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	 In this study, we introduce an innovative frequency-area-weighted sampling method to 
address spatial and temporal biases in flood inventory creation. Focusing on Thailand’s Nan 
River Basin, we integrated 13 flood conditioning factors and developed a point-based inventory 
that includes 3000 flood and 3000 non-flood samples, proportionally allocated on the basis of 
flood recurrence intervals and spatial distribution. We evaluated four machine learning 
models—artificial neural network, support vector machine, K-nearest neighbors, and random 
forest (RF) models—to assess their performance in flood susceptibility mapping (FSM). Among 
these, the RF model demonstrated the highest predictive capability, achieving an area under the 
curve (AUC) of 0.979 for the test set and an AUC of 0.984 for the verification set. The resulting 
susceptibility map identified 10.64% of the study area as “very high” risk, providing critical 
insights for prioritizing flood mitigation efforts. This work advances FSM methodology by 
effectively bridging the temporal flood frequency and spatial heterogeneity in inventory design, 
offering a robust framework for data-driven flood risk management in vulnerable regions.

1.	 Introduction

	 Floods rank among the most devastating natural disasters, causing catastrophic economic 
losses, infrastructure damage, and threats to human safety.(1,2) Predicting flood risks is thus 
critical to ensuring the resilience of communities in flood-prone areas. Flood susceptibility 
mapping (FSM) has become an essential tool for assessing and mitigating these risks, providing 
decision-makers with critical information to design effective flood management strategies and 
allocating resources efficiently.(3,4) FSM helps identify areas that are more likely to be affected 
by floods, which is crucial for disaster preparedness, urban planning, and environmental 
conservation.
	 The Nan River Basin in Northern Thailand faces significant flood risks, impacting both 
human settlements and agriculture. Studies such as those by Tingsanchali and Promping(5) and 
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Amnatsan et al.(6) highlight increasing flood risk with longer return periods, especially in urban 
areas like Nan City. Nusit et al.(7) emphasized the vulnerability of Phitsanulok City owing to its 
high population density and economic activities. However, most research has focused on 
smaller-scale areas without new techniques such as machine learning (ML) methods that focus 
on basin-wide scales. These gaps underscore the need for comprehensive flood risk evaluations 
to guide large-scale mitigation efforts. 
	 Traditionally, FSM has relied on multi-criteria decision analysis (MCDA) and statistical 
methods to assess flood risk. While these approaches are widely used, they have limitations. 
MCDA often requires subjective weighting of criteria, which introduces bias, while statistical 
methods may not fully account for the complex spatial and temporal patterns of flooding.(3) In 
recent years, ML techniques have emerged as powerful alternatives that offer the ability to 
model flood susceptibility more accurately by recognizing patterns in large and complex 
datasets. Prominent ML algorithms used in FSM include artificial neural networks (ANNs),(8) 
support vector machines (SVMs),(9) K-nearest neighbors (KNNs),(10) and random forests 
(RFs).(11) Unlike conventional methods, ML algorithms can capture nonlinear relationships and 
handle high-dimensional data without requiring prior assumptions about underlying 
processes.(12)

	 However, the accuracy and reliability of ML-based FSM models are heavily dependent on the 
quality and representativeness of flood inventory data. Panyadee and Champrasert(13) stressed 
that flood hazard maps are often accurate only for specific periods and may become outdated, 
emphasizing the unpredictable nature of disasters and the necessity for real-time data to ensure 
accurate and responsible disaster predictions. Incorporating multiyear flood data can mitigate 
these temporal biases, capturing variations and trends over time and thereby enhancing the 
robustness of FSM models. 
	 The objective of this study is to develop a reliable flood susceptibility map for the Nan River 
Basin in Northern Thailand using ML techniques. A key innovation is the proposed frequency-
area-weighted sampling method, wherein sampling weights are quantified through a joint metric 
of flood recurrence intervals and their spatial extents, which addresses the under-representation 
of heterogeneous flood patterns. We compare four ML models—ANN, SVM, KNN, and RF—
to evaluate their performances for FSM in the study area.

2.	 Study Area

	 The Nan River Basin (Fig. 1) in northern Thailand spans approximately 34269 km2 and 
features a mix of mountainous terrains and river floodplains. The Nan River, the basin’s main 
watercourse, extends about 770 km and plays a crucial role in the region’s hydrology. Because of 
its topography and seasonal rainfall patterns, the basin is prone to flood risks, particularly 
during the rainy season. Nan River’s high flow variability, coupled with rapid urbanization and 
agricultural activities, increases the area’s vulnerability to flood events.(14,15) Historical records 
indicate that the basin has faced recurring floods, notably in 2006 and 2011, resulting in 
substantial damage and casualties.(5) These events underscore the importance of effective flood 
risk management strategies for sustainable development and disaster prevention.
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3.	 Methodology

	 As shown in Fig. 2, the methodology used in the current study can be divided into data 
acquisition and preprocessing, data processing, ML modeling, and evaluation. 

3.1	 Data acquisition and preprocessing

	 This phase involves flood inventory and flood conditioning factor (FCF) data acquisition and 
preprocessing. The historical flood data was obtained from the Geo-Informatics and Space 
Technology Development Agency (GISTDA) of Thailand, which covers a period of 17 years 
from 2006 to 2022 in polygon format. To construct a point-based inventory dataset, as shown in 
Fig. 3, we allocate 3000 flood [Fig. 3(a)] and 3000 non-flood [Fig. 3(b)] samples proportionally 
on the basis of yearly flood recurrence and their spatial extents. The number of samples for each 
flood event (Ni) was determined using Eq. (1).

	 3000
( )
i i
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i i

F AN
F A
×

= ×
×∑

,	 (1)

where Fi denotes the recurrence interval and Ai represents the spatial extent of the ith flood 
event. This method ensures that events involving larger areas and more frequent occurrences are 

Fig. 1.	 (Color online) Study area.
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adequately represented in the sample set. Non-flood samples were randomly selected from areas 
not affected by recorded flood events, ensuring a balanced representation of both flood-prone 
and non-flood-prone zones within the basin.
	 Selecting appropriate FCFs is crucial for enhancing flood prediction accuracy. In the 
literature, these factors are categorized into topographic, hydrological, climatic, and 

Fig. 2.	 (Color online) Methodology workflow.

Fi Ai (km2) Ni
0 29047.42 3000
1 1628.44 215
2 1048.74 277
3 766.00 304
4 585.01 309
5 437.62 289
6 310.32 246
7 213.09 197
8 149.94 159
9 112.18 133
10 90.04 119
11 86.72 126
12 116.31 185
13 92.27 159
14 151.76 282

Fig. 3.	 (Color online) Sampled 3000 flooded (a) and 3000 non-flood (b) point inventory.

(a) (b)
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anthropogenic groups.(16) The relevance of specific FCFs varies depending on the watershed 
characteristics, making their careful selection vital for effective flood modeling.(11) In this study, 
we selected 13 commonly used FCFs: elevation, slope, aspect, curvature, precipitation, land use/
land cover (LULC), normalized difference vegetation index (NDVI), topographic wetness index 
(TWI), stream power index (SPI), river density, distance from river, soil permeability, and 
lithology. 
	 The topographic factors—elevation, slope, aspect, curvature, TWI, and SPI—were derived 
from the Shuttle Radar Topography Mission (SRTM) DEM with a 30-meter resolution, available 
from the U.S. Geological Survey (USGS) EarthExplorer. The NDVI was generated using 
Landsat 8 OLI/TIRS Level-2 data, also accessible via the USGS EarthExplorer. Soil permeability 
data from 2018 and LULC data from 2021 were obtained from Thailand’s Land Development 
Department (LDD). Average annual precipitation data for 1981–2022 was sourced from the Thai 
Meteorological Department. Distance from rivers and river density were calculated using river 
network data from 2017, provided by the Water Analysis and Assessment Division of Thailand’s 
Department of Water Resources (DWR). Lithology data was sourced from the Generalized 
Geology of Southeast Asia dataset provided by the USGS.

3.2	 Data processing

	 The flood inventory data was divided into training and validation sets, with 70% of the data 
randomly selected for training and the remaining 30% reserved for validation. The training set 
was further split, allocating 80% for subtraining and 20% as a test set. The test set was used 
during model training to assess performance and prevent overfitting, while the validation set 
was used to evaluate the model’s generalization capability. All FCF data were standardized into 
a 30-meter raster format. To ensure the reliability of the model, we assessed the FCFs for 
multicollinearity using Pearson’s correlation coefficients and variance inflation factor (VIF) 
methods. No multicollinearity issues were detected among the FCFs in this study.

3.3	 ML modeling

	 This phase involves ANN, SVM, KNN, and RF modeling with 10-fold cross-validation (10-
fold CV). The 70% flood inventory training dataset was used to train the following models.
•	� ANNs are ML models, inspired by the human brain, consisting of an input layer, one or more 

hidden layers, and an output layer. They process data through interconnected neurons with 
weighted connections, which are adjusted during training to minimize errors. ANNs are 
highly effective for modeling complex, nonlinear relationships, making them suitable for 
applications in, for example, FSM. They outperform many traditional statistical methods by 
capturing intricate patterns in data. Despite challenges like sensitivity to training data and 
limitations in extrapolating predictions, ANNs remain powerful tools for classification and 
regression tasks owing to their adaptability and ability to handle large datasets.(17–19)

•	� SVMs are supervised learning algorithms widely applied in FSM for classification and 
regression tasks. They find the optimal hyperplane that maximizes the margin of separation 
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between two classes. Using kernel functions, an SVM transforms nonlinear data into a 
higher-dimensional feature space, allowing for linear separation of complex patterns. Support 
vectors, the critical data points near the hyperplane, play a key role in determining the 
position and orientation of the hyperplane in SVM models. SVMs’ ability to handle nonlinear 
relationships and achieve accurate classification makes them a reliable tool for flood 
susceptibility analysis and other predictive modeling tasks.(19,20)

•	� KNNs are simple, nonparametric algorithms used for supervised classification and 
regression. They operate on the principle that similar items are located near each other in 
space. In KNNs, the training phase involves storing the data without making assumptions; 
thus, they are referred to as “lazy learners”. When classifying a new instance, KNNs are 
found on the basis of the Euclidean distance and assigned a class label through majority 
voting. A KNN model’s performance depends on the choice of k and the search range, which 
directly influences the prediction results. It is widely used for classification tasks because of 
its simplicity and effectiveness.(21,22)

•	� RFs are ensemble ML algorithms widely used for supervised learning tasks like FSM. They 
combine two key techniques: bagging, which generates multiple predictors through 
bootstrapping and averages their predictions, and random feature selection, where a subset of 
features is chosen for each decision tree. An RF model builds multiple trees and uses majority 
voting for final predictions. It is effective for handling large datasets, missing values, and 
complex relationships. It uses k-fold cross-validation to tune hyperparameters such as the 
number of estimators and tree depth.(18,19)

3.4	 Evaluation

	 In this phase, widely adopted and comprehensive statistical metrics, including AUC, 
accuracy, precision, F1 score, sensitivity, specificity, and kappa, were selected to evaluate the 
validity and performance of the models with the 30% verification flood inventory dataset. The 
results for the four models were compared to assess their performance.

4.	 Results and Discussion

	 The performances of four ML models—ANN, SVM, KNN, and RF—were evaluated in 
terms of their predictive ability for FSM. The results, as shown in Fig. 4 and Table 1, highlight 
the strengths and weaknesses of each model on the basis of various performance metrics and 
their ability to classify susceptibility levels.
	 Figure 4 shows the ROC curves for the ANN, SVM, KNN, and RF models on both the test 
and verification datasets. The RF model performed the best with an AUC of 0.979, followed by 
SVM (0.970), KNN (0.955), and ANN (0.951). On the verification dataset, RF again 
outperformed the others with an AUC of 0.984, closely followed by SVM (0.977). ANN and 
KNN showed AUC values of 0.965 and 0.958, respectively. Overall, RF consistently 
demonstrated the highest performance across both datasets, with SVM showing good results as 
well.
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	 Table 1 summarizes the performance metrics of the ANN, SVM, KNN, and RF models on 
both the test and verification datasets. For the test dataset, the RF model achieved the highest 
AUC (0.979), followed by SVM (0.970), KNN (0.955), and ANN (0.951). RF also demonstrated 
the highest accuracy (0.926), precision (0.852), F1 score (0.893), sensitivity (0.960), specificity 
(0.957), and kappa (0.923). In comparison, SVM, KNN, and ANN exhibited slightly lower but 
competitive performance across these metrics. For the verification dataset, RF continued to 
show superior performance, with an AUC of 0.984, accuracy of 0.939, precision of 0.878, and the 
highest F1 score (0.923). While SVM, KNN, and ANN showed strong performance with AUC 
values of 0.977, 0.958, and 0.965, respectively, RF consistently outperformed the other models 
across all metrics, demonstrating the best performance in flood susceptibility prediction.	
	 Figure 5 shows the flood susceptibility maps generated by the ANN, SVM, KNN, and RF 
models, and Fig. 6 shows their respective areas (in km2) and proportions of different 
susceptibility levels (very low, low, moderate, high, and very high). The ANN model [Fig. 5(a)] 

Fig. 4.	 (Color online) ROC curves of ANN, SVM, KNN, and RF models for test and verification datasets.

Table 1
Performance metrics of the ANN, SVM, KNN, and RF models.
Model AUC Accuracy Precision F1_Score Sensitivity Specificity Kappa
Based on the test dataset (20% of the training set) with 10-fold cross-validation
ANN 0.951 0.915 0.831 0.881 0.950 0.946 0.912
SVM 0.970 0.913 0.826 0.862 0.964 0.960 0.908
KNN 0.955 0.914 0.828 0.859 0.969 0.965 0.909
RF 0.979 0.926 0.852 0.893 0.960 0.957 0.923
Based on the verification dataset
ANN 0.965 0.930 0.860 0.912 0.948 0.946 0.929
SVM 0.977 0.924 0.848 0.886 0.961 0.958 0.921
KNN 0.958 0.920 0.840 0.883 0.957 0.953 0.917
RF 0.984 0.939 0.878 0.923 0.954 0.953 0.938
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(a) (b)

(c) (d)
Fig. 5.	 (Color online) Flood susceptibility maps generated by (a) ANN, (b) SVM, (c) KNN, and (d) RF models.

Fig. 6.	 (Color online) Areas and proportions of flood susceptibility levels mapped by the ANN, SVM, KNN, and 
RF models.
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showed that the majority of the area was classified as having very low susceptibility (56.81%), 
with a small percentage as low (22.31%). Notably, the proportions of the area with moderate 
(0.25%) and high (0.24%) susceptibility levels were extremely small, highlighting that the model 
predominantly classified the area as having low susceptibility. The very high susceptibility area 
accounted for 20.39%.
	 In contrast, the SVM model [Fig. 5(b)] classified the largest portion of the area into having 
very low susceptibility (65.65%), with low-susceptibility areas covering 10.20% and a more 
balanced distribution across higher susceptibility levels, including 13.37% in the very high 
category. The KNN model [Fig. 5(c)] also showed a dominant proportion of the area with very 
low susceptibility (68.75%) but significant portions classified into the very high (16.70%) and 
low (4.92%) categories. The model showed slightly larger areas in the moderate (3.88%) and high 
(5.75%) susceptibility categories than the ANN model.
	 The RF model [Fig. 5(d)] had a more balanced distribution, with 61.20% of the area classified 
as very low, 11.47% as low, and significant areas in the moderate (5.28%) and high (11.41%) 
categories. The very high susceptibility level accounted for 10.64%, reflecting a more evenly 
spread susceptibility classification than in the other models. These results demonstrate how each 
model distributed susceptibility levels across the study area, with RF and SVM having more 
balanced distributions, while ANN and KNN focused more on very low susceptibility in very 
small areas in the higher susceptibility categories.
	 In summary, RF consistently outperformed the other models in terms of both overall 
accuracy and the ability to classify flood susceptibility. The model’s ability to provide a well-
balanced distribution of susceptibility classes and its superior performance across all evaluation 
metrics make it the most suitable choice for FSM in this study. This aligns with previous 
findings(9,12,23) that ensemble algorithms outperform stand-alone ML models. SVM also 
demonstrated high performance with high accuracy and AUC values, but its classification of 
susceptibility levels was more skewed towards very small areas compared with RF.
	 While ANN and KNN performed well, they showed some limitations, particularly in 
classifying higher-risk areas. ANN’s tendency to classify areas as having very low susceptibility, 
with very small proportions classified into higher-susceptibility categories, may limit its 
applicability to accurate flood risk prediction. Similarly, KNN’s high sensitivity but relatively 
low specificity suggests it may over-predict flood-prone areas in some instances.
	 These findings highlight the importance of selecting the right model for FSM, with RF 
emerging as the most robust and versatile model. The distribution of flood susceptibility levels 
observed in this study is crucial for planning flood management strategies, as it allows decision-
makers to effectively identify both low-risk and high-risk areas. 

5.	 Conclusions

	 We demonstrated the effectiveness of ML models in FSM and found RF to consistently 
outperform SVM, KNN, and ANN. RF achieved the highest AUC scores of 0.979 for the test 
dataset and 0.984 for the verification dataset, highlighting its robustness in predicting flood-
prone areas within the study region.
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	 Our research results also underscore the importance of integrating advanced ML algorithms 
with a diverse set of FCFs to enhance prediction accuracy. The observed distribution of flood 
susceptibility levels is crucial for planning effective flood management strategies, enabling 
decision-makers to identify both low-risk and high-risk areas efficiently. 
	 Furthermore, the study revealed the significance of employing appropriate flood inventory 
sampling strategies in FSM. The proposed frequency-area-weighted sampling method, which 
allocates samples on the basis of flood recurrence intervals and their spatial extents, addresses 
the under-representation of heterogeneous flood patterns, thereby improving model accuracy. 
Future work should be focused on further improvement of the prediction accuracy by 
incorporating newer techniques such as stacking,(24) deep learning,(25) and other emerging AI 
methods.
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