
3815Sensors and Materials, Vol. 37, No. 9 (2025) 3815–3827
MYU Tokyo

S & M 4154

*Corresponding author: e-mail: poom.ko@kmitl.ac.th
https://doi.org/10.18494/SAM5551

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Optimizing Wafer Classification in Industrial Manufacturing
Using Particle Swarm Optimization and Deep Learning

Pisit Suwannoot1 and Poom Konghuayrob2*

1Department of Robotics and AI, School of Engineering, King Mongkut's Institute of Technology Ladkrabang,
Bangkok, Thailand

2Department of Electrical Engineering, School of Engineering, King Mongkut's Institute of Technology
Ladkrabang, Bangkok, Thailand

(Received February 4, 2025; accepted August 1, 2025)

Keywords:	 particle swarm optimization, pattern classification, convolutional neural network (CNN),
wafer classification

	 In this study, we examine the application of convolutional neural networks (CNNs) for wafer
pattern classification, with a focus on enhancing training efficiency and model performance. To
achieve this, particle swarm optimization (PSO) is employed to improve the model performance
while reducing its complexity, a critical factor in production environments. By minimizing the
number of layers, the proposed method accelerates training, reduces resource consumption, and
enhances defect detection accuracy. Wafer failure patterns are classified into four categories:
vertical, rectangular, edge, and horizontal. The approach achieves an impressive F1-score of
0.988, significantly surpassing the traditional CNN’s score of 0.83. By integrating PSO, the
method considerably improves the visual inspection process for hard disk drives, contributing to
high-quality production. This optimization not only streamlines workflows but also enables
manufacturers to address issues more rapidly, aligning with Industry 4.0’s objectives of
automation and intelligent monitoring.

1.	 Introduction

	 Wafers are essential materials for reader and writer components in hard disk manufacturing
and undergo processes such as circuit fabrication, coating, cleaning, and polishing.(1) Engineers
perform visual inspections to detect defects, such as contamination or anomalies, that can
impact the performance of read and write operations in final devices.
	 By incorporating AI and computer vision, automation streamlines wafer inspections,
enhancing quality control and reducing manual tasks in manufacturing.(2) Researchers have
developed various methods of classifying wafer defects. Shin and Yoo used some compressed
lightweight models such as EfficientNetV2, ShuffleNetV2, and MobileNetV3 to predict wafer
map bin classification.(3) Nakazawa and Deepak(4) provided a technique for detecting and
segmenting defect patterns using convolutional neural network (CNN) models such as fully

mailto:poom.ko@kmitl.ac.th
https://doi.org/10.18494/SAM5551
https://myukk.org/

3816	 Sensors and Materials, Vol. 37, No. 9 (2025)

convolutional network, segmentation network, and U-shaped network. Unlike traditional
methods, deep convolutional neural networks perform end-to-end training without intermediate
steps, processing wafer map images to classify defects. For a more detailed analysis of
parameters, such as the location, size, and orientation of defect clusters, engineers require
segmented defect clusters, particularly during the early phases of technology development. Shim
et al.(5) used CNN with active clusters and uncertain estimation patterns with high accuracy
while reducing the cost of manual annotation by an engineer. Kim and Kang(6) used a self-
supervised learning-based dynamic wafer bin map clustering method, called the convolutional
autoencoder method, which combines deep learning and pseudo-labeled data for obtaining
dynamic patterns, offering robust, scalable clustering and improved defect pattern classification
compared with benchmark models. Kaitwanidvilai et al.(7) introduced a parameter transfer
learning (PTL) approach to improve virtual metrology (VM) by enabling knowledge transfer
across factories and recipes, enhancing prediction accuracy and cutting retraining costs for
adaptable wafer defect classification. Similarly, Rungtalay and Kaitwanidvilai(8) developed a
dual-stage framework combining novelty detection and supervised learning to identify rare or
unseen patterns in imbalanced data, addressing challenges of infrequent defects in evolving
production. Both studies highlight adaptive, high-accuracy inspection methods suited for
Industry 4.0 manufacturing. The analysis of large amounts of data collected from the production
process and the results can help engineers make the right decision in classifying failure patterns.
Implementing deep learning (DL) in production is challenging, particularly owing to issues
related to high costs, long training times, and model complexity.(9,10) The computational
resources in the training stage required for training large models can be expensive.(11,12)
Focusing on the training periods further increases the operational cost because it is costly to
train and deploy large DL models.(13)

	 The main objective of this study is to develop an optimization method by using particle
swarm optimization (PSO) to fine-tune the key hypothesis of neural networks before setting
parameter training in production. This research is focused on the training stage for wafer
classification in the hard disk drive process, emphasizing the optimization of batch size, hidden
size, and the number of convolutional (Conv) layers. The two primary objectives of the objective
function approach are to achieve fitness functions to optimize model performance on the
validated dataset and to reduce model complexity by minimizing the number of Conv layers,
thereby striking a balance between the performance and complexity of the model.

2.	 Data, Materials, and Methods

2.1	 Dataset preparation

	 In this study, a dataset of 7000 wafers was utilized to represent potential defects and surface
patterns, as shown in Fig. 1. After wafer manufacturing, the wafer is classified visually by an
expert team. Following labeling, data preparation involved splitting the dataset into 5000 wafers
(70%) for training and 2000 wafers (30%) for testing. The wafers were classified into the
following four categories, as shown in Fig. 2, on the basis of surface features: vertical pattern

Sensors and Materials, Vol. 37, No. 9 (2025)	 3817

(distinct vertical lines indicating specific processes), horizontal pattern (prominent horizontal
lines suggesting alignment issues), edge pattern (defects primarily at wafer edges; crucial for
quality control), and rectangle pattern (rectangular shapes indicating design features or defects).
Table 1 illustrates the number of defective wafers for each failure pattern as applied to this
research.

2.2	 CNN

	 CNN is a popular DL model widely used for image classification and computer vision. It
excels in tasks such as object detection, image classification, and segmentation, making it
essential for real-time video analysis.(14–16) The architecture design concept of CNN includes
four types of layers: Conv layer, pooling layer, activation functions, and full connector (FC).

2.2.1	 Conv layer

	 This layer consists of several convolution kernels that extract different features from various
local areas of the input data, each neuron acting as a kernel with three-dimensional components
of length (L), width (W), and depth (D), where the depth of the output volume represents the

Fig. 1.	 (Color online) Preparation of dataset of manufacturing process.

Fig. 2.	 (Color online) Examples of wafer failure patterns in the labeling process.

3818	 Sensors and Materials, Vol. 37, No. 9 (2025)

number of filters. The number of channels in CNN layers enhances its feature extraction
capability but also raises computational complexity and cost. The resulting feature map, as
shown in Fig. 3, is produced through convolution operations, effectively capturing local spatial
patterns such as edges, corners, and textures within the input data.(17–20) The equation of
convolution can be expressed mathematically as

	 , , 1, 1, , , ,1 1 1 .in w hD k k
i j d i m j n c m n c d dc m nY X F b+ − + −= = =

= ⋅ +∑ ∑ ∑ 	 (1)

2.2.2	 Pooling layer

	 After generating feature maps, a pooling (down-sampling) layer is introduced to reduce
dimensionality while preserving essential information. Pooling functions, such as max pooling
and average pooling, operate by scanning over the input feature map and summarizing regions
by selecting key values. As shown in Fig. 4, this process simplifies data, reduces image
resolution, retains the number of filters, and lowers computational costs. Pooling also helps
decrease feature map size, minimize overfitting, and preserve critical information.(21)

2.2.3	 Activation functions

	 Activation functions are essential in neural networks as they introduce nonlinearity to enable
the learning of complex data patterns. They transform the weighted sum of a neuron’s inputs into
an output signal passed to the next layer. Without activation functions, neural networks would be
restricted to modeling only linear relationships. Nonlinear activation functions are widely used
as they allow neural networks to approximate any function and capture the nonlinear
relationships found in real-world data.(21,22) Below are some of the most widely used activation
functions.
1.	 Sigmoid Function: The input is in the range of 0–1, which is suitable for binary classification.

This transformation is calculated as

	 () 1 .
1 xf x

e−
=

+
	 (2)

2.	 Tanh Function: This function, centered on zero, outputs values between −1 and 1, offering
symmetric outputs and nonlinearity with faster convergence than the sigmoid function, but
still faces gradient diffusion issues. This transformation is calculated as

	 ()tanh .
x x

x x
e ex
e e

−

−
−

=
+

	 (3)

Table 1
Number of wafers for failure patterns in training and test datasets.

Vertical pattern Rectangle pattern Horizontal pattern Edge pattern
Train 335 281 301 288
Test 68 84 57 63

Sensors and Materials, Vol. 37, No. 9 (2025)	 3819

3.	 ReLU Function: This is a popular nonlinear function in CNN. The input will convert from a
value to 0 when x < 0 (negative input) and return to itself when x > 0 (positive input). The
performance is better than those of the sigmoid and tanh functions owing to computation
simplification. This transformation is calculated as

	 () ()max 0, .f x x= 	 (4)

2.2.4	 Full connector

	 Fully connected (FC) layers, also known as dense layers, are essential parts of CNN. Located
at the end of the network, their main job is to take the features extracted from the input data and
produce final predictions by providing probabilities for each class. For example, in a study that
classifies wafers into four patterns, the output layer would have four neurons, one for each
pattern.
	 After the CNN processes the data through Conv and pooling layers, it flattens the output into
a long vector. This vector is then fed into the FC layer, which helps capture important information
from the previous layers. This setup allows the FC layer to improve the model’s accuracy in
tasks such as multiclass image classification by converting complex features into clear class
probabilities.(23,24)

2.3	 PSO

	 PSO is a swarm-based optimization technique. The algorithm maintains two key positions
for each particle: the personal best position (PBest) and the global best position (GBest).(25,26) PBest

Fig. 3.	 (Color online) Convolution layer calculation using a visual map.

Fig. 4.	 (Color online) How pooling layers work.

3820	 Sensors and Materials, Vol. 37, No. 9 (2025)

represents the best solution that a particle has discovered so far on the basis of its own exploration
of the search space. GBest represents the best solution found by any particle in the entire swarm at
any given time during optimization. These candidate solutions are updated in accordance with
their fitness to the optimization problem. The algorithm begins with the initialization of a swarm
of particles, each randomly positioned within the search space and assigned a random velocity.
Following this, the fitness of each particle is evaluated using a defined objective function and
then its velocity and position are updated on the basis of its own best known position as well as
the best known position of the entire swarm. This collaborative approach allows particles to
adjust their movements toward the most promising areas of the search space. The process of
evaluation and update is iteratively repeated until a stopping criterion is met, such as reaching a
maximum number of iterations or achieving satisfactory convergence. The mathematics of the
movement of each PSO is defined as

	 () () () ()() () ()(){ }1 1 2 21 .i t i t Best t i t Best t i tv v c r P x c r G xω+ = ⋅ + ⋅ × − + ⋅ × − 	 (5)

Here, v is the velocity of particle i at time t, ω is the inertia weight of balance between the local
and global explorations, c1 and c2 are acceleration coefficients of the learning rate, r1 and r2 are
random numbers between 0 and 1, PBest is the personal best position of particle i, and GBest is the
global best position of the swarm. Each particle position is updated as

	 () () ()1 1 .i t i t i tx x v+ += + 	 (6)

	 In this study, we employed PSO to identify the optimal configuration of hyperparameters—
specifically, batch size, hidden size, and number of Conv layers to maximize model performance
on a test dataset. Experimental results demonstrated that the PSO-optimized hyperparameters
significantly enhance the performance of CNN models compared with baseline configurations.
This approach not only streamlines the hyperparameter tuning process but also provides
valuable insights into the relationship between model architecture and performance metrics. The
proposed research is focused on the three key hyperparameters of the model architecture shown
below and applies PSO to optimize them effectively.
1.	 Batch size: This is the number of training examples used in one iteration of the model.

Hwang et al.(27) provided a technique for determining the optimal batch size for DL models
applied to time series data with fast Fourier transform (FFT), suggesting that a systematic
approach can significantly enhance model accuracy and training efficiency.

2.	 Number of Conv layers: The Conv layer is a fundamental component of CNN and uses
filters (kernels) to scan over input images and detect features such as edges, textures, and
patterns.(28) The input is typically a multichanneled image (e.g., grayscale or RGB). The
convolution operation involves scanning a kernel (a small matrix with randomly initialized
weights) across the image, computing dot products at each position, and summing the results
to produce a feature map that highlights specific patterns. Stride and padding are crucial
factors that affect the feature map’s dimensions.(29)

Sensors and Materials, Vol. 37, No. 9 (2025)	 3821

3.	 Hidden size: The hidden size parameter in the FC layers of CNN determines the number of
features in the hidden state, affecting the model’s ability to learn patterns. A small hidden
size may lead to underfitting, whereas a large one increases the number of parameters,
raising computational costs and training time. Techniques such as dropout, which randomly
disables neurons to prevent overfitting, and pruning, which removes unnecessary
connections, can help balance model efficiency and resource management. This balance
enables the CNN to effectively learn complex patterns while remaining computationally
manageable.(29)

2.4	 Evaluation method

	 To evaluate the optimization model, an objective function is designed on the basis of the F1-
score, which serves as a measure of a classification model’s performance on imbalanced
datasets, as well as the complexity of the DL model.(30) The number of Conv layers in the neural
network is also considered in this evaluation. The F1-score ranges between 0 and 1, where a
value of 1 indicates perfect precision and recall, whereas a value of 0 signifies no precision.(31)
By effectively accounting for both precision and recall, the F1-score provides a balanced
assessment of the model’s ability to classify instances accurately. The calculation methodology is

	 1- 2 .Precision RecallF score
Precision Recall

× = × + 
	 (7)

	 The precision and recall of the model can be calculated using Eqs. (8) and (9), respectively,
where TP = true positives (correctly predicted positive cases), TN = true negatives (correctly
predicted negative cases), FP = false positives (incorrectly predicted positive cases), and FN =
false negatives (incorrectly predicted negative cases).

	 ()
()

TP

Recall
TP FN

=
+

	 (8)

	 ()
()

TP
Precision

TP FP
=

+
	 (9)

	 The PSO objective is calculated using two factors, namely, model performance (F1-score)
and model complexity, based on the number Conv and hidden layers from Eqs. (10) and (11),
respectively. These two components are combined in Eq. (12), with all parameters normalized to
a 0–1 scale to ensure fair comparison despite differing value ranges. This ensures that each
contributes equally to the overall complexity metric.

	 C = Number of Conv layers from PSO searching space
	 H = Number of hidden size from PSO searching space
	 Cmin, Cmax: Lower, upper bounds of Conv layer in PSO searching space
	 Hmin, Hmax: Lower, upper bounds of hidden size in PSO searching space

3822	 Sensors and Materials, Vol. 37, No. 9 (2025)

	 min
norm

max min

C CC
C C

−
=

−
	 (10)

	 min
norm

max min

H HH
H H

−
=

−
	 (11)

	
2

norm normC HComplexity matrixof model +
= 	 (12)

	 An equation that combines the following two important evaluation criteria is created: the
performance of the model represented by the F1-score in Eq. (7) and the complexity matrix of
the model in Eq. (12). The objective function value can be determined as

	
1:

 Objective
FPSO

Complexity matrixof model
	 (13)

	 To make the results easier to understand, the values from the objective function are
normalized to a scale of [0, 1]. On this scale, a value of 1 indicates that the model is performing
at its best while keeping complexity to a minimum. This approach allows us to effectively
evaluate and optimize the model’s performance while considering its complexity.

2.5	 Methodology

	 In the context of the CNN model, Fig. 5 shows the CNN architecture in this study. Conv
layers, with the number determined by the PSO-optimized architecture, extract fundamental
features such as edges and textures. The pooling layer reduces dimensionality, and the data then
flows through three FC layers. The FC1 layer takes the flattened input with the number of
neurons defined by the PSO-optimized hidden size. The FC2 layer further transforms the

Fig. 5.	 (Color online) Structure of CNN applied to wafer clustering.

Sensors and Materials, Vol. 37, No. 9 (2025)	 3823

representation with additional neurons, while the FC3 layer produces the final classification
results with neurons corresponding to the number of classes (e.g., four for wafer pattern
classification).
	 To optimize the model using PSO, initial particles are placed within the search space as
potential solutions. Key parameters, essential for the PSO algorithm’s performance, must be set
accordingly.
•	 	Cognitive coefficient (c1) = 2
•	 	Social parameter (c2) = 2
•	 	 Inertia weight (ω) = 0.9
	 Table 2 provides a step-by-step guide for using PSO to optimize the hyperparameters of DL
models, which is our purpose. This process helps us find the best settings to improve the model’s
performance while minimizing the complexity of the model.
	 The optimization process is repeated for 10 iterations (n_iter = 10) with 10 starting points
(particles) (n_par = 10). Each model undergoes training for 20 epochs. For each particle, the
model’s hyperparameters, such as batch size, hidden size, and the number of Conv layers, are
randomly generated within specified lower and upper bounds. The variable bounds for these
hyperparameters were set as follows: batch size in [30, 200], hidden size in [20, 200], and the
number of Conv layers in [1, 5]. Each particle was initialized with random values uniformly
sampled within these bounds. After training, the model is evaluated on a test dataset to calculate
the objective function, as described by Eq. (13). The best objective function (PBest) achieved for
each particle is updated, and the global best (GBest) across all iterations is determined.
	 The process is continued by updating the velocity and position of each particle based on the
PSO Eqs. (5) and (6), which incorporates the PBest and GBest values. This step guides the particles
toward regions of the search space with better objective function values. The optimization

Table 2
PSO pseudo-code algorithm.
Input: n_iter, n_par, Upper, lower bounds of batch size, hidden size, number of layers.
Output: Best Objective function(13)

Start
Initial swarm parameters [c1, c2, ω]
Set GBest = 0, PBest = 0
While < n_iter:
	 While < n_par:
		 PSO Generate batch size, hidden size, Conv layers
			 While < Epoch:
				 Train model in and update hyperparameters
				 Evaluate model on testing data (Calculate Cost)
				 If Current cost >= PBest:
					 PBest = Current cost
				 End If
			 End While
	 If PBest >= GBest:
		 GBest = PBest
	 End While
End While
Stop

3824	 Sensors and Materials, Vol. 37, No. 9 (2025)

continues until a stopping criterion is met, such as a maximum number of iterations or a target
objective function value. Finally, the model with the hyperparameters corresponding to GBest is
selected as the optimized model. By leveraging the PSO’s swarm intelligence, this approach
efficiently explores the hyperparameter space to find an optimal configuration, potentially
enhancing the model’s performance on the given task.

3.	 Results	
	
	 The initial parameters were set using the algorithm and model settings discussed in the
Methodology section, and PSO was implemented for the DL model. Figure 6 shows the
calculation of the objective function, as described by Eq. (13), for determining the PBest of each
particle at iteration 9.
	 The contour plot in Fig. 7 allows for an intuitive understanding of how variations in batch
size and hidden size impact the objective result of the PSO function. Observing the surface

Fig. 7.	 (Color online) Contour plot of batch size, hidden size, and objective result obtained by PSO.

Fig. 6.	 (Color online) Best PSO objective function determined by iteration.

Sensors and Materials, Vol. 37, No. 9 (2025)	 3825

formed by the red plotted points in the contour graph can help in the identification of optimal
configurations for batch size, hidden size, and the number of Conv layers that yield the best
performance of the PSO-optimized model. The optimal model configuration was found at the
PSO-determined position of (40, 67, 1), corresponding to a batch size of 40, a hidden size of 67,
and 1 Conv layer. This configuration yielded the best performance in this study. To validate the
effectiveness and stability of the selected hyperparameters, the experiment was repeated 10
times using the same settings. The results, summarized in Table 3, confirm consistent
performance. Figure 8 presents the statistical analysis of the F1-scores across these repeated
trials, demonstrating the reliability and reproducibility of the PSO-optimized configuration.
	 The proposed method was evaluated by comparing it with a traditional CNN without
hyperparameter tuning, as well as other state-of-the-art DL methods including GRU, ResNet,
VGG16, RNN, and Autoencoder. All models were trained using the same dataset, input size,
number of training epochs (20), optimization algorithm (Adam Optimizer), and learning rate
(0.001), as shown in Table 4. All experiments were performed on a workstation equipped with an
NVIDIA RTX 4000 Ada Generation. The results indicate that the proposed method achieves the
lowest computational complexity among all the models, as evidenced by both the training time
and prediction processing time on 40 samples, as shown in Table 4, but also shows maximum
performance represented by the F1-score result.

Fig. 8.	 (Color online) Summarized statistical analysis of results obtained from repeated experiments.

Table 3
Results of repeated experiment based on PSO objective function.
Experiment no. PSO objective result F1-score Precision Recall
1 0.99 0.99 0.99 0.99
2 0.982 0.984 0.982 0.982
3 0.997 0.997 0.997 0.997
4 0.99 0.99 0.99 0.99
5 0.996 0.996 0.996 0.996
6 0.998 0.998 0.998 0.998
7 0.959 0.963 0.957 0.959
8 0.987 0.987 0.988 0.987
9 0.978 0.978 0.979 0.978

10 0.997 0.997 0.997 0.997

3826	 Sensors and Materials, Vol. 37, No. 9 (2025)

4.	 Conclusions

	 PSO is an effective method for identifying the optimal settings for DL models and enhances
their performance while reducing training time and complexity. PSO not only reduces training
time but also maintains model performance by effectively tuning hyperparameters such as batch
size and hidden size. This capability is particularly beneficial in factory settings where
computational resources may be limited and the rapid deployment of new systems is essential.
This reduction in complexity helps lower the costs associated with implementing parameters in
classification models before transitioning to production, which is crucial for businesses.
	 The wafer clustering model offers significant advantages in enhancing the process
performance of hard disk manufacturing. By leveraging advanced algorithms to analyze and
classify wafer data, engineers can effectively monitor wafer processing stages in real time. This
proactive approach enables the early detection of anomalies during and after the production
process, allowing for timely interventions that can prevent potential issues during production.
Moreover, adopting such intelligent systems not only improves operational efficiency but also
transforms traditional practices. For example, by automating the inspection process, reliance on
manual visual assessments is significantly reduced. This shift minimizes human error and
streamlines workflows, allowing engineers to focus on more critical tasks requiring their
expertise. In summary, integrating wafer clustering models enhances performance metrics and
fosters a smarter, more efficient manufacturing environment.

Acknowledgments

	 This research was made possible through funding received from the School of Engineering,
King Mongkut's Institute of Technology Ladkrabang for industrial purposes (Grant number
KREF016328).

References

	 1	 C. Xanthopoulos, P. Sarson, H. Reiter, Y. Makris: IEEE Int. Test Conf. (2017) 1. https://doi.org/10.1109/
TEST.2017.8242040

	 2	 S. H. Huang and Y. C. Pan: Comput. Ind. 66 (2015) 1. https://doi.org/10.1016/j.compind.2014.10.006
	 3	 E. Shin and C. D. Yoo: Sensors 23 (2023) 1926. https://doi.org/10.3390/s23041926
	 4	 T. Nakazawa and V. K. Deepak: IEEE Trans. Semicond. Manuf. 32 (2019) 250. https://doi.org/10.1109/

TSM.2019.2897690

Table 4
Performance characteristics of proposed and traditional deep learning methods.
Model Training time (s) Processing time (ms) F1-score Precision Recall
Proposed method 80 16.840 0.988 0.988 0.966
Traditional CNN 408 31.256 0.83 0.832 0.849
GRU 109 27.800 0.687 0.677 0.743
RNN 171 294.04 0.692 0.677 0.750
VGG16 1313 93.800 0.364 0.278 0.527
RestNet 4845 191.602 0.762 0.791 0.762
Auto Encoder 441 728.400 0.853 0.995 0.746

https://doi.org/10.1109/TEST.2017.8242040
https://doi.org/10.1109/TEST.2017.8242040
https://doi.org/10.1016/j.compind.2014.10.006
https://doi.org/10.3390/s23041926
https://doi.org/10.1109/TSM.2019.2897690
https://doi.org/10.1109/TSM.2019.2897690

Sensors and Materials, Vol. 37, No. 9 (2025)	 3827

	 5	 J. Shim, S. Kang, and S. Cho: Expert Syst. Appl. 183 (2021) 115429. https://doi.org/10.1016/j.eswa.2021.115429
	 6	 D. Kim and P. Kang: IEEE Trans. Semicond. Manuf. 34 (2021) 444. https://doi.org/10.1109/TSM.2021.3107720
	 7	 S. Kaitwanidvilai, C. Sittisombut, Y. Huang, and S. Bom: Processes 13 (2025) 962. https://doi.org/10.3390/

pr13040962
	 8	 N. Rungtalay and S. Kaitwanidvilai: Sens. Mater. 36 (2024) 1487. https://doi.org/10.18494/SAM5036
	 9	 E. Oluwasakin, T. Torku, S. Tingting, A. Yinusa, S. Hamdan, S. Poudel, N. Hasan, J. Vargas, and K. Poudel:

Mach. Learn. Appl. 13 (2023) 100483. https://doi.org/10.1016/j.mlwa.2023.100483
	10	 B. Shah and H. Bhavsar: Procedia Comput. Sci. 215 (2022) 202. https://doi.org/10.1016/j.procs.2022.12.023
	11	 G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. W. M. van der Laak, B. van

Ginneken, and C. I. Sánchez: Med. Image Anal. 42 (2017) 60. https://doi.org/10.1016/j.media.2017.07.005
	12	 A. Paleyes, R. G. Urma, and N. D. Lawrence: ACM Comput. Surv. 55 (2022) 29. https://doi.org/10.1145/3533378
	13	 G. Menghani: ACM Comput. Surv. 55 (2023) 37. https://doi.org/10.48550/arXiv.2106.08962
	14	 A. Devarakonda, M. Naumov, and M. Garland: arXiv:1712.02029 (2017). https://doi.org/10.48550/

arXiv.1712.02029 (accessed August 2024).
	15	 M. M. Taye: Computers 12 (2023) 91. https://doi.org/10.3390/computers12050091
	16	 N. Sharma, V. Jain, and A. Mishra: Procedia Comput. Sci. 132 (2018) 377. https://doi.org/10.1016/j.

procs.2018.05.198
	17	 A. Krizhevsky, I. Sutskever, and G. E. Hinton: Commun. ACM 60 (2017) 84. https://doi.org/10.1145/3065386
	18	 J. Liu and Y. Jin: J. Autom. Intell. 2 (2023) 175. https://doi.org/10.1016/j.jai.2023.10.002
	19	 X. Zhao, L. Wang, Y. Zhang, X. Han, M. Deveci, and M. Parmar: Artif. Intell. Rev. 99 (2024) 99. https://doi.

org/10.1007/s10462-024-10721-6
	20	 C. L. Yang, Z. X. Chen, and C. Y. Yang: Sensors 20 (2020) 168. https://doi.org/10.3390/s20010168
	21	 M. M. Taye: Computation 11 (2023) 52. https://doi.org/10.3390/computation11030052
	22	 Y. Wang, Y. Li , Y. Song, and X. Rong: Appl. Sci , 10 (2020) 1897. https://doi.org/10.3390/app10051897
	23	 S. H. S. Basha, S. R. Dubey, V. Pulabaigari, and S. Mukherjee: Neurocomputing 378 (2020) 112. https://doi.

org/10.1016/j.neucom.2019.10.008
	24	 T. N. Sainath, A. R. Mohamed, B. Kingsbury, and B. Ramabhadran: 2013 IEEE Int. Conf. Acoustics, Speech

and Signal Processing (2013) 8614. https://doi.org/10.1109/ICASSP.2013.6639347
	25	 Y.-L. Chen, N.-C. Wang, M.-Y. Chen, Y.-F. Huang, and Y.-N. Shih: Sens. Mater. 26 (2014) 325. https://doi.

org/10.18494/SAM.2014.992
	26	 W. Kanjanapruthipong, P. Prasitmeeboon, and P. Konghuayrob: Sens. Mater. 36 (2024) 1377. https://doi.

org/10.18494/SAM4825
	27	 J. S. Hwang, L. S. Soo, G. J. Won, and L. C. Ki: Sustainability 16 (2024) 5936. https://doi.org/10.3390/

su16145936
	28	 Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner: Proc. IEEE 86 (1998) 2278. https://doi.org/10.1109/5.726791
	29	 L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, J. Santamaría, M. A. Fadhel, M.

Al-Amidie, and L. Farhan: J. Big Data 8 (2021) 53. https://doi.org/10.1186/s40537-021-00444-8
	30	 T. Tziolas, T. Theodosiou, K. Papageorgiou, A. Rapti, N. Dimitriou, and D. Tzovaras: 2022 13th Int. Conf.

Information, Intelligence, Systems & Applications (IISA) (2022) 1–8, https://doi.org/10.1109/
IISA56318.2022.9904402

	31	 A. Alzammam, H. Binsalleeh, B. AsSadhan, K. G. Kyriakopoulos, and S. Lambotharan: 2019 Int. Conf.
Advances in the Emerging Computing Technologies (AECT) (2020) 1–6. https://doi.org/10.1109/
AECT47998.2020.9194155

https://doi.org/10.1016/j.eswa.2021.115429
https://doi.org/10.1109/TSM.2021.3107720
https://doi.org/10.3390/pr13040962
https://doi.org/10.3390/pr13040962
https://doi.org/10.18494/SAM5036
https://doi.org/10.1016/j.mlwa.2023.100483
https://doi.org/10.1016/j.procs.2022.12.023
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1145/3533378
https://doi.org/10.48550/arXiv.2106.08962
https://doi.org/10.48550/arXiv.1712.02029
https://doi.org/10.48550/arXiv.1712.02029
https://doi.org/10.3390/computers12050091
https://doi.org/10.1016/j.procs.2018.05.198
https://doi.org/10.1016/j.procs.2018.05.198
https://doi.org/10.1145/3065386
https://doi.org/10.1016/j.jai.2023.10.002
https://doi.org/10.1007/s10462-024-10721-6
https://doi.org/10.1007/s10462-024-10721-6
https://doi.org/10.3390/s20010168
https://doi.org/10.3390/computation11030052
https://doi.org/10.3390/app10051897
https://doi.org/10.1016/j.neucom.2019.10.008
https://doi.org/10.1016/j.neucom.2019.10.008
https://doi.org/10.1109/ICASSP.2013.6639347
https://doi.org/10.18494/SAM.2014.992
https://doi.org/10.18494/SAM.2014.992
https://doi.org/10.18494/SAM4825
https://doi.org/10.18494/SAM4825
https://doi.org/10.3390/su16145936
https://doi.org/10.3390/su16145936
https://doi.org/10.1109/5.726791
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1109/IISA56318.2022.9904402
https://doi.org/10.1109/IISA56318.2022.9904402
https://doi.org/10.1109/AECT47998.2020.9194155
https://doi.org/10.1109/AECT47998.2020.9194155

