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	 In this study, we examine the application of convolutional neural networks (CNNs) for wafer 
pattern classification, with a focus on enhancing training efficiency and model performance. To 
achieve this, particle swarm optimization (PSO) is employed to improve the model performance 
while reducing its complexity, a critical factor in production environments. By minimizing the 
number of layers, the proposed method accelerates training, reduces resource consumption, and 
enhances defect detection accuracy. Wafer failure patterns are classified into four categories: 
vertical, rectangular, edge, and horizontal. The approach achieves an impressive F1-score of 
0.988, significantly surpassing the traditional CNN’s score of 0.83. By integrating PSO, the 
method considerably improves the visual inspection process for hard disk drives, contributing to 
high-quality production. This optimization not only streamlines workflows but also enables 
manufacturers to address issues more rapidly, aligning with Industry 4.0’s objectives of 
automation and intelligent monitoring.

1.	 Introduction

	 Wafers are essential materials for reader and writer components in hard disk manufacturing 
and undergo processes such as circuit fabrication, coating, cleaning, and polishing.(1) Engineers 
perform visual inspections to detect defects, such as contamination or anomalies, that can 
impact the performance of read and write operations in final devices. 
	 By incorporating AI and computer vision, automation streamlines wafer inspections, 
enhancing quality control and reducing manual tasks in manufacturing.(2) Researchers have 
developed various methods of  classifying wafer defects. Shin and Yoo used some compressed 
lightweight models such as EfficientNetV2, ShuffleNetV2, and MobileNetV3 to predict wafer 
map bin classification.(3) Nakazawa and Deepak(4) provided a technique for detecting and 
segmenting defect patterns using convolutional neural network (CNN) models such as fully 
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convolutional network, segmentation network, and U-shaped network. Unlike traditional 
methods, deep convolutional neural networks perform end-to-end training without intermediate 
steps, processing wafer map images to classify defects. For a more detailed analysis of 
parameters, such as the location, size, and orientation of defect clusters, engineers require 
segmented defect clusters, particularly during the early phases of technology development. Shim 
et al.(5) used CNN with active clusters and uncertain estimation patterns with high accuracy 
while reducing the cost of manual annotation by an engineer. Kim and Kang(6) used a self-
supervised learning-based dynamic wafer bin map clustering method, called the convolutional 
autoencoder method, which combines deep learning and pseudo-labeled data for obtaining 
dynamic patterns, offering robust, scalable clustering and improved defect pattern classification 
compared with benchmark models. Kaitwanidvilai et al.(7) introduced a parameter transfer 
learning (PTL) approach to improve virtual metrology (VM) by enabling knowledge transfer 
across factories and recipes, enhancing prediction accuracy and cutting retraining costs for 
adaptable wafer defect classification. Similarly, Rungtalay and Kaitwanidvilai(8) developed a 
dual-stage framework combining novelty detection and supervised learning to identify rare or 
unseen patterns in imbalanced data, addressing challenges of infrequent defects in evolving 
production. Both studies highlight adaptive, high-accuracy inspection methods suited for 
Industry 4.0 manufacturing. The analysis of large amounts of data collected from the production 
process and the results can help engineers make the right decision in classifying failure patterns. 
Implementing deep learning (DL) in production is challenging, particularly owing to issues 
related to high costs, long training times, and model complexity.(9,10) The computational 
resources in the training stage required for training large models can be expensive.(11,12) 
Focusing on the training periods further increases the operational cost because it is costly to 
train and deploy large DL models.(13)

	 The main objective of this study is to develop an optimization method by using particle 
swarm optimization (PSO) to fine-tune the key hypothesis of neural networks before setting 
parameter training in production. This research is focused on the training stage for wafer 
classification in the hard disk drive process, emphasizing the optimization of batch size, hidden 
size, and the number of convolutional (Conv) layers. The two primary objectives of the objective 
function approach are to achieve fitness functions to optimize model performance on the 
validated dataset and to reduce model complexity by minimizing the number of Conv layers, 
thereby striking a balance between the performance and complexity of the model.

2.	 Data, Materials, and Methods

2.1	 Dataset preparation

	 In this study, a dataset of 7000 wafers was utilized to represent potential defects and surface 
patterns, as shown in Fig. 1. After wafer manufacturing, the wafer is classified visually by an 
expert team. Following labeling, data preparation involved splitting the dataset into 5000 wafers 
(70%) for training and 2000 wafers (30%) for testing. The wafers were classified into the 
following four categories, as shown in Fig. 2, on the basis of surface features: vertical pattern 
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(distinct vertical lines indicating specific processes), horizontal pattern (prominent horizontal 
lines suggesting alignment issues), edge pattern (defects primarily at wafer edges; crucial for 
quality control), and rectangle pattern (rectangular shapes indicating design features or defects). 
Table 1 illustrates the number of defective wafers for each failure pattern as applied to this 
research.

2.2	 CNN

	 CNN is a popular DL model widely used for image classification and computer vision. It 
excels in tasks such as object detection, image classification, and segmentation, making it 
essential for real-time video analysis.(14–16) The architecture design concept of CNN includes 
four types of layers: Conv layer, pooling layer, activation functions, and full connector (FC). 

2.2.1	 Conv layer

	 This layer consists of several convolution kernels that extract different features from various 
local areas of the input data, each neuron acting as a kernel with three-dimensional components 
of length (L), width (W), and depth (D), where the depth of the output volume represents the 

Fig. 1.	 (Color online) Preparation of dataset of manufacturing process.

Fig. 2.	 (Color online) Examples of wafer failure patterns in the labeling process.
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number of filters. The number of channels in CNN layers enhances its feature extraction 
capability but also raises computational complexity and cost. The resulting feature map, as 
shown in Fig. 3, is produced through convolution operations, effectively capturing local spatial 
patterns such as edges, corners, and textures within the input data.(17–20) The equation of 
convolution can be expressed mathematically as 

	 , , 1, 1, , , ,1 1 1 .in w hD k k
i j d i m j n c m n c d dc m nY X F b+ − + −= = =

= ⋅ +∑ ∑ ∑ 	 (1)

2.2.2	 Pooling layer

	 After generating feature maps, a pooling (down-sampling) layer is introduced to reduce 
dimensionality while preserving essential information. Pooling functions, such as max pooling 
and average pooling, operate by scanning over the input feature map and summarizing regions 
by selecting key values. As shown in Fig. 4, this process simplifies data, reduces image 
resolution, retains the number of filters, and lowers computational costs. Pooling also helps 
decrease feature map size, minimize overfitting, and preserve critical information.(21)

2.2.3	 Activation functions

	 Activation functions are essential in neural networks as they introduce nonlinearity to enable 
the learning of complex data patterns. They transform the weighted sum of a neuron’s inputs into 
an output signal passed to the next layer. Without activation functions, neural networks would be 
restricted to modeling only linear relationships. Nonlinear activation functions are widely used 
as they allow neural networks to approximate any function and capture the nonlinear 
relationships found in real-world data.(21,22) Below are some of the most widely used activation 
functions.
1.	 Sigmoid Function: The input is in the range of 0–1, which is suitable for binary classification. 

This transformation is calculated as 

	 ( ) 1 .
1 xf x

e−
=

+
	 (2)

2.	 Tanh Function: This function, centered on zero, outputs values between −1 and 1, offering 
symmetric outputs and nonlinearity with faster convergence than the sigmoid function, but 
still faces gradient diffusion issues. This transformation is calculated as 

	 ( )tanh .
x x

x x
e ex
e e

−

−
−

=
+
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Table 1
Number of wafers for failure patterns in training and test datasets.

Vertical pattern Rectangle pattern Horizontal pattern Edge pattern
Train 335 281 301 288
Test 68 84 57 63
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3.	 ReLU Function: This is a popular nonlinear function in CNN. The input will convert from a 
value to 0 when x < 0 (negative input) and return to itself when x > 0 (positive input). The 
performance is better than those of the sigmoid and tanh functions owing to computation 
simplification. This transformation is calculated as 

	 ( ) ( )max 0, .f x x= 	 (4)

2.2.4	 Full connector

	 Fully connected (FC) layers, also known as dense layers, are essential parts of CNN. Located 
at the end of the network, their main job is to take the features extracted from the input data and 
produce final predictions by providing probabilities for each class. For example, in a study that 
classifies wafers into four patterns, the output layer would have four neurons, one for each 
pattern.
	 After the CNN processes the data through Conv and pooling layers, it flattens the output into 
a long vector. This vector is then fed into the FC layer, which helps capture important information 
from the previous layers. This setup allows the FC layer to improve the model’s accuracy in 
tasks such as multiclass image classification by converting complex features into clear class 
probabilities.(23,24)

2.3	 PSO

	 PSO is a swarm-based optimization technique. The algorithm maintains two key positions 
for each particle: the personal best position (PBest) and the global best position (GBest).(25,26) PBest 

Fig. 3.	 (Color online) Convolution layer calculation using a visual map.

Fig. 4.	 (Color online) How pooling layers work.
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represents the best solution that a particle has discovered so far on the basis of its own exploration 
of the search space. GBest represents the best solution found by any particle in the entire swarm at 
any given time during optimization. These candidate solutions are updated in accordance with 
their fitness to the optimization problem. The algorithm begins with the initialization of a swarm 
of particles, each randomly positioned within the search space and assigned a random velocity. 
Following this, the fitness of each particle is evaluated using a defined objective function and 
then its velocity and position are updated on the basis of its own best known position as well as 
the best known position of the entire swarm. This collaborative approach allows particles to 
adjust their movements toward the most promising areas of the search space. The process of 
evaluation and update is iteratively repeated until a stopping criterion is met, such as reaching a 
maximum number of iterations or achieving satisfactory convergence. The mathematics of the 
movement of each PSO is defined as

	 ( ) ( ) ( ) ( )( ) ( ) ( )( ){ }1 1 2 21 .i t i t Best t i t Best t i tv v c r P x c r G xω+ = ⋅ + ⋅ × − + ⋅ × − 	 (5)

Here, v is the velocity of particle i at time t, ω is the inertia weight of balance between the local 
and global explorations, c1 and c2 are acceleration coefficients of the learning rate, r1 and r2 are 
random numbers between 0 and 1, PBest is the personal best position of particle i, and GBest is the 
global best position of the swarm. Each particle position is updated as

	 ( ) ( ) ( )1 1 .i t i t i tx x v+ += + 	 (6)

	 In this study, we employed PSO to identify the optimal configuration of hyperparameters—
specifically, batch size, hidden size, and number of Conv layers to maximize model performance 
on a test dataset. Experimental results demonstrated that the PSO-optimized hyperparameters 
significantly enhance the performance of CNN models compared with baseline configurations. 
This approach not only streamlines the hyperparameter tuning process but also provides 
valuable insights into the relationship between model architecture and performance metrics. The 
proposed research is focused on the three key hyperparameters of the model architecture shown 
below and applies PSO to optimize them effectively.
1.	 Batch size: This is the number of training examples used in one iteration of the model. 

Hwang et al.(27) provided a technique for determining the optimal batch size for DL models 
applied to time series data with fast Fourier transform (FFT), suggesting that a systematic 
approach can significantly enhance model accuracy and training efficiency.

2.	 Number of Conv layers: The Conv layer is a fundamental component of CNN and uses 
filters (kernels) to scan over input images and detect features such as edges, textures, and 
patterns.(28) The input is typically a multichanneled image (e.g., grayscale or RGB). The 
convolution operation involves scanning a kernel (a small matrix with randomly initialized 
weights) across the image, computing dot products at each position, and summing the results 
to produce a feature map that highlights specific patterns. Stride and padding are crucial 
factors that affect the feature map’s dimensions.(29)
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3.	 Hidden size: The hidden size parameter in the FC layers of CNN determines the number of 
features in the hidden state, affecting the model’s ability to learn patterns. A small hidden 
size may lead to underfitting, whereas a large one increases the number of parameters, 
raising computational costs and training time. Techniques such as dropout, which randomly 
disables neurons to prevent overfitting, and pruning, which removes unnecessary 
connections, can help balance model efficiency and resource management. This balance 
enables the CNN to effectively learn complex patterns while remaining computationally 
manageable.(29)

2.4	 Evaluation method

	 To evaluate the optimization model, an objective function is designed on the basis of the F1-
score, which serves as a measure of a classification model’s performance on imbalanced 
datasets, as well as the complexity of the DL model.(30) The number of Conv layers in the neural 
network is also considered in this evaluation. The F1-score ranges between 0 and 1, where a 
value of 1 indicates perfect precision and recall, whereas a value of 0 signifies no precision.(31) 
By effectively accounting for both precision and recall, the F1-score provides a balanced 
assessment of the model’s ability to classify instances accurately. The calculation methodology is 

	 1- 2 .Precision RecallF score
Precision Recall

× = × + 
	 (7)

	 The precision and recall of the model can be calculated using Eqs. (8) and (9), respectively, 
where TP = true positives (correctly predicted positive cases), TN = true negatives (correctly 
predicted negative cases), FP = false positives (incorrectly predicted positive cases), and FN = 
false negatives (incorrectly predicted negative cases).

	 ( )
( )
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Recall
TP FN

=
+

	 (8)

	 ( )
( )

TP
Precision

TP FP
=

+
	 (9)

	 The PSO objective is calculated using two factors, namely, model performance (F1-score) 
and model complexity, based on the number Conv and hidden layers from Eqs. (10) and (11), 
respectively. These two components are combined in Eq. (12), with all parameters normalized to 
a 0–1 scale to ensure fair comparison despite differing value ranges. This ensures that each 
contributes equally to the overall complexity metric. 

	 C = Number of Conv layers from PSO searching space
	 H = Number of hidden size from PSO searching space
	 Cmin, Cmax: Lower, upper bounds of Conv layer in PSO searching space
	 Hmin, Hmax: Lower, upper bounds of hidden size in PSO searching space
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	 An equation that combines the following two important evaluation criteria is created:  the 
performance of the model represented by the F1-score in Eq. (7) and the complexity matrix of 
the model in Eq. (12). The objective function value can be determined as 

	
1:

   Objective
FPSO

Complexity matrixof model
	 (13)

	 To make the results easier to understand, the values from the objective function are 
normalized to a scale of [0, 1]. On this scale, a value of 1 indicates that the model is performing 
at its best while keeping complexity to a minimum. This approach allows us to effectively 
evaluate and optimize the model’s performance while considering its complexity.

2.5	 Methodology

	 In the context of the CNN model, Fig. 5 shows the CNN architecture in this study. Conv 
layers, with the number determined by the PSO-optimized architecture, extract fundamental 
features such as edges and textures. The pooling layer reduces dimensionality, and the data then 
flows through three FC layers. The FC1 layer takes the flattened input with the number of 
neurons defined by the PSO-optimized hidden size. The FC2 layer further transforms the 

Fig. 5.	 (Color online) Structure of CNN applied to wafer clustering.
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representation with additional neurons, while the FC3 layer produces the final classification 
results with neurons corresponding to the number of classes (e.g., four for wafer pattern 
classification).
	 To optimize the model using PSO, initial particles are placed within the search space as 
potential solutions. Key parameters, essential for the PSO algorithm’s performance, must be set 
accordingly.
•	 	Cognitive coefficient (c1) = 2
•	 	Social parameter (c2) = 2
•	 	 Inertia weight (ω) = 0.9
	 Table 2 provides a step-by-step guide for using PSO to optimize the hyperparameters of DL 
models, which is our purpose. This process helps us find the best settings to improve the model’s 
performance while minimizing the complexity of the model.
	 The optimization process is repeated for 10 iterations (n_iter = 10) with 10 starting points 
(particles) (n_par = 10). Each model undergoes training for 20 epochs. For each particle, the 
model’s hyperparameters, such as batch size, hidden size, and the number of Conv layers, are 
randomly generated within specified lower and upper bounds. The variable bounds for these 
hyperparameters were set as follows: batch size in [30, 200], hidden size in [20, 200], and the 
number of Conv layers in [1, 5]. Each particle was initialized with random values uniformly 
sampled within these bounds. After training, the model is evaluated on a test dataset to calculate 
the objective function, as described by Eq. (13). The best objective function (PBest) achieved for 
each particle is updated, and the global best (GBest) across all iterations is determined.
	 The process is continued by updating the velocity and position of each particle based on the 
PSO Eqs. (5) and (6), which incorporates the PBest and GBest values. This step guides the particles 
toward regions of the search space with better objective function values. The optimization 

Table 2
PSO pseudo-code algorithm.
Input: n_iter, n_par, Upper, lower bounds of batch size, hidden size, number of layers.
Output: Best Objective function(13)

Start
Initial swarm parameters [c1, c2, ω] 
Set GBest = 0, PBest = 0
While < n_iter:
	 While < n_par:
		  PSO Generate batch size, hidden size, Conv layers
			   While < Epoch:
				    Train model in and update hyperparameters          
				    Evaluate model on testing data (Calculate Cost)
				    If Current cost >= PBest:
					     PBest = Current cost
				    End If
			   End While
	 If PBest >= GBest:
		  GBest = PBest
	 End While
End While
Stop



3824	 Sensors and Materials, Vol. 37, No. 9 (2025)

continues until a stopping criterion is met, such as a maximum number of iterations or a target 
objective function value. Finally, the model with the hyperparameters corresponding to GBest is 
selected as the optimized model. By leveraging the PSO’s swarm intelligence, this approach 
efficiently explores the hyperparameter space to find an optimal configuration, potentially 
enhancing the model’s performance on the given task.

3.	 Results	
	
	 The initial parameters were set using the algorithm and model settings discussed in the 
Methodology section, and PSO was implemented for the DL model. Figure 6 shows the 
calculation of the objective function, as described by Eq. (13), for determining the PBest of each 
particle at iteration 9. 
	 The contour plot in Fig. 7 allows for an intuitive understanding of how variations in batch 
size and hidden size impact the objective result of the PSO function. Observing the surface 

Fig. 7.	 (Color online) Contour plot of batch size, hidden size, and objective result obtained by PSO.

Fig. 6.	 (Color online) Best PSO objective function determined by iteration.
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formed by the red plotted points in the contour graph can help in the identification of optimal 
configurations for batch size, hidden size, and the number of Conv layers that yield the best 
performance of the PSO-optimized model. The optimal model configuration was found at the 
PSO-determined position of (40, 67, 1), corresponding to a batch size of 40, a hidden size of 67, 
and 1 Conv layer. This configuration yielded the best performance in this study. To validate the 
effectiveness and stability of the selected hyperparameters, the experiment was repeated 10 
times using the same settings. The results, summarized in Table 3, confirm consistent 
performance. Figure 8 presents the statistical analysis of the F1-scores across these repeated 
trials, demonstrating the reliability and reproducibility of the PSO-optimized configuration. 
	 The proposed method was evaluated by comparing it with a traditional CNN without 
hyperparameter tuning, as well as other state-of-the-art DL methods including GRU, ResNet, 
VGG16, RNN, and Autoencoder. All models were trained using the same dataset, input size, 
number of training epochs (20), optimization algorithm (Adam Optimizer), and learning rate 
(0.001), as shown in Table 4. All experiments were performed on a workstation equipped with an 
NVIDIA RTX 4000 Ada Generation. The results indicate that the proposed method achieves the 
lowest computational complexity among all the models, as evidenced by both the training time 
and prediction processing time on 40 samples, as shown in Table 4, but also shows maximum 
performance represented by the F1-score result.

Fig. 8.	 (Color online) Summarized statistical analysis of results obtained from repeated experiments.

Table 3
Results of repeated experiment based on PSO objective function.
Experiment no. PSO objective result F1-score Precision Recall
1 0.99 0.99 0.99 0.99
2 0.982 0.984 0.982 0.982
3 0.997 0.997 0.997 0.997
4 0.99 0.99 0.99 0.99
5 0.996 0.996 0.996 0.996
6 0.998 0.998 0.998 0.998
7 0.959 0.963 0.957 0.959
8 0.987 0.987 0.988 0.987
9 0.978 0.978 0.979 0.978

10 0.997 0.997 0.997 0.997
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4.	 Conclusions

	 PSO is an effective method for identifying the optimal settings for DL models and enhances 
their performance while reducing training time and complexity. PSO not only reduces training 
time but also maintains model performance by effectively tuning hyperparameters such as batch 
size and hidden size. This capability is particularly beneficial in factory settings where 
computational resources may be limited and the rapid deployment of new systems is essential. 
This reduction in complexity helps lower the costs associated with implementing parameters in 
classification models before transitioning to production, which is crucial for businesses. 
	 The wafer clustering model offers significant advantages in enhancing the process 
performance of hard disk manufacturing. By leveraging advanced algorithms to analyze and 
classify wafer data, engineers can effectively monitor wafer processing stages in real time. This 
proactive approach enables the early detection of anomalies during and after the production 
process, allowing for timely interventions that can prevent potential issues during production. 
Moreover, adopting such intelligent systems not only improves operational efficiency but also 
transforms traditional practices. For example, by automating the inspection process, reliance on 
manual visual assessments is significantly reduced. This shift minimizes human error and 
streamlines workflows, allowing engineers to focus on more critical tasks requiring their 
expertise. In summary, integrating wafer clustering models enhances performance metrics and 
fosters a smarter, more efficient manufacturing environment.
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