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	 Augmentative and alternative communication (AAC) methods are designed to facilitate 
effective communication for individuals with speech, language, or writing impairments. We 
introduce a novel AAC system designed to enhance communication for individuals with speech, 
language, or writing impairments, such as those with cerebral palsy (CP). Addressing the 
limitations of existing AI-driven AAC solutions, advanced AI and machine learning techniques 
are integrated in the system to minimize user effort in conveying their thoughts. Utilizing a 
readily available webcam as a key input modality, the system employs MediaPipe to capture 
hand gestures corresponding to American Sign Language signs. The resulting visual data is then 
processed and classified by a random forest model. By interpreting these sensor-captured 
gestures, the system enables users to input partial vocabulary, which subsequently prompts 
generative AI models to predict and complete intended text. Empirical evaluations, conducted 
through two distinct experiments, validate the system’s viability and demonstrate its potential to 
significantly improve communication accessibility for individuals with CP through an accessible 
and intuitive gesture-based interface.

1.	 Introduction

	 Augmentative and alternative communication (AAC) methods aim to facilitate information 
exchange for individuals with speech, language, or writing disabilities, either by enhancing 
speech communication or providing alternative written communication.(1) Researchers are 
continuously developing new AAC technologies, including sign languages(2) and communication 
boards,(3) to improve communication effectiveness. In recent years, the integration of AI has led 
to the development of AI-based AAC methods. However, personalized AAC solutions remain a 
challenge.
	 AAC systems are broadly classified into unaided and aided categories. Unaided systems 
utilize the user’s body language, natural gestures, manual signs,(4) and facial expressions, 
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requiring no external devices. Their effectiveness depends on the receiver’s familiarity with the 
specific system. Sign languages, a highly structured form of unaided AAC, are considered 
among the most developed. In contrast, aided AAC systems introduce external devices to 
facilitate communication. Traditional examples include communication boards featuring 
pictures, symbols, or words,(5) letter boards, and writing tools.
	 Over the past decade, AI techniques have revolutionized the AAC research domain. 
Individuals with communication disabilities can now utilize motion recognition applications to 
select symbols or words(5) for speech-generating devices, enabling synthetic speech. These 
technologies commonly incorporate features such as text prediction, vocabulary customization, 
and personalized voice options.
	 Individuals with cerebral palsy (CP), who experience neuromuscular disorders affecting 
movement and posture, often face challenges with speech production and fine motor control. 
Motor impairments can hinder their ability to control their hands, arms, or mouth, necessitating 
innovative approaches to access communication tools. Fortunately, the field of AAC offers a 
variety of access methods that have proven particularly beneficial for the CP community.(6)

	 For individuals with CP using AAC, both access methods and naming systems require 
careful consideration. Visual-cognitive challenges associated with CP can impede symbol 
recognition, necessitating the selection of symbol systems based on maximum intelligence and 
equivalence principles. Suitable options for individuals with moderate literacy include 
photographs, realistic color pictures, simplified pictographic symbols, and text.(5)

	 Direct access to technology remains a significant challenge for individuals with CP. Muscle 
tone fluctuations, involuntary movements, and difficulties in maintaining device positioning can 
hinder consistent equipment operation. These motor challenges, which vary throughout the day 
and with emotional states, necessitate dynamically adaptable access systems. Some users 
struggle with targeting and switch activation, while others experience fatigue during prolonged 
communication attempts, leading to communication endurance issues.
	 Dasher,(7) a data entry interface combining continuous gestures and language models to 
assist motion-impaired computer users, was introduced in early research. Dasher facilitates 
continuous text generation with minimal physical effort, reducing the precision required for 
effective communication. The rapid progress in computer vision and deep learning has facilitated 
the emergence of sophisticated human pose estimation (HPE) algorithms, with OpenPose and 
MediaPipe being prominent examples. For instance, Rang et al.(8) demonstrated the application 
of the MediaPipe Gesture Recognizer(9) in creating a hand gesture recognition system. 
Consequently, the development of effective communication tools for individuals with CP has 
become increasingly feasible. Many developers of mobile phones, laptops, and other 
communication devices have integrated large language models (LLMs) based on generative 
pretrained transformer (GPT) architectures to significantly enhance word prediction. Devices 
previously relying solely on frequency and recency now leverage semantic context to provide 
users with more accurate predictions, including phrases and responses, thereby reducing the 
number of required selections.(10)

	 To address communication challenges faced by individuals with CP, in this paper, we present 
a practical AI-based AAC system. The system employs a three-stage process: handshape 
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recognition via MediaPipe Gesture Recognizer(9) and random forest(11) classification, text 
prediction using generative AI (GAI) to generate the top five sentence completions, and speech 
synthesis utilizing the pyttsx3 Python library. Empirical evaluations, conducted through two 
distinct experiments, validate the system’s effectiveness and its potential to significantly improve 
communication access for individuals with CP.
	 The subsequent sections of this paper are structured as follows: Section 2 is an outline of the 
foundational elements of the proposed method, Sect. 3 provides a detailed explanation of the 
method itself, the empirical evaluation is presented in Sect. 4, and Sect. 5 concludes the paper 
with a summary of findings.

2.	 Related Work

	 In this section, we outline the foundational elements of our method: the American Sign 
Language (ASL) alphabet, MediaPipe’s Gesture Recognizer, and GAI.

2.1	 ASL alphabet

	 While ASL utilizes a manual alphabet, where each letter of the English alphabet is 
represented by a specific handshape, it is essential to understand that this alphabet is not the core 
of ASL. ASL is not simply English spelled out with hand gestures. Instead, it is a fully developed, 
independent language with its own grammar and syntax, distinct from English, as shown in 
Fig. 1.
	 The ASL manual alphabet, sometimes referred to as fingerspelling, is primarily used for 
specific purposes, such as spelling proper nouns, clarifying words with no established sign, and 

Fig. 1.	 (Color online) The American Sign Language manual alphabet.(12)
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spelling technical terms or loan words. It is important to note that the sequential nature of 
fingerspelling contrasts sharply with the simultaneous expression of meaning characteristic of 
most ASL signs. ASL signs convey concepts through a combination of handshape, location, 
movement, palm orientation, and nonmanual markers (facial expressions and body language). 
This multifaceted approach to communication highlights the complexity and richness of ASL 
beyond simple letter-to-hand correspondence. While the manual alphabet serves as a valuable 
tool within ASL, it represents only a small component of the language’s overall structure and 
usage. ASL’s independence stems from its unique linguistic framework, which is rooted in 
visual-spatial communication and historical development.

2.2	 MediaPipe Gesture Recognizer

	 Developed by Google, the MediaPipe Gesture Recognizer utilizes the MediaPipe framework 
for perception tasks, uniquely focusing on interpreting hand movement language through 
multistep processing that identifies 21 specific key landmarks on the hand, mirroring skeletal 
points and tracking finger joints, knuckles, and palm movements, to classify gestures such as 
thumbs up or open palm.(8) This technology, as illustrated by the hand landmarks in Fig. 2, offers 
significant potential for accessibility by enabling real-time sign language translation, fostering 
inclusive communication between hearing and hearing-impaired individuals in the digital realm. 
In comparison with other HPE algorithms such as OpenPose, MediaPipe Gesture Recognizer 
excels in real-time performance and mobile-friendly deployment owing to its optimized models 
and lightweight architecture, providing a distinct advantage in competitions requiring fast 
inference speeds. However, while OpenPose often delivers higher accuracy and more detailed 
body pose estimations, MediaPipe Gesture Recognizer’s focus on hand-specific gestures might 
limit its applicability in broader HPE scenarios that demand comprehensive full-body tracking.

2.3	 Generative artificial intelligence

	 The evolution of GAI, as shown in Fig. 3, is a narrative of progressive innovation, 
commencing with the foundational Early AI & ML (machine learning) Research that laid the 
groundwork for subsequent advancements. Initially, AI development was characterized by 

Fig. 2.	 (Color online) Hand keypoints defined in MediaPipe.(9)
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statistical methods, which employed probabilistic models and rule-based systems to analyze and 
interpret data. This phase transitioned into the era of deep learning, marked by the advent of 
neural networks capable of learning intricate patterns from vast datasets, thereby enabling 
significant improvements in tasks such as image recognition and natural language processing. 
The emergence of early generative models, such as variational autoencoders and generative 
adversarial networks, represented a pivotal shift that enabled machines to generate novel content. 
For example, GAN has been utilized to solve the class-imbalanced learning issue.(13) However, 
the paradigm truly transformed with the introduction of transformer architectures and LLMs, 
exemplified by models such as GPT, which utilized attention mechanisms to produce coherent 
and contextually relevant text. Concurrently, diffusion models, as seen in systems such as 
DALL-E and Stable Diffusion, revolutionized image generation by iteratively refining random 
noise into detailed visuals. These technological breakthroughs culminated in a GAI explosion, a 
period of rapid proliferation and adoption of GAI across diverse applications. This trajectory, 
from the nascent stages of AI research to the current era of widespread GAI utilization, 
underscores the dynamic and transformative nature of AI, highlighting its increasing capacity to 
create content that mirrors human creativity and understanding.(14)

3.	 Proposed Method

	 The proposed system, illustrated in Fig. 4, comprises three distinct stages: handshape 
recognition, text prediction, and speech synthesis. During handshape recognition, MediaPipe is 
utilized to extract hand landmark coordinates, which are subsequently normalized and used to 
train a random forest classifier for letter identification. In the text prediction stage, a GAI model, 
such as Gemini, ChatGPT, or Claude, is employed to generate complete sentence hypotheses on 
the basis of the recognized letter sequence. The top five most probable sentence completions are 
then presented to the user. Finally, in the speech synthesis stage, the user-selected sentence is 
converted into audible speech using a Python text-to-speech (TTS) library such as pyttsx3 or 
gTTS.

3.1	 Handshape recognition

	 Handshape recognition, as depicted in Fig. 5, begins with users forming ASL alphabet hand 
gestures. A webcam captures these gestures, and MediaPipe Gesture Recognizer extracts the 

Fig. 3.	 Evolution of GAI.
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hand keypoint coordinates defined in Fig. 2. These coordinates serve as input for our pretrained 
random forest classifiers. Specifically, the process is as follows.
1.	 Gesture Capture: The webcam records the user’s ASL hand gesture.
2.	 Keypoint Extraction: MediaPipe Gesture Recognizer outputs the coordinates of hand 

keypoints as a dictionary object.
3.	 Normalization: A Min–Max normalization transforms these coordinates into the range (0, 1):

	 ,x minx
max min

−
′ =

−
	 (1)

where x' is the normalized value, x is the original coordinate, and min and max are the 
minimum and maximum values of the original coordinates output by MediaPipe Gesture 
Recognizer, respectively. 

Fig. 4.	 Main stages of the proposed method.

Fig. 5.	 (Color online) Processes in handshape recognition.



Sensors and Materials, Vol. 37, No. 9 (2025)	 3847

4.	 Classification: The normalized keypoint coordinates are then fed into the random forest 
classifiers.

5.	 Alphabet Output: The classifiers output the corresponding ASL letter.
	 For example, when users form the gestures for “i”, “l”, and “u” the respective keypoint 
coordinates are extracted, normalized, and used to accurately identify those letters.

3.2	 Text prediction

	 A key aspect of LLM training involves masked language models (MLMs), which facilitate 
the development of LLM’s understanding of human cognition. In this approach, specific words 
or tokens within an input sequence are randomly masked. The LLM is then trained to predict 
these masked elements by utilizing the contextual information provided by the surrounding 
words. Consequently, LLMs such as ChatGPT, Gemini, and Claude can effectively infer user 
intent even when presented with incomplete or partial input. In this study, we utilize this 
capability, assuming robust MLM training, to explore the ability of LLMs to complete text from 
partial vocabulary or abbreviations. For instance, prompting Gemini with “Complete the top 5 
possible sentences with this schema: {‘Sentence’: str} but without any explanation of whether the 
sentence ‘i l u’ is incomplete” yields the response shown in Fig. 6. Additionally, language 
translation is provided as the response shown in Fig. 7.

3.3	 Speech synthesis

	 Depending on user needs, text-to-speech (TTS) conversion can be incorporated. Given the 
established maturity of TTS technology, numerous Python packages are available, such as 

Fig. 6.	 (Color online) Gemini's output for 'i l u' sentence completion.

Fig. 7.	 (Color online) Gemini's output for “i l u” sentence completion in traditional Chinese.
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pyttsx3 and gTTS. pyttsx3 was selected for this study because of its robust offline capabilities, 
cross-platform support, and straightforward operability.

4.	 Empirical Evaluation

	 In this section, we will first implement the handshape recognition and then the text prediction.

4.1	 Handshape recognition

	 Handshape recognition involves two stages. First, MediaPipe, a Python package, extracts 
hand landmarks (coordinates) from webcam input. Second, a pretrained classifier identifies 
letters based on these coordinates. We utilize a random forest classifier(11) trained on data from 
Kaggle.(15) Random forests were chosen for their ability to integrate multiple weak classifiers 
trained on diverse datasets, mitigating issues such as overfitting and bias.
	 Our experimental evaluation involved individuals with CP and a control group without CP. 
To assess our classifier’s performance, we enlisted one author with CP and ten student 
volunteers. Participants were instructed to hold each hand gesture for one second after ceasing 
movement, a condition under which all gestures could theoretically be correctly identified. The 
results, summarized in Table 1, indicate a recognition accuracy of 54.615% for individuals with 
CP and 94.808% for the control group. Lower accuracy for certain static gestures such as “A”, 
“M”, “N”, “S”, and “T” may be attributed to their visual similarity. Furthermore, dynamic 
gestures such as “J” and “Z” presented additional recognition challenges due to their inherent 
motion.
	 This initial outcome, however, did not meet our objective of enhancing communication 
effectiveness for individuals with CP. To address this, we collected additional training data by 
recording more videos from our author with CP, capturing 100 hand coordinate sets per letter 
using MediaPipe. After retraining our classifier with this augmented dataset, the results, 
presented in Table 2, showed an improved recognition accuracy of 75.769% for individuals with 
CP and a slightly decreased accuracy of 91.115% for the control group. 

Table 1
Experimental results of our random forest classifier.
Letter Successes (CP) Successes (No CP) Letter Successes (CP) Successes (No CP)
A 9 91 N 9 84
B 3 95 O 9 98
C 1 98 P 7 98
D 5 99 Q 8 99
E 8 98 R 5 98
F 7 99 S 8 96
G 6 96 T 5 90
H 2 96 U 6 99
I 3 96 V 7 96
J 1 88 W 6 97
K 5 90 X 4 98
L 8 96 Y 2 99
M 6 85 Z 2 86
Total 64 1227 Total 78 1238
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	 The handshape recognition results reveal a fundamental trade-off inherent in adapting 
machine learning models for individuals with CP. The initial classifier achieved 54.615% 
accuracy for CP users versus 94.808% for the control group, representing a substantial 40.193% 
gap. After retraining with CP-specific training data, we observed a significant improvement for 
CP users (75.769%) but a corresponding decrease for the control group (91.115%). This trade-off 
demonstrates that incorporating CP-specific training data creates a model specialization effect 
where gains for the target population come at the cost of general performance.
	 While the 21.154% improvement for CP users represents meaningful progress, the final 
performance gap (15.346%) still indicates that the system performs substantially worse for its 
intended users compared with the general population. This persistent disparity suggests that the 
motor variability and movement patterns associated with CP present fundamental challenges 
that cannot be fully addressed through dataset augmentation alone.
	 The letter-specific analysis reveals both encouraging improvements and persistent 
limitations. Letters such as “C”, “G”, “H”, and “J” and “Z” showed dramatic improvements for 
CP users (from 10 to 60% for “C”, 20 to 80% for “H”, and 10 to 70% for “J”), demonstrating that 
targeted training data can address specific recognition challenges. However, several fundamental 
letters such as “B”, “I”, “V”, and “Y” remain problematic with accuracy rates below 80%. The 
fact that common letters continue to show poor recognition performance suggests that the 
underlying feature representation may be insufficient for capturing the full spectrum of motor 
variations present in CP-affected sign production.

4.2	 Text prediction

	 To evaluate the text prediction capability of GAI models, we propose an approach called 
partial word masking (PWM). Table 3 illustrates the PWM rate calculation with four examples. 
Consider the first example: for the sentence “I agree”, we tested various letter combinations. We 

Table 2
Experimental results of our retrained classifier.
Letter Successes (CP) Successes (No CP) Letter Successes (CP) Successes (No CP)
A 10 82 N 9 86
B 6 86 O 9 97
C 6 90 P 7 98
D 8 89 Q 8 97
E 8 98 R 8 94
F 9 99 S 8 92
G 10 90 T 8 90
H 8 88 U 8 92
I 8 83 V 7 95
J 7 88 W 6 98
K 8 88 X 4 98
L 10 96 Y 5 89
M 6 83 Z 6 83
Total 104 1160 Total 93 1209
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observed that “I ag” was the shortest input that resulted in “I agree” being among the top five 
predictions by Gemini 2.0 Flash. The PWM rate for each word is calculated as the proportion of 
masked letters. For “I”, the rate is (1 − 1)/1 = 0, as no letters were masked. For “agree”, with five 
letters and two given (“ag”), the masked length is (5 − 2) = 3, resulting in a PWM rate of 3/5 = 
0.6. The PWM rate for the entire sentence “I agree” is then defined as the maximum of the 
individual word PWM rates: Max(0, 0.6) = 0.6.
	 In this experiment, we evaluated Gemini 2.0 Flash using the first one hundred sentences 
from the “English for Life” quiz, sourced from https://blog.csdn.net/Wit_tang/article/
details/51036733. Table 4 presents the experimental results, detailing the frequency of “hit 
events” instances where Gemini 2.0 Flash accurately predicted the original sentence when 
presented with partially masked words (PMW). The results reveal a clear trend in Gemini 2.0 
Flash’s predictive performance. Most notably, approximately half of the sentences (49%) were 
accurately inferred when the PMW rate fell within the (60%, 80%) range. This indicates a 
significant capability to reconstruct original text even with a substantial portion of words 
masked, suggesting the model utilizes contextual understanding effectively. Performance 
dropped considerably at lower PMW rates, with only 31% of sentences correctly predicted when 
masking was less than 60% [21% from (40%, 60%) and 10% from (0%, 40%)]. The data further 
reveals that while the model excels with moderate masking, its accuracy diminishes sharply 
when either minimal information (PMW rates below 40%) or excessive masking (PMW rates 
above 80%) is provided. The modest 20% hit rate in the (80%, 100%) range, where nearly all 
words are masked, underscores the challenge of high-ambiguity predictions.
	 These findings indicate that GAI models such as Gemini 2.0 Flash hold substantial promise 
for reducing user input demands in the proposed AAC system. Specifically, the high accuracy 
observed in the [60%, 80%] PMW range implies that users can potentially provide only a few 
keywords or partial words, and the system can accurately complete their intended message. This 
“sweet spot” of moderate masking offers a compelling pathway to significantly increase 
communication efficiency and reduce physical effort for AAC users.
	 However, a critical examination of these results also reveals limitations that warrant further 
consideration. While the model performs exceptionally well in the optimal PMW range, its 
performance at the extremes (very low or very high masking) indicates areas for improvement. 

Table 3
Examples of computing partial word masking rates.
Original sentence Success conditions Word masked rate Sentence masked rate

I agree I ag I: (1 − 1)/1=0 Max(0, 0.6) = 0.6agree: (5 − 2)/5=0.6

Not yet Not yet Not: (1 − 1)/1=0 Max(0, 0) = 0yet: (5 − 2)/5=0

See you See y See: (1 − 1)/1=0 Max(0, 0.67) = 0.67you: (5 − 2)/5=0.67

I didn't mean it I din m i

I: (1 − 1)/1=0

Max(0, 0.5, 0.75, 0.5) = 0.75didn't: (6 − 3) / 6=0.5
mean: (4 − 1)/4 = 0.75

it: (2 − 1)/2=0.5

https://blog.csdn.net/Wit_tang/article/details/51036733
https://blog.csdn.net/Wit_tang/article/details/51036733
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The limited accuracy below 50% PMW suggests that the model might not be fully utilizing the 
available unmasked information in these scenarios, potentially due to an over-reliance on a 
“guessing” mechanism rather than sophisticated contextual reasoning when more complete 
words are already present. Conversely, the drop in performance at very high PMW rates (e.g., 
above 80%) highlights the inherent difficulty of disambiguation when extremely limited 
information is provided, indicating the need for robust error correction mechanisms or user-
feedback loops in a practical AAC system. Future work should focus on fine-tuning the model’s 
performance across the entire spectrum of PMW rates, perhaps by incorporating user-specific 
language models or dynamic masking strategies to adapt to varying levels of user input and 
linguistic ambiguity. Furthermore, while “hit events” provide a valuable metric, a more 
comprehensive evaluation should also consider the quality of “misses” (e.g., how close incorrect 
predictions were to the target sentence) and the computational latency of the model, which is 
crucial for real-time AAC applications. Addressing these limitations will be key to realizing the 
full potential of GAI models in clinically viable AAC solutions.

5.	 Conclusions

	 The novel AAC system presented in this research offers a promising avenue for enhancing 
communication accessibility for individuals with severe disabilities, particularly those with CP. 
By integrating hand gesture recognition powered by MediaPipe and a random forest classifier 
with the predictive capabilities of GAI models, this system aims to significantly reduce the 
physical and cognitive demands typically associated with AAC use. Our initial experimental 
evaluation of hand gesture recognition revealed a notable difference in accuracy between 
individuals with CP (54.615%) and a control group (94.808%), highlighting the challenges posed 
by motor impairments. Subsequent efforts to improve recognition for individuals with CP 
through additional training data yielded a substantial increase in accuracy to 75.769%, albeit 
with a slight decrease for the control group (91.115%), underscoring the need for tailored models. 
Furthermore, the partial word masking experiment with Gemini 2.0 Flash demonstrated the 
potential of GAI models to correctly infer intended sentences even with significant portions of 
words masked, with approximately 50% accuracy within a 60–80% masking range. This 
suggests that by providing even fragmented sign input, the proposed AAC system can utilize the 
predictive power of advanced language models to complete intended messages, thereby lowering 
the user burden. The combined results of these experiments validate the viability of our 

Table 4
PWM rates and their accuracy events.
PWM rate range Hit events
[0%, 20%) 5
[20%, 40%) 5
[40%, 60%) 21
[60%, 80%) 49
[80%, 100%] 20
Total 100
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integrated approach and its potential to significantly improve communication effectiveness and 
independence for individuals who rely on AAC. Future work will be focused on refining the 
hand gesture recognition model to improve robustness and on exploring user-centered design 
principles to optimize the overall usability and real-world impact of this novel AAC system.
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