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	 Global climate change impacts all regions and leads to natural disasters such as typhoons, 
which cause destruction, debris, and flooding. Postdisaster restoration is a very important 
activity that is mostly done manually and can be time-consuming and challenging, especially in 
subterranean environments owing to accumulated objects such as pipes, pillars, and mud 
distributed in confined underground areas. Therefore, in this study, we aim to utilize emerging 
AI technologies by comparing deep learning algorithms and evaluating four models for 2D 
object detection and four for 3D point cloud segmentation for detecting sediment accumulation 
and navigating around obstacles in underground areas after a disaster. Additionally, a custom 
dataset was developed to simulate underground disaster scenarios. As a result, the You Only 
Look Once version 11 (YOLOv11) model achieved the highest mean average precision 50 
(mAP50: 91.1%) for general detection within the pillar-pipe dataset, whereas the YOLOv12 
model performed the best in detecting pipes (mAP50: 87.7%). In the mud dataset, the YOLOv8 
segmentation (YOLOv8-seg) model demonstrated superior performance with mAP50 scores of 
93.0% (detection) and 86.4% (segmentation). For 3D point cloud segmentation, PointNet 
achieved the highest accuracy (98.61%), whereas RandLA-Net was optimal for pipe 
segmentation, achieving an intersection over union score of 37.1%. These findings highlight AI’s 
potential to accelerate disaster recovery, reduce manual labor, and ensure faster cleanup. 
Integrating deep learning models into post-typhoon restoration efforts can enable communities 
to recover more quickly and efficiently after climate change impacts or disaster events.
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1.	 Introduction

	 As climate change raises global temperatures, it increases the frequency and severity of 
natural disasters such as typhoons and hurricanes. These powerful storms cause not only 
immediate destruction but also long-term impacts on human health, economic stability, 
infrastructure, and the environment.
	 One major challenge is disaster waste, especially construction and demolition debris, which 
is often difficult to access because of blocked areas and biosecurity concerns. This study is 
focused on Japan, a country frequently hit by typhoons. Its temperate climate, mountainous 
landscape, and heavy rainfall make it especially vulnerable to flooding, particularly in low-lying 
and urban areas.
	 Many Japanese houses have a crawl space beneath the floor for ventilation and to protect 
wooden structures from decay. These spaces are particularly tricky to clean after floods. 
Currently, flood cleanup, which involves draining water, moving damaged items outside, 
cleaning, drying, disinfecting, and removing mud, is done manually by humans.
	 Postdisaster cleanup is critical for protecting public health, restoring essential services, and 
preventing further environmental harm. In this research, we explore how modern technologies 
like AI can, in the future, improve the process by shifting dangerous tasks from humans to 
sensors and robots.
	 Therefore, in this paper, we present a performance comparison of using 2D and 3D LiDAR 
with convolutional neural network (CNN) models to detect sediment accumulation in 
underground flooding after disasters. Regarding model evaluation, mean average precision 50 
(mAP50) and mean average precision 50–95 (mAP50–95) are used to evaluate the performance 
of pipe and pillar object detection models. The same metrics are also used for evaluating mud 
segmentation. For point cloud data, performance is evaluated using accuracy and the mean 
intersection over union (mIoU). Our goal is to evaluate the performance of deep learning models 
with 2D and 3D LiDAR inputs, identify the best practices, and potentially integrate this 
technology into autonomous robots. Such integration would reduce manual labor, speed up 
postdisaster recovery, and minimize risks to human workers.

2.	 Literature Review

	 LiDAR for 3D object detection applications has been utilized in numerous studies. Alaba and 
Ball introduced a LiDAR-based object detection and feature extraction method.(1) He et al. 
proposed the Stereo RGB and Deeper LiDAR (SRDL) framework for combining semantic and 
spatial information and concluded that fusing multimodal data leads to more robust and reliable 
3D object detection systems.(2) Gan et al. presented a hybrid filtering algorithm to denoise the 
single-view blisk point cloud data to remove noise. The octree downsampling method was used 
to simplify the blisk point cloud data, which is beneficial to accelerate the subsequent point 
cloud segmentation.(3) Jin et al. improved the PointNet classification accuracy using a functional 
multihead pooling encoding model. This approach reduced overfitting and improved 
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classification accuracy by up to 3.25% on datasets such as ModelNet40.(4) Sun et al. proposed a 
3D point cloud classification algorithm based on improved PointNet++. These improvements led 
to better classification accuracy on datasets such as ISPRS Vaihingen and GML(B) by effectively 
handling uneven point distributions and complex scenes.(5) Barnefske and Sternberg conducted a 
detailed study on hierarchical patterns (HPs), examining their class distribution and 
combinations. They used seven hierarchical class combinations and four class size adaptation 
methods to systematically analyze the HPs.(6) Yang et al. introduced a combination of an average 
pooling layer with the X-Conv method to replace max pooling and address the issue of feature 
loss.(7) Zhou et al. proposed a new segmentation method based on PointNet and VoxelNet to 
improve the efficiency and accuracy of semantic segmentation.
	 A number of You Only Look Once (YOLO)-based studies have also been widely applied in 
segmentation tasks.(8) Casas et al. compared YOLOv5 and YOLOv8 in corrosion segmentation. 
Their work highlighted YOLOv8’s high speed and segmentation accuracy across all datasets, 
particularly in handling complex corroded surfaces.(9) Shreyas et al. reviewed 3D object 
detection applications across fields such as robotics and the military.(10) Xu et al. introduced a 
metalearning approach for 3D classification,(11) while Shi and Rajkumar proposed a graph neural 
network for LiDAR-based object detection.(12) Deng et al. developed an obstacle detection 
algorithm for unmanned surface vehicles.(13)

	 Many modern applications leverage point cloud data with deep learning for classification and 
segmentation tasks.(14) Qi et al.(15) and Muzahid et al.(16) reviewed deep learning methods for 
multiview 3D recognition.  Hou and Zhang focused on shallow mud detection in submarine 
channels using YOLOv5s-EF.(17)  Aulia  et al.  developed a CNN-based detection system for 
autonomous mobile robots (AMRs). The model demonstrates improved classification and 
detection accuracy, indicating its potential for AMR applications.(18) Dos Reis et al. implemented 
YOLO with Kinect for obstacle detection, achieving high detection accuracy and low distance 
error.(19)  Chikurtev  et al.  combined LiDAR and GPS for mobile robot localization, enabling 
precise navigation even in narrow or dynamic environments.(20)  Baatar  et al.  automated 
underwater object annotation using sonar images.(21)  Chang et al. compared OpenPose and 
MoveNet for real-time fall detection using webcams, emphasizing lightweight AI’s role in eldery 
care and healthcare integration.(22) Zhang et al. proposed a CNN–GRU model for predicting 
regional weather using historical data. Tested on Beijing’s 1901–2022 climate records, it 
outperformed LSTM and GRU models, showing higher accuracy in long-term forecasting.(23) 
Finally, Rakhsith et al.(24) and Pavani et al.(25) compared object and face detection techniques, 
highlighting YOLOv5’s efficiency in real-time detection.
	 In this study, we aim to identify the best CNN-based object detection model by comparing 
the performances on both 2D images and 3D point clouds. While many groups use YOLO for 
detection, most focus on a single input type. We address this gap by comparing models across 
different data inputs to find the most effective approach for object detection and sentiment 
analysis.
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3.	 Materials and Methods

	 We divided the materials and methods into two categories, 2D images and 3D point cloud 
data. The details of the data are as below, and the overall methodology flowchart is shown in Fig. 
1.

Fig. 1.	 Overall methodology flowchart.
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3.1	 2D image dataset

	 A custom dataset was developed to represent real-world disaster site conditions. The process 
began with the creation of a simulated postdisaster scenario, featuring a pool to replicate a 
flooded under-house area, along with pillars and pipes to represent mixed elements commonly 
found accumulating in water. Mud was also added to enhance realism. Images were captured 
under both daylight and low-light conditions to ensure environmental diversity. The resulting 
dataset(26) consists of 2094 images (3024 × 4032 × 3), as shown in Fig. 2. The dataset is divided 
into training 87.41% (1830 images), validation 8.31% (174 images), and testing 4.30% (90 images) 
subsets, with two classes: pipe and pillar
	 The images were resized to 640 × 640 pixels, and histogram equalization was applied after 
preprocessing. Then, data augmentation techniques were used to increase dataset variability, 
including 90° rotations (clockwise, counterclockwise, and upside down), shear transformations 
(±10° horizontally and vertically), and blurring (up to 0.5 pixels). Figure 3 presents examples 
from the pipe and pillar 2D dataset.
	 We utilized a 2D mud dataset, a publicly accessible resource available to the public.(27) This 
dataset was designed for instance segmentation and comprises 665 images partitioned into 
training (579 images), validation (56 images), and testing (30 images) sets. Prior to analysis, all 
images underwent preprocessing, including resizing to 640 × 640 pixels and histogram 
equalization to enhance image contrast. Additionally, data augmentation techniques were 
applied to increase dataset variability. These techniques included 90° rotations (clockwise, 
counterclockwise, and upside down), the introduction of noise up to 0.1% of pixels, and the 

Fig. 2.	 (Color online) Example of original images from the camera.

Fig. 3.	 (Color online) Pipe and pillar 2D dataset.
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application of blur with a maximum radius of 1 pixel. Figure 4 shows example images of the mud 
dataset.

3.2	 3D point cloud data dataset

	 The 3D point cloud data was obtained using the Livox MID-360 LiDAR sensor. The original 
data includes x, y, z and intensity information. Three-dimensional point cloud data acquired 
from sensors often contains noise. In particular, distance data at object boundaries is frequently 
inaccurate, resulting in point clouds extending backward like shadows from the edges of objects. 
Additionally, incorrect distance data may be obtained owing to specular reflections. To eliminate 
such outlier point cloud data that exists in space and not on the actual surface of the object, 
statistical outlier removal (SOR) was performed. In this method, a normal distribution of 
neighbor distances is assumed and points that lie beyond a statistically defined threshold are 
removed, improving the spatial coherence of the surface. The results of the SOR preprocessing 
steps are illustrated in Fig. 5. The mean distance μd can be calculated using Eq. (1), where k 
represents the number of neighboring points, and di is the distance between the target point and a 
neighboring point. σd, the standard deviation of distances, is obtained from Eq. (2). Additionally, 
the threshold is determined using Eq. (3), where stdratio refers to the threshold multiplier.
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	 To further enhance the dataset, data augmentation techniques are applied, specifically, 
random rotation and random scaling. These methods increase the number of training samples 
while preserving the original geometric structure of the point cloud data. 
	 A dataset consisting of these features was used to create training and test datasets for 
segmentation methods by utilizing CloudCompare. The dataset consists of 100 3D point cloud 

Fig. 4.	 (Color online) Mud dataset images.
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images divided into a training set (70 images), a validation set (15 images), and a test set (15 
images). This dataset is referred to as the pipe pillar and pool 3D dataset.

3.3	 Model selection

3.3.1	 2D model selection

	 The selection of the YOLO model family (YOLOv5, YOLOv8, YOLOv11, and 
YOLOv12(28–31)) for our endeavor was driven by its computational efficiency, a paramount 
consideration for autonomous robotic systems. YOLO has a single-stage detection architecture, 
in contrast to the region proposal-based approach of Faster R-CNN, significantly expediting 
processing. The single-stage architecture, coupled with its fully convolutional network (FCN) 
framework, facilitates rapid inference, achieving 30–60 frames per second (FPS) on graphical 
processing units (GPUs) and demonstrating compatibility with embedded systems such as Jetson 
Nano and Raspberry Pi. The deployment of multiple YOLO versions was a deliberate strategy 
aimed at ascertaining the optimal model configuration for our unique datasets. For the task of 
mud segmentation, our focus was narrowed to YOLOv8 and YOLOv11, as these are the only 

(a) (b)

Fig. 5.	 (Color online) (a) Original 3D point cloud data and histogram. (b) 3D point cloud data and histogram after 
SOR.
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iterations currently equipped to handle segmentation tasks. Moreover, YOLOv11’s capacity for 
real-time segmentation on edge and cloud platforms renders it particularly germane to our 
specific application.
	 To mitigate the risk of overfitting, we implemented an early stopping mechanism. This 
involved monitoring the model’s performance on a validation dataset during training. If the 
model’s performance on the validation 1 set began to deteriorate after a predetermined number 
of epochs, the training process was automatically terminated, thereby ensuring the selection of a 
model with optimal generalization capabilities. 

3.3.2	 3D point cloud data model selection

	 PointNet serves as a foundational model for direct point cloud processing, operating on 3D 
point data. It employs symmetric functions, such as max pooling, to achieve permutation 
invariance, allowing it to handle 3D data without the need for conversion to other formats such 
as voxel grids or meshes. While user-friendly and efficient in processing 3D points, PointNet 
faces limitations in capturing complex local relationships between points.(32) To address these 
limitations, PointNet++ was developed, utilizing hierarchical feature learning to manage 
varying data densities across different regions. It incorporates local region grouping and 
pointwise feature learning for enhanced data representation, achieving high efficiency in 
handling complex point cloud data. However, this comes at the cost of increased model 
complexity and training time.(33) Point-voxel CNN (PvCNN) introduces a hybrid approach, 
combining point clouds and voxel grids by converting point cloud data into voxel grids before 
CNN processing. This method leverages the advantages of voxel-based learning for deep feature 
extraction while preserving point cloud details. It is well suited to 3D data classification and 
segmentation, although the conversion process may result in some detail loss and requires 
increased storage because of the larger voxel grid sizes.(34) RandLA-Net employs local feature 
aggregation through random point selection from point cloud data to reduce processing 
complexity. This approach enables high processing speeds, making it ideal for tasks requiring 
real-time processing of large point clouds. However, the random point selection may lead to the 
loss of certain critical information.(35)

4.	 Results
	
	 The pipe and pillar 2D dataset was tested using multiple YOLO versions, as shown in Table 1. 
YOLOv11 exhibited the highest overall performance, achieving an mAP50 of 91.1% and an 
mAP50-95 of 67.3%. Notably, YOLOv12 achieved a comparable mAP50-95 score while 
demonstrating superior performance in pipe detection (87.7%) compared with YOLOv11 
(84.7%). However, YOLOv11 maintained a slight advantage in pillar detection with an mAP50 of 
94.8%, the highest among all tested models. The learning curves of the models on the pipe and 
pillar 2D dataset are shown in Fig. 6, and object detection via YOLOv11 is shown in Fig. 7.
	 For the mud dataset, YOLOv8-seg outperformed YOLOv11-seg in most metrics, as shown in 
Table 2. YOLOv8-seg attained an mAP50 of 93.0% for object detection, compared with 89.8% 
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Table 1
Results for pipe and pillar 2D dataset.

No. Model mAP50 (%) mAP50-95 (%) mAP50 by class (%)
pipe pillar

1 YOLOv5 89.20 61.90 84.00 94.40
2 YOLOv8 90.20 65.20 86.10 94.30
3 YOLOv11 91.10 67.30 84.70 94.80
4 YOLOv12 90.90 67.30 87.70 94.10

Table 2
Results for mud 2D dataset.

No. Model Box Mask
mAP50 (%) mAP50-95 (%) mAP50 (%) mAP50-95 (%)

1 YOLOv8-seg 93.00 60.60 86.40 47.10
2 YOLOv11-seg 89.80 55.40 86.50 46.60

Fig. 6.	 (Color online) Learning curves of the models on the pipe and pillar 2D dataset.

Fig. 7.	 (Color online) Pipe and pillar detection using YOLOv11.
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for YOLOv11-seg. Additionally, YOLOv8-seg surpassed YOLOv11-seg in segmentation 
performance, with an mAP50 of 86.4%, although its mAP50-95 of 47.1% was slightly higher than 
YOLOv11-seg’s 46.6%. The learning curves of the models on the mud dataset are shown in Fig. 
8, and mud object detection via YOLOv8-seg is shown in Fig. 9.
	 The evaluation of 3D point cloud data revealed that PointNet achieved the highest evaluation 
accuracy (98.61%), with the best mIoU of 43.05%. RandLA-Net, however, demonstrated superior 
performance for pipe segmentation, obtaining an IoU of 37.1%, surpassing other models in this 
specific class. Meanwhile, PointNet++ exhibited lower performance overall, with a best mIoU of 
28.31% and an IoU for pipe detection of only 12.0%, as shown in Table 3. 
	 These findings indicate that YOLOv11 was the optimal model for general object detection in 
the pipe and pillar dataset, whereas YOLOv12 was preferable for pipe detection. For mud 
detection, YOLOv8-seg was the most effective for both object detection and segmentation. In 3D 

Table 3
Results of training on 3D point cloud data.

No. Model Categories Eval 
accuracy (%)

Best mIoU 
(%)

IoU by class (%)
pipe pillar pool

1 PointNet++ Semantic 
segmentation 94.25 28.31 12.00 6.50 94.30

2 PointNet Semantic 
segmentation 98.61 43.05 30.30 59.20 98.60

3 PvCNN Semantic 
segmentation 97.39 26.47 0.10 8.50 97.39

4 RandLA-Net Semantic 
segmentation 95.21 39.78 37.10 43.10 97.45

Fig. 8.	 (Color online) Learning curve patterns for mud dataset.

Fig. 9.	 (Color online) Mud detection using YOLOv8-seg.



Sensors and Materials, Vol. 37, No. 9 (2025)	 3865

point cloud classification, PointNet achieved the highest accuracy, but RandLA-Net was the best 
choice for detecting pipes. The results of semantic segmentation via PointNet are shown in Fig. 
10.

5.	 Discussion

	 In this study, we assessed multiple versions of YOLO and 3D point cloud models to determine 
which were most effective on custom disaster-site datasets. The results showed that model 
performance varied depending on object type, data characteristics, and how the models process 
spatial features. YOLOv12 produced the best results on the general-purpose COCO dataset 
because it was trained and optimized on diverse, large-scale image data, making it highly 
generalizable. However, YOLOv11 proved to be the most effective for our custom pipe and pillar 
dataset, achieving an mAP50 of 91.1%. This is likely because YOLOv11’s feature extraction 
layers and anchor configurations aligned better with the visual patterns, shapes, and scales 
present in the custom data, particularly for pillar detection, where it achieved the top class-
specific performance (mAP50 of 94.8%).
	 Interestingly, when focusing specifically on pipe detection, YOLOv12 outperformed 
YOLOv11 (87.7% vs 84.7%), suggesting that YOLOv12’s updated architecture was better at 
capturing the elongated, cylindrical shapes of pipes, possibly as a result of improved backbone 
layers or multiscale processing, which handle fine details better.
	 For the mud dataset, YOLOv8-seg performed best, achieving an mAP50 of 89.8% and an 
mAP50–95 of 60.6% for bounding box detection. Its superior segmentation performance 
(mAP50–95 of 47.1%) over YOLOv11-seg likely comes from YOLOv8’s enhanced segmentation 
head, which includes finer spatial resolution and better boundary refinement. These 
improvements allowed YOLOv8 to handle the irregular, often low-contrast mud surfaces more 
effectively, where subtle texture differences make detection challenging.
	 In the 3D point cloud classification task, PointNet achieved the highest overall accuracy 
(98.61%) and mIoU (43.05%), largely because its architecture is designed to directly process raw 
point clouds, capturing global and local features without needing voxelization or grid conversion. 

(a) (b)

Fig. 10.	 (Color online) (a) Original 3D point cloud data. (b) After semantic segmentation using PointNet.
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However, when focusing on pipe-specific 3D object detection, RandLA-Net performed better, as 
its local feature aggregation mechanism and efficient handling of large-scale, sparse point clouds 
allowed it to better capture fine, pipelike structures.
	 Importantly, detecting mud using 3D point cloud data remained challenging because LiDAR 
technology excels at reconstructing complex, raised surfaces such as trees or debris, where laser 
signals reflect cleanly. In contrast, mud on flat surfaces produces weak, noisy, or incomplete 
point returns, making it difficult for the models to extract distinctive features or consistent 
geometric patterns.
	 Overall, the results highlight that model performance is determined not only by architecture 
but also by the match between model design and the dataset’s visual or geometric characteristics, 
the quality of pre- and postprocessing steps, and the specific detection tasks (general vs class-
specific performance).

6.	 Conclusions

	 In this study, the importance of selecting suitable CNN models for different applications 
involving 2D images and 3D LiDAR inputs was highlighted. YOLOv11 was the most effective 
for general object detection on our custom 2D dataset, while YOLOv12 performed best for 
detecting pipes. For mud segmentation in 2D data, YOLOv8 achieved the highest accuracy. In 
the 3D domain, PointNet proved to be the most effective overall, whereas RandLA-Net was 
better suited for pipe-specific tasks. However, detecting mud using LiDAR-based 3D point 
clouds remains a significant challenge owing to the inherent difficulties in data acquisition and 
labeling under such conditions. Alternative approaches, such as sensor fusion or advanced 
annotation techniques, should be explored in future research to improve the accuracy and 
practicality of mud detection in real-world scenarios.
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