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	 In this research, we present a method for predicting anomaly flying height (FH) profiles in 
hard disk drive (HDD) manufacturing by analyzing FH data at the FH1 stage. Anomalies at FH1 
can lead to calibration issues at FH2, disrupting the production process. We propose an AI-based 
approach using unsupervised clustering techniques to group FH profiles of the read/write head. 
We evaluated four clustering algorithms, KMeans, MiniBatchKMeans, Birch, and 
BisectingKMeans, along with the Elbow method to determine the optimal number of clusters. 
By identifying anomalous FH profiles early at FH1, the method enables proactive intervention, 
reducing calibration process time and improving production efficiency. Our model achieved an 
accuracy of 0.939 without relying on manual feature selection (e.g., pressure and temperature), 
which is often difficult to capture using traditional linear or rule-based models owing to the 
nonlinear nature of FH profiles. These results demonstrate the practical potential of clustering 
techniques in enhancing HDD manufacturing processes.

1.	 Introduction

	 Flying height (FH) calibration is a critical process in hard disk drive (HDD) manufacturing. 
It involves heating a coil element with electric current to induce the protrusion of the read/write 
head until it reaches the target FH, the clearance between the head and the disk surface. This 
protrusion, controlled by HDD firmware and preamp hardware, is converted from digital-to-
analog converter (DAC) units to milliwatts to ensure optimal read/write performance. Multiple 
FH calibration stages are performed throughout the manufacturing process to meet quality and 
standardization requirements. However, anomalies in FH calibration can occasionally occur. 
These anomalies are reflected in the FH profile, reported in DAC units across the disk surface, 
and divided into 240 zones per head. Modern HDDs can have up to 20 read/write heads, each 
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flying independently. In this study, we focus on two key calibration stages, FH1 and FH2, as 
shown in Fig. 1.
	 Previous research has explored physics-based approaches to improve FH calibration.(1–3) 
Juang et al.(4) modeled nonlinear FH protrusion under varying environmental conditions. 
Boettcher et al.(5) proposed a dynamic FH model with feedforward control to reduce variation. 
Abdevand et al.(6) developed an analog circuit (ASIC) using FH sensors to measure head-to-disk 
distance, enhancing storage capacity. While these studies aimed to optimize FH profiles, they 
did not incorporate AI techniques. In 2024, Kanjanapruthipong et al.(7) introduced an AI-based 
method for FH calibration, predicting FH profiles in DAC units and significantly reducing 
calibration time.
	 Building on this, we addressed anomalies caused by mechanical interference and unexpected 
head deformation, as shown in Fig. 2, which directly impact FH calibration and DAC profiles. 
We propose an unsupervised learning approach using clustering techniques, KMeans,(8–13) 
MiniBatchKMeans,(14) Birch,(15) and BisectingKMeans,(16) combined with the Elbow 
method(17,18) to determine the optimal number of clusters. This method enables the early 
detection of anomalous FH profiles at FH1, preventing defective drives from proceeding to FH2, 
thereby improving calibration efficiency.

Fig. 1.	 (Color online) Overview of FH calibration and the proposed anomaly FH prediction method designed to 
reduce time loss related to potential issues.

Fig. 2.	 (Color online) Illustration of an anomalous read/write head exhibiting unexpected deformation.
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2.	 Experimental Procedure

2.1	 Points of interest in FH calibration

	 Kanjanapruthipong et al.(7) investigated the calibration of FH in HDDs by analyzing the 
protrusion value of the read/write head, expressed in DAC units. This value represents the 
distance from the tip of the head to the target FH position, referred to as point B. The distance 
labeled A, known as thermal protrusion, was modeled and predicted through experimental 
analysis. As shown in Fig. 3 (reproduced from Ref. 7 under CC BY 4.0 License. https://doi.
org/10.18494/SAM4825), the thermal protrusion (distance A) at FH1 across each zone is used as 
input to predict the corresponding value at FH2. This relationship forms the basis of the current 
study, which aims to apply clustering techniques to classify early anomalies in FH profiles at 
FH1. By identifying these anomalies early, the method can prevent defective drives from 
proceeding to FH2, thereby improving calibration efficiency.

2.2	 Analysis of FH calibration patterns

	 An analysis of the DAC profiles from FH calibration revealed distinct differences between 
unhealthy and healthy read/write heads. In HDDs where certain heads were unhealthy to 
proceed to FH2, the FH1 DAC profiles exhibited significant deviations compared with those of 
functional heads. As shown in Fig. 4, the blue line represents the DAC profile of an unhealthy 
head, whereas the red line shows a typical profile from a healthy head. These anomalies are 
clearly observable at the FH1 stage, indicating the potential for early detection.

2.3	 Data preparation

	 The training dataset was constructed using data from 44 HDDs, each containing 20 read/
write heads and 240 zones per head, resulting in a total of 211200 data points (44 × 20 × 240). 
Among these, 58 read/write heads were identified as unhealthy, whereas 822 were classified as 
healthy. Each data sample consists of 240 features, corresponding to the DAC values across all 
zones for a single head at the FH1 stage. These FH1 DAC profiles, representing both unhealthy 

Fig. 3.	 (Color online) Key points of interest on the read/write head relevant to FH calibration.(7)
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and healthy heads, were used as input to the clustering model. The model’s objective was to 
group the profiles into clusters that reflect distinct calibration patterns, enabling the identification 
of anomalous profiles associated with potential issues.

2.4	 Clustering techniques and evaluation criteria

	 In this study, we propose an AI-based approach for predicting anomaly FH profiles at FH1 
using clustering algorithms suitable for unsupervised learning. The focus is on four clustering 
methods, KMeans, MiniBatchKMeans, Birch, and BisectingKMeans, with the Elbow method 
employed to determine the optimal number of clusters.
	 KMeans is a popular unsupervised learning algorithm that divides data into k clusters, each 
consisting of the most similar data. This algorithm iteratively alternates between assigning 
points to the nearest cluster and updating cluster centroids until the result convergence. KMeans 
aims to find the value that minimizes the total distance within clusters, as shown in Eqs. (1) and 
(2), also known as the Within-Cluster Sum of Squares (WCSS).
	 MiniBatchKMeans is a scalable variant of KMeans that updates cluster centroids 
incrementally using small random subsets of the data. This reduces computational cost and 
memory usage while maintaining clustering performance similar to standard KMeans.
	 Birch is a hierarchical clustering method that builds a compact Clustering Feature tree from 
the input data. It incrementally clusters incoming samples using threshold-based criteria and is 
particularly effective for large datasets owing to its low memory usage and high efficiency.

Fig. 4.	 (Color online) Examples of unhealthy (blue lines) and healthy (red lines) patterns observed during FH1 
(upper panel) and FH2 (lower panel) calibration stages for selected read/write heads.
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	 BisectingKMeans applies KMeans with k = 2 to partition the dataset into two subgroups, 
often resulting in better-separated clusters than standard KMeans.
	 The Elbow method is a technique to find the optimal number of clusters k by measuring the 
WCSS and looking for the point at which the error decays more slowly, like the elbow of an arm. 
The WCSS function helps measure the compactness of the clusters by summing the squared 
distances between each data point and the centroid of its assigned cluster, as shown in Eq. (3). 
The Elbow method can run KMeans, MiniBatchKMeans, Birch, and BisectingKMeans for 
various values ​​of k, and calculate the WCSS for each k, then plot the WCSS against k and find 
the Elbow point, which is the point at which the WCSS begins to decay more slowly. This allows 
us to calculate the rate at which the WCSS changes between different values ​​of k and find the 
Elbow point, as shown in Eq. (4). Therefore, a lower WCSS means that the cluster is compact and 
well organized.
	 KMeans objective function:
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Here, k is the number of clusters, Ci is the ith cluster, µi is the centroid of the cluster Ci, x is each 
data point, and ||x − µi||2 is the squared distance between the data x and the centroid of the 
cluster. Each centroid µi is updated as the mean of the points in its cluster.
	 A confusion matrix is a table for evaluating the performance of a model that performs 
classification tasks by showing the number of values ​​the model correctly and incorrectly 
predicts. A 2 × 2 confusion matrix for a two-class classification problem (binary classification) 
describes that true positive (TP) predicts positive and is positive, false negative (FN) predicts 
negative but is positive, false positive (FP) predicts positive but is negative, and true negative 
(TN) predicts negative and is negative. These values can be used to calculate important statistical 
values such as accuracy (overall accuracy) as shown in Eq. (5), precision (prediction accuracy of 
positive) as shown in Eq. (6), recall or sensitivity (the ability to correctly identify positive cases) 
as shown in Eq. (7), and F1-score (average between precision and recall) as shown in Eq. (8).
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3.	 Results and Discussion

3.1	 Exploratory experiments with cluster-k values

	 To explore the effectiveness of clustering in identifying anomalous FH profiles, we conducted 
experiments using the KMeans algorithm with different values of k (3, 5, and 7). The goal was to 
observe how well the clusters correspond to known unhealthy and healthy read/write heads, as 
determined through the physical analysis of HDDs. A Mosaic plot was used to visualize the 
relationship between the clustering results and the actual status. In these plots, each bar 
represents the frequency of read/write heads assigned to a particular cluster. The color coding 
distinguishes between unhealthy (red) and healthy (blue) heads. The x-axis represents the cluster 
labels generated by KMeans. As shown in Fig. 5, the left, middle, and right plots correspond to k 
values of 3, 5, and 7, respectively. Clusters with a high proportion of red bars indicate groups 
where unhealthy heads are concentrated. These clusters are considered effective in identifying 
anomalous FH profiles at the FH1 stage.
	 After identifying the target groups through clustering, the performance of the model in 
predicting outcomes during FH calibration was evaluated using a confusion matrix. The results 
revealed varying levels of accuracy depending on the number of clusters used in the KMeans 
algorithm. Specifically, clustering with k = 3 yielded an accuracy of 0.545, while k = 5 resulted 
in a slightly lower accuracy of 0.508. Notably, clustering with k = 7 achieved a significantly 
higher accuracy of 0.753, as shown in Fig. 6. These findings suggest that increasing the number 
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of clusters can enhance the model’s ability to distinguish between unhealthy and healthy read/
write heads, although the choice of k must balance granularity with generalization.

3.2	 Applying the Elbow method to determine the optimal cluster-k experiment

	 After observing that using arbitrary values of k (such as 3, 5, and 7) resulted in suboptimal 
prediction accuracy, we applied the Elbow method to identify the most appropriate number of 
clusters. The Elbow method is a widely used technique for determining the optimal k by 
analyzing the rate of change in WCSS. To enhance the robustness of the analysis, the experiment 
was extended to include several commonly used clustering algorithms: KMeans, 
MiniBatchKMeans, Birch, and BisectingKMeans. The initial parameters of those algorithms are 
presented in Table 1. The Elbow method was applied to each algorithm to evaluate the 
consistency of the optimal cluster count across different techniques. The results showed that all 
four algorithms suggested a similar optimal number of clusters, approximately k = 10. This 
consistency reinforces the reliability of the Elbow method in this context. The relationship 
between the number of clusters (k) and the WCSS for each algorithm is shown in Fig. 7. At k = 1, 
the WCSS is notably high. As k increases, the WCSS decreases steadily. The “elbow” point, 
defined as the point at which the rate of decrease in WCSS begins to slow, indicates the most 
suitable value of k for effective clustering.

Fig. 5.	 (Color online) Mosaic plots showing the relationship between unhealthy and healthy read/write heads 
across KMeans clustering results: (a) k = 3, (b) k = 5, and (c) k = 7.

Fig. 6.	 (Color online) Experimental results of KMeans clustering: (a) k = 3, accuracy = 0.545; (b) k = 5, accuracy = 
0.508; (c) k = 7, accuracy = 0.753.

(a) (b) (c)

(a) (b) (c)
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Table 1
Initial parameters of KMeans, MiniBatchKMeans, Birch, and BisectingKMeans used in the Elbow method.

Model
n_clusters (k) 

used in the 
elbow method

init n_init max_iter tol Other key parameters

KMeans 1 - 30 k-means++ auto 300 0.0001 algorithm = ’lloyd’

MiniBatchKMeans 1 - 30 k-means++ auto 100 0.0
batch_size = 1024, 

reassignment_ratio = 
0.01

Birch 1 - 30 – – – – threshold = 0.5, 
branching_factor = 50

BisectingKMeans 1 - 30 k-means++ auto 300 0.0001 –

Fig. 7.	 (Color online) Elbow method using distortion plots for determining optimal number of clusters (k): (a) 
KMeans, (b) MiniBatchKMeans, (c) Birch, and (d) BisectingKMeans.

(a) (b)

(c) (d)
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	 After determining the optimal number of clusters, k = 10, across all four clustering models, a 
Mosaic plot was employed to visualize the relationship between confirmed unhealthy and 
healthy read/write heads. This visualization was then compared with the clustering results from 
KMeans, MiniBatchKMeans, Birch, and BisectingKMeans. As shown in Fig. 8, red bars 
represent unhealthy read/write heads, whereas blue bars indicate healthy ones. The x-axis 
denotes the cluster indices generated by each clustering algorithm. Clusters characterized by 
prominently tall red bars were identified as those most indicative of read/write heads likely to be 
unhealthy during the FH calibration.
	 After identifying the target group through the prediction method applied during the FH 
calibration of the read/write head, the results were reevaluated using a confusion matrix. The 
findings demonstrated that the Elbow method provided satisfactory experimental outcomes with 
high accuracy across all models. Specifically, KMeans achieved an accuracy of 0.939, 
MiniBatchKMeans 0.914, Birch 0.915, and BisectingKMeans 0.910, as shown in Fig. 9. A 
detailed comparison of the experimental results and statistical performance of the four clustering 
algorithms, based on the Elbow method, and additional exploratory experiments using KMeans 
with varying cluster values (k) are presented in Table 2.

Fig. 8.	 (Color online) Mosaic plots comparing unhealthy and healthy read/write heads across clusters generated by 
the four clustering algorithms.
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	 After completing the clustering-based prediction process, a graph was generated to visualize 
the grouping of FH DAC profiles, highlighting anomalous profiles of the read/write heads. The 
results demonstrated consistent and satisfactory performance across all four clustering 
algorithms. As shown in Fig. 10, solid-colored lines represent clusters associated with anomalous 

Fig. 9.	 (Color online) Accuracy results of the four clustering algorithms: (a) KMeans (0.939), (b) 
MiniBatchKMeans (0.914), (c) Birch (0.915), and (d) BisectingKMeans (0.910).

Table 2
Experimental results and statistical performance of the four clustering algorithms using the Elbow method, 
including exploratory experiments with KMeans at varying cluster values.

Model Elbow 
method Cluster-k TP–FN–FP–TN Accuracy Precision Sensitivity F1-score

KMeans yes 10 794–28–26–32 0.939 0.968 0.966 0.967
MiniBatchKMeans yes 10 768–54–22–36 0.914 0.972 0.934 0.953
Birch yes 10 764–58–17–41 0.915 0.978 0.929 0.953
BisectingKMeans yes 10 761–61–18–40 0.910 0.977 0.926 0.951
KMeans no 3 430–392–8–50 0.545 0.982 0.523 0.683
KMeans no 5 400–422–11–47 0.508 0.973 0.487 0.649
KMeans no 7 617–205–12–46 0.753 0.981 0.751 0.850

(a) (b)

(c) (d)
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FH profiles, whereas the dashed black line denotes the cluster corresponding to normal FH 
profiles.

4.	 Conclusions

	 In this study, we investigated the anomaly detection in the FH calibration of read/write heads 
and proposed a method for predicting anomalous FH profiles in HDDs using clustering 
techniques combined with the Elbow method, which determines the optimal number of clusters 
for the dataset. The four clustering algorithms, KMeans, MiniBatchKMeans, Birch, and 
BisectingKMeans, demonstrated satisfactory performance, with the highest accuracy reaching 
0.939 and an F1-score of 0.967. These results indicate that the model effectively identifies true 
anomalies while minimizing false positives. The proposed approach is well suited for integration 
into AI-driven manufacturing systems. It enables the early detection and classification of 

Fig. 10.	 (Color online) Visualization of FH DAC profile clustering, showing both anomalous and normal FH 
profiles across all four clustering algorithms.
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anomalies in FH profiles at the FH1 stage. Consequently, HDDs identified with potential issues 
can be excluded from subsequent production steps, such as FH2 calibration. This proactive 
filtering not only prevents unnecessary calibration attempts likely to become unhealthy but also 
enhances the overall efficiency and reliability of the FH calibration process.
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