective for 
osteoporosis diagnosis.
	 In recent years, XAI has become increasingly active in the medical field. In many studies, 
XAI techniques have been applied to various medical diagnostic tasks.(12–14) Sheu and 
Pardeshi(15) conducted a comprehensive review of different XAI methods by analyzing and 
evaluating their applicability, highlighting the importance of human–machine interaction and 
the potential directions for future development. In medical imaging, XAI has attracted particular 
attention. According to statistical analyses by Velden et al.,(16) visual explanation methods have 
been rapidly adopted in medical image analysis. Among these, commonly used techniques 
include class saliency heatmapping (CAM), gradient-weighted class saliency heatmapping 
(Grad-CAM), layer-wise relevance propagation (LRP), local interpretable model-agnostic 
explanations (LIME), and Shapley additive explanations (SHAP).
	 To address the challenges of limited accessibility to DXA-based osteoporosis diagnosis 
and the lack of model interpretability, we collaborated with a regional hospital to collect 
359 hip sensor-based X-ray images. A deep-learning-based classification framework was 
established using T-scores from DXA results as ground truth, and various convolutional 
neural network models were compared. To enhance transparency, multimethod XAI 
techniques, including Grad-CAM, SHAP, and LIME, were applied to analyze model 
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decision features. A pixel-level consensus analysis was further conducted to identify key 
skeletal regions, followed by retraining using feature-cropped images to validate their 
clinical relevance. Finally, an expert survey involving orthopedic surgeons was conducted 
to assess the trustworthiness of the explanations. This work contributes to the 
development of an intelligent, sensor-driven osteoporosis screening platform, by 
integrating sensor-based imaging data with interpretable deep learning techniques for 
medical decision support. In this study, we aim to address both diagnostic accessibility and 
interpretability through a sensor-based explainable AI approach, validated with clinical 
feedback.

2. Research Methods and Experimental Design

2.1	 Research framework

	 Figure 1 shows the overall research framework of this study. This study was conducted in 
collaboration with a regional hospital in Yilan, Taiwan, and approved by the Institutional Review 

Fig. 1.	 Research framework.
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Board of National Yang-Ming Chiao Tung University Hospital (IRB No. 2002A007). A 
retrospective dataset of 359 hip sensor-based X-ray images, regarded as outputs from a 
noninvasive medical sensor, was collected and categorized on the basis of DXA T-scores: 
osteoporotic (T-score ≤ –2.5) and non-osteoporotic (T-score > –2.5). A binary classification 
pipeline was established to analyze the sensor-based images and predict osteoporosis status. The 
best-performing model identified in the initial experiments was selected for further feature 
analysis and validation using multimethod XAI techniques. Finally, a web-based survey of 
orthopedic surgeons was conducted to assess clinical trust in the model’s predictions.

2.2	 Dataset and data preprocessing

	 The collected sensor-based X-ray images represent structured outputs from a noninvasive 
biomedical sensing system and require appropriate preprocessing for downstream analysis. A 
total of 359 hip sensor-based X-ray images were retrospectively collected from 359 patients and 
categorized in accordance with DXA results. On the basis of a T-score threshold of –2.5, images 
were labeled as osteoporotic (T-score ≤ –2.5) or non-osteoporotic (T-score > –2.5). Two 
anatomical regions were evaluated: the whole hip and the femoral neck. For the whole hip 
region, the dataset initially included 124 osteoporotic and 235 non-osteoporotic cases. In the 
femoral neck region, there were 194 osteoporotic and 165 non-osteoporotic cases. To mitigate 
class imbalance, oversampling was applied during training to equalize the number of samples 
across categories, as summarized in Table 1.
	 In the preprocessing stage, all sensor-based X-ray images were processed using UNet++, a 
deep convolutional neural network architecture optimized for medical image segmentation. 
Prior to training the model, bone regions in the original images were manually annotated using 
the Labelme tool to generate ground truth masks. Once trained, the UNet++ model was used to 
predict segmentation masks for the remaining images, enabling background removal and 
isolation of the hip region, as illustrated in Fig. 2. To enhance model generalization, data 
augmentation was applied to the training set using the ImageDataGenerator() function, which 
performed four random transformations: rotation (±2°), width shift (±20%), height shift (±20%), 
and zoom (up to 30%).

2.3	 Model evaluation indicators

	 Model performance was primarily evaluated using four standard metrics: accuracy, 
sensitivity, specificity, and F1-score. Accuracy is the measure of the proportion of correctly 
classified samples. Sensitivity (also known as recall or true positive rate) reflects the model’s 

Table 1
Distributions of osteoporotic and non-osteoporotic cases before and after oversampling.

Osteoporotic Non-osteoporotic
Original After oversampling Original After oversampling

Whole hip 124 235 235 235
Femoral neck 194 194 165 194
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ability to identify positive cases, whereas specificity (true negative rate) assesses the model’s 
ability to detect negative cases. The F1-score, which is the harmonic mean of precision and 
recall, accounts for both the accuracy and completeness of the classification. These metrics were 
computed on the basis of the confusion matrix structure shown in Table 2.
	 The metrics record the counts of true positives (TP), false positives (FP), false negatives 
(FN), and true negatives (TN). The formulas used are as follows.

	 Accuracy = (TP + TN)/(TP + FP + TN + FN)	 (1)

	 Sensitivity = TP/(TP + FN)	 (2)

	 Specificity = TN/(TN + FP)	 (3)

	 F1-score = 2(Precision*Recall)/(Precision + Recall)	 (4)

	 To ensure robust evaluation and mitigate sampling bias, k-fold cross-validation was employed 
during model training and testing. The dataset was randomly divided into k equal-sized subsets. 
In each of the k iterations, one subset was used as the validation set while the remaining subsets 
were used for training. The process was repeated until every subset had served as the validation 
set once. The average performance across all k folds was then reported as the final evaluation. 
This method helps reduce overfitting and allows for the comprehensive utilization of limited 
data. However, it assumes that samples are independent and identically distributed; thus, its 
applicability is limited in datasets with inherent temporal or spatial dependences, where k-fold 
splitting may disrupt such structure.

2.4	 Experimental design

	 This study comprises three experiments designed to evaluate model performance, 
interpretability, and clinical applicability using sensor-based X-ray data. 

Fig. 2.	 UNet++-based background removal flowchart.
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2.4.1	 CNN-based classification modeling

	 In the first phase, we established a classification framework for analyzing sensor-based X-ray 
data acquired from a noninvasive imaging sensor. As shown in Fig. 3, original images were 
manually cropped into two anatomical regions: whole hip and femoral neck, each resized to 256 
× 256 pixels. To reduce background noise in the sensor data, a UNet++ model was applied to 
remove nonbone regions. Four datasets were generated for model training: (a) whole hip, (b) 
segmented whole hip, (c) femoral neck, and (d) segmented femoral neck, as illustrated in Fig. 4. 
K-fold cross-validation (K = 10) with random sampling was used to evaluate model performance 
on independent test sets. All models were fine-tuned using the Adam optimizer with a learning 
rate of 1 × 10−5 and a batch size of 16. The loss was calculated using categorical cross-entropy. A 
dropout rate of 0.2 was applied after the convolutional layers to mitigate overfitting. Four deep 
learning models were evaluated using accuracy, sensitivity, specificity, and F1-score. The 
combination of input region and model that yielded the highest performance was selected for 
subsequent interpretability analysis.

2.4.2	 Model interpretability analysis using XAI (Grad-CAM, SHAP, LIME)

	 The second experiment focused on interpreting the best-performing model using 
explainability techniques applied to sensor-based imaging data. Grad-CAM, SHAP, and LIME 
were applied simultaneously to individual test cases to generate heatmaps highlighting important 
regions. This multimethod approach mitigates bias from relying on a single explanation and 
verifies whether the model responds to valid features within the sensing input.
	 In the second phase, a pixel-level consensus analysis was performed using Grad-CAM 
outputs from correctly classified samples. Each heatmap was binarized into feature (1) and 
nonfeature (0) masks, then summed across all cases. Only pixels activated in more than half of 
the cases were retained as key regions, as illustrated in Fig. 5. This aggregation helps identify the 
most informative sensor-based regions contributing to model decisions.
	 In the final phase, the feature regions extracted from sensor outputs were validated to assess 
their effect on model performance. This verification process, illustrated in Figs. 6 and 7, allows 
for a robust assessment of feature importance by isolating specific regions and observing the 
impact on model performance. As shown in Fig. 6, cropped images containing only key, positive, 
or negative feature regions were used to retrain the model. If the accuracy remained stable 
despite reduced input size, this would confirm the importance of those regions. Conversely, 
significant performance degradations would suggest that the identified features were either 
incomplete or nonessential. In addition, nonsalient regions were tested separately by applying 
masking procedures, as illustrated in Fig. 7, to further evaluate the specificity of the model’s 
focus.

Table 2
Structure of the confusion matrix.

Actual positive Actual negative
Predicted positive True positive (TP) False positive (FP)
Predicted negative False negative (FN) True negative (TN)
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Fig. 3.	 Workflow of the first experiment: CNN-based classification modeling for hip X-ray images including 
anatomical region cropping, background removal, and deep learning model training.

Fig. 4.	 Overview of the four training datasets derived from sensor-based X-ray images: (a) original whole hip, (b) 
segmented whole hip, (c) original femoral neck, and (d) segmented femoral neck.

Fig. 5.	 (Color online) Pixel-wise consensus analysis workflow. This process aggregates binarized heatmaps from 
multiple correctly classified cases to statistically identify key feature regions where the model consistently focuses 
its attention.

(a) (b) (c) (d)
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2.4.3.	 Clinical validation through expert survey

	 In the third experiment, we evaluated orthopedic surgeons’ trust in AI predictions generated 
from sensor-based X-ray inputs, with and without explanation. A web-based clinical evaluation 
platform was developed to assess the trustworthiness of AI-assisted osteoporosis diagnosis with 
and without explainability support. The evaluation began with the presentation of the original 
X-ray image, followed by the model’s prediction and three heatmaps.(17) Surgeons were then 
asked to respond to six structured questions assessing their diagnostic confidence and trust in 
the model’s predictions. In this experiment, whether visual explanations improve the clinical 
acceptance of sensing-based AI decision support was assessed.

3.	 Results and Discussion

	 In this study, we developed an explainable osteoporosis classification framework using a 
pipeline of data preprocessing, deep learning classification, XAI interpretation, and clinical 
evaluation using sensor-based X-ray images.

Fig. 6.	 (Color online) Verification workflow for key feature regions. This figure illustrates the process of feature 
isolation, where images are cropped to retain only the consensus regions before retraining to validate their impact.

Fig. 7.	 Verification of nonsalient regions. This process involves masking the identified key feature regions to 
confirm that their removal negatively impacts model performance, thereby validating their importance.
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	 In the first experiment, four CNN models, namely, DenseNet121, EfficientNetB3, ResNet50, 
and VGG16, wers trained to classify osteoporosis status using both whole hip and femoral neck 
regions with and without background removal. The VGG16 model trained on unsegmented 
whole hip images achieved the highest accuracy of 76%, as shown in Table 3, suggesting that 
preserving global anatomical context benefits model performance.
	 In the second experiment, we investigated model interpretability. Saliency heatmaps from 
Grad-CAM, SHAP, and LIME revealed that the model’s attention was concentrated on the 
femoral neck margins. To validate this, we extracted consensus feature regions by aggregating 
Grad-CAM outputs. Retraining the VGG16 model on images cropped to these consensus regions 
improved accuracy to 79%, with a corresponding 2–3% increase in sensitivity, specificity, and 
F1-score, as shown in Table 4. Conversely, masking these critical regions reduced accuracy to 
70%, confirming their importance to the model’s decisions. This demonstrates that XAI-driven 
feature localization enhances both model focus and classification performance.
	 In the third experiment, we evaluated the clinical trustworthiness of the AI model through a 
web-based survey involving orthopedic surgeons. Each test case presented the original sensor-

Table 3
Classification performance of the VGG16 model on segmented vs unsegmented hip X-ray inputs.

Sensitivity Specificity F1-score Accuracy
Background removal Without With Without With Without With Without With
Femoral neck 0.67 0.72 0.72 0.61 0.70 0.66 0.70 0.68
Whole hip 0.75 0.68 0.76 0.71 0.75 0.65 0.76 0.70

Table 4 
(Color online) Model performances for original, cropped, and masked hip X-ray images. Training and testing times 
are reported in seconds.

Sensitivity Specificity F1-score Accuracy Training time Testing time

Whole hip region

0.75 0.76 0.75 0.76 1201 0.23

Cropped whole hip region

0.77 0.79 0.77 0.79 652 0.17

Masked whole hip images 
(important regions removed)

0.436 0.82 0.63 0.70 NaN NaN

* NaN indicates that retraining was not feasible owing to the removal of critical regions.
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based X-ray image, the AI model’s prediction, and three heatmaps generated by Grad-CAM, 
SHAP, and LIME. The survey comprised six structured questions assessing diagnostic 
confidence, perceived model reliability, and preference among different explainability 
techniques designed to evaluate the practical clinical utility of the system. The survey results 
indicated that visual explanations improved clinical trust in approximately 70% of the cases. 
Among the explainability methods, SHAP was identified as the most helpful, receiving 35% of 
the surgeon endorsements, followed closely by Grad-CAM at 33%.
	 To provide a comparative perspective, in this section, we summarize relevant studies on 
osteoporosis detection. Table 5 presents the best predictive results reported in related literature. 
In the study by Lee et al.,(18) the highest reported accuracy was 71%, whereas our proposed 
framework achieved an improved accuracy of 79%. In terms of sensitivity, their method reached 
0.81, whereas ours achieved 0.77; for specificity, their method obtained 0.60, whereas ours 
improved significantly to 0.79. Although there was a slight decrease of 4% in sensitivity, our 
framework improved overall performance, particularly with an 8% increase in accuracy and a 
19% enhancement in specificity.
	 Regarding model interpretability, Table 6 summarizes the results of studies incorporating 
explainable AI techniques. Jang et al.(19) and Kumar et al.(20) both utilized Grad-CAM for visual 
explanations. However, relying solely on Grad-CAM may introduce bias in the interpretability 
results. To address this limitation, we additionally employed LIME and SHAP, enabling a 
multifaceted explanation analysis to mitigate potential unfairness. Moreover, beyond generating 
case-level visual explanations, our framework statistically aggregated feature regions to refine 
the system pipeline and improve classification performance. Finally, a web-based voting system 
was developed to collect orthopedic surgeons’ feedback on case explanations, incorporating 
clinical insights to enhance the overall trustworthiness of the system.
	 Collectively, the results of these experiments suggest the feasibility of developing an 
explainable interpretation module within an intelligent medical sensing platform. By treating 
sensor-based X-ray imaging as a noninvasive sensing modality and coupling it with AI-driven 
analysis and interpretability techniques, the proposed system provides a practical decision-
support tool for osteoporosis screening, particularly in settings where DXA is not readily 
available.
	 Building on these findings, there is potential to further integrate the proposed model into 
portable sensor-based X-ray diagnostic devices, enabling point-of-care osteoporosis screening in 

Table 5
Comparative analysis results of prediction performance in related studies.

Data Class Model Acc Sen Spe F1-score

Lee et al. 334 lumbar spine 
X-ray images 2

AlexNet = 0.71
VGG16 = 0.63

InceptionV3 = 0.6
ResNet50 = 0.68

0.71 0.81 0.60 0.73

Our 
proposed 
method

359 hip X-ray 
images 2

Densnet121 = 0.72
ResNet50 = 0.71

EfficientNetB3 = 0.7
VGG16 = 0.79

0.79 0.77 0.79 0.77

* Acc = Accuracy, Sen = Sensitivity, Spe = Specificity
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community or home settings. Moreover, the incorporation of Edge AI or real-time AI decision 
modules can facilitate on-device analysis, minimize latency, and enhance accessibility without 
relying on centralized computing resources. These advancements highlight the broader 
applicability of sensor-based AI modules in developing lightweight, explainable, and deployable 
diagnostic platforms for future medical sensing technologies.

4.	 Conclusions

	 In this study, we developed an explainable osteoporosis screening system based on hip X-ray 
images acquired from high-sensitivity medical imaging sensors. By integrating deep learning 
classification with explainable AI techniques, we achieved an initial accuracy of 76%. Feature 
localization using Grad-CAM, SHAP, and LIME identified the femoral neck margins as critical 
diagnostic regions, and retraining with these features improved accuracy to 79%. Furthermore, a 
clinical survey with orthopedic surgeons further demonstrated that visual explanations increased 
decision-making trust in approximately 70% of cases, highlighting the framework’s clinical 
relevance.
	 By directly leveraging outputs from advanced sensor-based X-ray imaging systems equipped 
with state-of-the-art detector materials, our framework can be integrated into next-generation 
smart medical sensing platforms. Such integration supports the development of portable, 
radiation-efficient, and real-time osteoporosis screening devices for hospitals, community health 
centers, and home-based care.
	 Future work will address current limitations by expanding the dataset to improve 
generalizability across diverse populations and refining methods to ensure stability and 
consistency of explanations across different XAI tools. These efforts will further enhance the 
framework’s readiness for clinical deployment and pave the way for sensor-based, explainable 
AI-enabled osteoporosis screening in community health programs and telemedicine services, 
potentially improving early detection rates and reducing fracture-related morbidity.

Table 6
Comparative results analysis of XAI in related studies.

Data Class Model Acc XAI XAI analysis Doctors’ 
feedback

Jang et al.

1001 hip X-ray 
images of female 

patients over 
55 years old

2
VGG16 

(nonlocal neural 
network)

0.812 Grad-CAM Confusion 
matrix

Physician 
discussion

Kumar 
et al.

457 knee X-ray 
images 2

Inception = 75.36%
MobileNet = 78.26%

ResNet50 = 72%
VGG19 = 69%

Osteonet = 84.06%

0.826 Grad-CAM N/A N/A

Our 
proposed 
method

359 hip X-ray 
images 2

DenseNet121 = 0.72
ResNet50 = 0.71

EfficientNetB3 = 0.70
VGG16 = 0.79

0.79 SHAP LIME
Grad-CAM

Case 
discussion 
+ Heatmap 

feature 
aggregation

Physician 
discussion 
+ Physician 

average trust 
vote rate: 

70%
* Acc = Accuracy
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