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	 Wi-Fi sensing-based human activity recognition (HAR) research has grown over the last 
decade. While conventional Wi-Fi sensing employs complex and high-cost devices, we focused 
on lightweight Wi-Fi sensing with ESP32 for channel state information (CSI) data collection. We 
aim to keep the setup minimal by considering a single antenna for relatively static activities, e.g., 
sitting, standing, and light walking. Thus, we leverage CSI amplitude and propose EnSta-Fi, a 
classification model based on ensemble stacking for Wi-Fi sensing, combining baseline machine 
learning models, i.e., k-nearest neighbor (kNN) and support vector machine (SVM), with the 
logistic regression as a final classifier. Our method includes the actual measurement setup to 
collect CSI, ensemble stacking model training, and evaluation. Results showed that EnSta-Fi 
outperforms individual kNN and SVM in terms of activity classification performance with 
accuracy improvements of 2.29 and 1.19%, respectively. Moreover, compared with deep learning 
models, e.g., bidirectional gated recurrent unit (Bi-GRU) and convolutional neural network 
(CNN), EnSta-Fi achieves higher accuracy and less computational time (40 and 2.5 times faster 
than Bi-GRU and CNN, respectively). From the results of our proposed method, we can conclude 
that EnSta-Fi is suitable for the real deployment of the HAR system, where straightforward 
setup, light weight, high accuracy, and low computational complexity are emphasized.

1.	 Introduction

	 The human activity recognition (HAR) system is helpful for many applications, e.g., health, 
smart building, security surveillance, human–computer interaction, and entertainment, and for 
object localization and tracking.(1–4) Over time, both attached or tagged physical sensors have 
been primarily used to record body movements and conditions. However, wearing physical 
sensors that generally need a long time to operate will impact users’ convenience and prevent 
flexible movements, especially for applications without any attached devices.(5) With the 
growing research capabilities on the device-free monitoring of the HAR system, primarily by 
vision or wireless, HAR is entering a new era of sensor deployment.
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	 Vision-based HAR primarily employs cameras for sensing. There are also RGB cameras and 
infrared projectors and detectors for motion and sensing input device, i.e., Microsoft Kinect.(6) 
However, this technology requires additional setup and limited environment coverage. Moreover, 
the main issues of using a camera as a sensor for HAR are its privacy obstruction nature, the fact 
that it cannot work in different rooms blocked by walls, and the need for specific lighting 
conditions for optimal recognition results.(6) Another device-free approach is implementing 
radio frequency (RF)-based technology, e.g., Wi-Fi, Bluetooth, radio frequency identification 
(RFID), radar, or ultrawide band (UWB). In this regard, Wi-Fi is the most common and widely 
used and has different features, size, cost, and capabilities.
	 Wi-Fi sensing is a term used for detecting environment changes by utilizing Wi-Fi signals, 
including the changes in its amplitude, phase, or temporal properties.(7) These changes can be 
represented by the channel state information (CSI), which shows the changes in environment–
signal interaction due to signal propagation and multipath effects.(8) The benefits of using Wi-Fi 
sensing are as follows: it is a device-free method with high flexibility, it works well under both 
line-of-sight (LoS) and non-LoS (through the wall) conditions and under every lighting 
condition, and it has no issue with privacy obstruction.(9,10)

	 Wi-Fi sensing research has been attracting researchers’ attention over the last decade. 
Moreover, the advancement of model development on machine learning (ML) or deep learning 
(DL) has supported the research on Wi-Fi sensing. Some beneficial applications of Wi-Fi sensing 
are fine-grained HAR, respiration monitoring, microgesture, heartbeat monitoring, sleep 
insight, intrusion detection, fall detection, indoor localization, energy efficiency in smart 
buildings, and security and safety in a car.(11,12)

	 Most of the published papers use standard Wi-Fi cards, e.g., network interface card (NIC) and 
AX cards taken or used directly from a personal computer, making the built system bulky and 
expensive. Most findings are helpful for the HAR system and can be the benchmark of Wi-Fi 
sensing. However, low-cost and lightweight Wi-Fi sensing is needed in some implementations 
that need fast and straightforward setup and calibration. As far as the authors are concerned, few 
works focus on lightweight and high-flexibility systems. Hernandez and Bulut proposed the 
ESP32-based HAR system with CSI as the central part.(13,14) CSI shows suitable signal 
parameters for Wi-Fi sensing as it comprises the signal’s amplitude and phase for each subcarrier 
at the time the signal is transmitted. CSI is based on the orthogonal frequency division 
multiplexing (OFDM) technique used in the Wi-Fi standard to spread signals within the set 
subcarriers in a certain bandwidth.(15)

	 In this study, we aim to build a lightweight HAR system by utilizing ESP32 and CSI tools for 
CSI extraction in a single-antenna system setup. As a system limitation by nature, the CSI 
amplitude can only be used as the HAR parameter. To enhance the amplitude CSI, we need 
several preprocessing steps, including digital filtering, i.e., using Butterworth filters. For activity 
classification, we propose the ensemble stacking model EnSta-Fi formed from baseline ML 
models, e.g., k-nearest neighbor (kNN) and support vector machine (SVM), and a logistic 
regression as the final classifier. Ensemble models are robust yet light in computational 
perspectives.(16,17) Our considered activities are relatively static activities, e.g., sitting (transition 
between standing and sitting), standing (transition between sitting and standing), and slow 
walking. 
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	 The idea behind ensemble stacking is to achieve high accuracy without sacrificing the 
computational complexity in training and prediction times. Ensemble stacking has proven to be 
a highly effective method that is more stable, adaptable, and less prone to overfitting than 
traditional machine learning techniques.(16,18)

	 As our concern, the research gap that EnSta-Fi fills is that the leveraging solely on CSI 
amplitude is applied for the first time in the HAR system. Moreover, the implementation of 
ensemble stacking by combining ML models is still also limited in the HAR system. Thus, we 
highlight the contributions of EnSta-Fi in the Wi-Fi sensing-based HAR system as follows:
	 1.	 It is the first to leverage CSI amplitude in the single-antenna HAR system.
	 2.	 EnSta-Fi is built on the basis of SVM, kNN, and logistic regression.
	 To verify our proposal, we then compared EnSta-Fi with both individual k-NN and SVM and 
with DL models, e.g., bidirectional gated recurrent unit (Bi-GRU) and convolutional neural 
network (CNN). The comparison with DL enables us to see the practical approach on 
computational time (data training) and part of its accuracy.
	 This paper is organized as follows. First, we will introduce the problem statement and EnSta-
Fi summary, followed by the system model and methods by discussing the Wi-Fi sensing, CSI, 
and classification models. Then, we will show and discuss the results of this study and finally 
provide conclusions.

2.	 Data, Materials, and Methods

	 The Wi-Fi sensing technique is depicted in Fig. 1, which shows two main approaches to Wi-Fi 
sensing: learning- and modeling-based.(16) We focused on shallow learning on the learning-
based model to accommodate our approach to the low-cost, highly flexible, and lightweight 
HAR system.

2.1	 CSI

	 CSI describes the condition of a wireless channel when a signal is sent from a transmitter 
(TX) to a receiver (RX). CSI allows the receiver to know how the signal changes as it passes 

Fig. 1.	 (Color online) Wi-Fi sensing technique.
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through various propagation paths or multipaths in a channel. CSI can be represented as the  
matrix on the linear equation as shown in Eq. (1), where y is the vector for the received signal, x 
is the input vector from the pilot symbol at the transmitter, and the Gaussian noise vector is 
symbolized as η.(16)

	 y x η= + 	 (1)

CSI can then be seen as the channel frequency response of each subcarrier frequency hi:(17) 

	 ij
i iA e φ=h .	 (2)

Here, hi consists of both the real and imaginary parts, ( )i h  and ( )i h , respectively. Ai and ϕi 
represent the amplitude and phase shifting in the i-th subcarrier, respectively, which can be 
estimated as(7,19)

	 ( ) ( )2 2
i i iA = + h h ,	 (3)

	 ( ) ( )( ) tan2 ,i i iaφ =  h h .	 (4)

Application in an indoor environment yields variations, which affect the interaction between TX 
and RX. The multipath signal and propagation between TX and RX are complex in nature. This 
multipath physical signal can be defined as(7) 
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In Eq. (5), the amplitude, phase, and distance of the mth path are denoted by Am, ϕm, and dm, 
respectively. The variable fi represents the subcarrier frequencies, while c is the speed of light. 
On the basis of this perspective, the path can be categorized into two types: static and dynamic. 
	 The static path (Ωs) refers to the path where the signal reflects off stationary walls or 
immobile objects. Conversely, the dynamic path (Ωd) represents the path influenced by the 
motion of a human body or moving objects. The first expression on the right-hand side of Eq. (6) 
is the static component (hstatic), whereas the next is the dynamic component (hdynamic).(7)
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2.2	 HAR system configuration

	 Our proposal uses ESP32 as the main component in the data acquisition process, which acts 
as a sensing element in this system. The initial configuration of ESP32 involves designating the 
access point (AP) as TX and the station device (STA) as RX. Our CSI system begins by 
configuring ESP32 as AP and STA using the C and C++ programming languages and the ESP-
IDF framework with Visual Studio Code (VS Code) as the development environment. ESP32 is 
then connected to Raspberry Pi via a serial connection. We developed a web-server-based 
system for data collection. The system runs on Raspberry Pi via a Docker container, including a 
web server, a database, and a web interface. After the system is initialized, the web interface can 
be opened via the IP address and port of Raspberry Pi. 

2.3	 Measurement campaign

	 CSI data collection was carried out in a classroom in our department. The measurement area 
was 5 × 5 m2. Figure 2 shows CSI data acquisition; Raspberry Pi and ESP32 (STA) were placed 
in the front left corner of the room at approximately 2.5 m from the object. All devices were 
placed at a height of 0.8 m from the floor, and facing the center of the measurement area, where 
the object was located, in our proposal, one adult person (co-author) performed specific 
activities, namely, sitting, standing (both transition of standing-sitting or vice versa), and 
walking. In this research, each measurement was conducted for 20 s, and each activity was 
performed 10 times with certain activity procedure. The objectives were to detect Wi-Fi signal 
changes when the object was doing an activity. The parameter considered in this measurement 
was the change in amplitude resulting from the activity. Figure 3 shows the actual measurement 
campaign.

2.4	 EnSta-Fi: ensemble stacking-based Wi-Fi sensing

	 Ensemble stacking classification is a machine learning method that combines multiple base 
models to improve prediction accuracy. In this approach, the outputs of the base models are used 

Fig. 2.	 (Color online) CSI data acquisition.
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as inputs to an advanced model, called a metamodel, which is responsible for producing the final 
prediction.(16,18) The reason behind stacking baseline ML models, e.g., kNN and SVM with the 
meta-learner, i.e., logistic regression, is to combine their strong aspects. For instance, kNN is 
superior in local decision boundaries but struggles in high-dimensional data, and SVM is strong 
in high-dimensional data but sensitive to kernel type. Thus, stacking allows combining multiple 
diverse models and achieves higher performance prediction from the stacking process. 
Furthermore, stacking takes advantage of the base models’ strengths, reducing the risk of 
overfitting and improving prediction accuracy.
	 In our approach, the collected data go through a preprocessing stage that begins with 
amplitude extraction and continues with filtering using a Butterworth filter for denoising CSI 
amplitude data. The preprocessed data are then trained using two baseline ML models, kNN and 
SVM. The output of these models is classified using logistic regression as a meta-learner or 
metamodel that takes predictions from Level-0 models to make final decisions regarding 
recognized activities. Figure 4 shows our ensemble stacking model architecture diagram.
	 The stacking process involves the following steps: (1) base models are trained with the 
original data, (2) predictions from the base models are made on a separate validation set, (3) 
metamodels are trained using predictions from the base models as input, and (4) final 
classification results are obtained on the basis of the metamodel. Thus, ensemble stacking is 
advantageous in its ability to combine different types of model. The parameter tuning to achieve 
a high-performance model was conducted in each baseline model. The hyperparameter tuning 
was performed by using GridSearchCV, resulting in the following setup: for KNN, the number 
of neigbors was equal to 6, the weight was made uniform, and the metrics distance was 
Euclidean, while for SVM, the regularized parameter C was 100, scale gamma was selected, and 
the kernel type was RBF. The model was built in the Google Colaboratory platform with the 
runtime type of Python 3 with the selected hardware accelerator CPU. This setting approached 
the lightweight implementation only on CPU instead of GPU. 

Fig. 3.	 (Color online) Actual measurement setup.
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3.	 Results and Discussion

3.1	 CSI preprocessing data
	
	 We applied the Butterworth filter to remove noise and outliers in the raw CSI data. The cutoff 
parameter of the Butterworth filter is determined by varying values from 0.1 to 0.4 to determine 
the best value for denoising CSI data. This result shows that a cutoff frequency of 0.4 effectively 
compensates for noise reduction and preserves important features of CSI data without the 
significant loss of important information. Figure 5 shows CSI data after applying the Butterworth 
filter and showing CSI on five selected subcarriers for a faster observation of CSI’s pattern 
changes.(19) The filtered CSI shows that the walking CSI signal is the most distinguishing 
characteristic with peaks and bottoms clearly showing signal changes. While sitting and 
standing have similar characteristics, the static CSI is represented by the empty-room CSI.

3.2	 Performance results of EnSta-Fi

	 The following results were used to evaluate the performance of two individual models, SVM 
and kNN, in classifying various activities based on CSI data. Precision, recall, and F1-score 
metrics were used for performance evaluation. In addition, we compared the ensemble stacking 
model with the individual SVM and KNN models. Furthermore, the GRU and CNN models 
were also included in the comparison to position the proposed method in terms of performance 
with computational complexity. Table 1 shows our proposed ensemble stacking with the 
individual baseline MLs and DL.
	 Table 1 shows that in terms of all performance metrics, our proposed ensemble stacking is 
superior, especially in terms of accuracy and training time. The precision is slightly lower than 
that of GRU, and the prediction time is only 0.19 longer than that of CNN. kNN and SVM give 
overall good performance and computational complexity results with very short training and 
prediction times. Our proposed ensemble stacking improves these baseline MLs, especially in 
almost all performance metrics. This comparison is depicted in Fig. 6.
	 The red bar in Fig. 6 represents our ensemble stacking; with these results, our proposal stands 
between high performance and low computational time. The results indicate that the ensemble 
stacking approach outperforms both SVM and kNN in each metric, achieving an accuracy of 

Fig. 4.	 (Color online) EnSta-Fi architecture.



3876	 Sensors and Materials, Vol. 37, No. 9 (2025)

Table 1
Comparison of performance metrics between ensemble stacking and other models.
Metrics kNN SVM Ensemble stacking GRU CNN
Accuracy 90.32% 91.40% 92.59% 92.50% 85.00%
Precision 90.53% 91.45% 92.68% 95.00% 90.83%
Recall 90.32% 91.40% 92.59% 92.50% 85.00%
F1-score 90.18% 91.38% 92.59% 92.00% 84.33%
Training time 0.0015 s 0.4239 s 3.2 s 130 s 8 s
Prediction time 0.1848 s 0.308 s 0.39 s 4 s 0.20 s

Fig. 6.	 (Color online) Comparison of performance metrics between EnSta-Fi and other models.

Fig. 5.	 (Color online) Filtered CSI. (cw) CSI for sitting, standing, empty room, and walking.

Fig. 5.	 (Color online) Filtered CSI. (cw) CSI for sitting, standing, empty room, and walking.
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92.59%, compared with SVM and kNN with 91.40 and 90.32%, respectively. The ensemble 
stacking model performs better than the individual SVM and kNN models. The model with 
ensemble stacking has higher accuracy, precision, recall, and F1-score than both models, 
reflecting its ability to combine the strengths of several models.
	 Compared with deep learning models, GRU and CNN require significantly longer training 
times. The GRU model takes 138 s to train, whereas the CNN model requires 8 s. This 
comparison shows that ensemble stacking achieves an accuracy similar to those of deep learning 
models, requiring much less training time. This is the result of the proposed model EnstaFi that 
can generally be trained in parallel (bagging) and by built-in early stopping so that the training 
time is much less than those of DL models. Thus, ensemble stacking may offer a more efficient 
solution for applications with limited time and computational resources than deep learning 
methods. Overall, our proposed model successfully compensates for the weaknesses of each 
model, making the ensemble method well suited for handling diverse data patterns and achieving 
balanced predictions that lead to improved performance. Our approach considers coarse-grained 
and relatively static activities: sitting, standing, and walking. CSI data show a relative change in 
walk activity, as seen in Fig. 5. We validate this by observing the performance metric for each 
activity, as shown in Table 2.
	 Table 2 shows that sitting and standing have similar patterns, making it difficult for the 
model to differentiate between these two activities; thus, their performance tends to be lower. On 
the other hand, walking showed the best performance apart from the empty room. Walking 
created more dynamic and clear movement patterns, providing signals more easily distinguished 
by the model, resulting in high classification accuracy. An empty room reflects a state of no 
activity, which is usually more manageable for the model to recognize because there is no 
variation (static) or no movement, thus having higher performance.

4.	 Conclusions

	 We presented the proposal for using a single-antenna setup for the HAR system leveraging its 
CSI amplitude by proposing EnSta-Fi, the ensemble stacking model, which incorporates high 
performance, short computational time, and low complexity. The two baseline ML models, kNN 
and SVM, are the backbone of the proposed model with the final classifier, i.e., logistic 
regression. We considered relatively static activities for Ensta-Fi evaluation, such as sitting, 
standing, and walking. The validation and position of our proposal are compared with those of 
the individual kNN and SVM and the DL-based GRU and CNN primarily for their accuracy 

Table 2
Performance metric for each activity.
Metric vs activity Accuracy Precision Recall F1-score
Sitting 90% 83% 73% 77%
Standing 91% 74% 83% 78%
Walking 99% 99% 99% 88%
Empty room 99% 96% 99% 98%
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performance and for their training and prediction time. Our EnSta-Fi yields higher accuracy 
results than kNN, SVM, and DL-based GRU and CNN. Moreover, our proposal has a shorter 
training time of only 3.2 s than GRU and CNN with training times of 180 and 8 s, respectively. 
From here, we can conclude that EnSta-Fi has comparable performance to the DL-based models 
and has a significantly short computational time. Thus, we can have a simple, flexible, and 
lightweight system by leveraging amplitude CSI from ESP32 in a single-antenna system setup 
with the ensemble stacking model for straightforward HAR system deployment.
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