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	 International construction projects inherently involve risks that fundamentally differ from 
those encountered in domestic projects due to variations in legal, political, and economic 
environments. Given the confidentiality and data limitations of such projects, this study 
introduces an innovative approach by conceptualizing expert judgment as sensor-like data to 
compensate for the absence of direct measurements. Specifically, Expert-Driven Experience and 
Intuition-Based Sensing Data are treated as qualitative proxies for sensor input, enabling the 
extraction of structured knowledge from tacit insights. These data are integrated with Partial 
Least Squares Structural Equation Modeling to quantitatively analyze the organic interactions 
and causal relationships among country-specific risk factors and their impact on cost overruns. 
The proposed framework demonstrates enhanced reliability and robustness, even in data-
constrained contexts. The empirical analysis reveals that ‘Environmental’ risk exerts the most 
significant direct effect on cost overruns (standardized path coefficient = 0.360), whereas ‘Legal’ 
risk has the smallest indirect impact (0.067). The results emphasize the importance of economic 
and environmental risks, offering a foundation for developing targeted risk management 
strategies to ensure the financial stability of construction projects.

1.	 Introduction

	 International construction projects inherently involve risks that are fundamentally different 
from those encountered in domestic projects executed by contractors. These risks arise owing to 
differences in the legal and political environments across countries, among which country risk is 
widely recognized as a critical determinant in international construction projects. In the context 
of construction, risk is defined as any factor that poses potential threats and losses, negatively 
affecting the success of a project.(1,2) Country risk is generally referred to as the “responsibility 
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of foreigners” and is described as the risk that creates significant uncertainty for foreign firms 
operating in a particular country.(3,4) 
	 Country risk encompasses factors that directly affect the operation and performance of a 
project, including national laws and regulations, policy changes, economic volatility, cultural 
differences, and environmental regulations. In the case of international construction projects, it 
is crucial to systematically analyze the interactions between various country risk factors, rather 
than evaluating individual risks independently. Thus, a quantitative analysis of the organic 
interactions and causal relationships between country risk factors is essential. 
	 Given the inherent data scarcity and confidentiality constraints in international projects, 
direct measurement of many country risk variables is often infeasible. In this context, expert 
judgment can be conceptualized as sensor-like qualitative data, serving as proxy “sensing 
inputs” that capture tacit insights otherwise unobtainable from conventional datasets.
	 To conduct a quantitative analysis of these causal relationships between country risk 
elements, a sufficiently large sample size is required; however, existing studies have faced 
limitations in performing such analyses owing to difficulties in sample collection. In particular, 
the inherent confidentiality of international construction projects has further exacerbated the 
challenges in data collection.(5,6) Therefore, there is a need for methods that enable the collection 
of a sufficient sample size for such analyses.
	 Building on the notion of experts as “human sensors”, this study treats Expert-Driven 
Experience and Intuition-Based Sensing Data as qualitative proxies analogous to sensor-derived 
inputs, enabling structured quantification of subjective assessments. Such sensor-inspired data 
provisioning allows us to integrate otherwise unavailable insights into an analytical framework.
	 In such cases, utilizing Expert-driven Experience and Intuition-based Sensing Data can serve 
as an effective alternative. In situations where direct data collection is challenging, quantitative 
data based on experts’ experience and intuition can be used to ensure the reliability and 
robustness of the analytical models. Here, experts can be defined as sensors providing subjective 
data.(7,8)

	 In this study, we aim to develop an analytical framework that systematically analyzes the 
interactions and causal relationships between country risk factors, leveraging Expert-driven 
Experience and Intuition-based Sensing Data, and we quantitatively assessed their impact on 
cost overruns in international construction projects. To achieve this, we employed Partial Least 
Squares-Structural Equation Modeling (PLS-SEM). PLS-SEM is a statistical technique focused 
on predictive and exploratory analysis, known for its strong performance in modeling 
relationships between latent variables despite data non-normality and small sample sizes. PLS-
SEM is increasingly attracting attention as a methodology capable of effectively identifying 
complex relationships between variables, even with smaller sample sizes, compared with the 
traditional Covariance-based Structural Equation Modeling (CB-SEM).
	 By integrating sensor-inspired expert inputs into PLS-SEM, the proposed framework bridges 
the gap between qualitative insights and quantitative modeling, offering a technology-aligned 
approach to risk interdependency analysis under data-constrained conditions. The structure of 
this paper is as follows. First, we review the concept and classification of country risk, including 
existing risk analysis methodologies. Second, we present the research methodologies employed 
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in country risk analysis. Third, we explain the key findings derived from the analysis results. 
Fourth, we discuss the interpretation and implications of the findings. Finally, we outline the 
limitations of the study and suggest directions for future research, with the expectation that it 
will contribute to the development of appropriate country risk management strategies for 
international construction projects.

2.	 Theoretical Consideration

2.1	 Country risk

	 A literature review identified that these country risks can be broadly categorized into six 
main types. The country risks identified in previous studies are classified as “Political risk”, 
“Economic risk”, “Cultural risk”, “Environment risk”, “Market risk”, and “Legal risk”. “Political 
risk” refers to the risk that a foreign company encounters in another country owing to political 
issues originating within that country that can affect the business. “Economic risk” is the risk 
impacting the business costs owing to fluctuations in wages, material costs, or exchange rates in 
the host country. “Cultural risk” involves the impact on the business owing to the religious or 
cultural differences in the host country. “Environment risk” refers to the impact on the business 
owing to the climate or ground conditions in the host country. “Market risk” is the risk affecting 
the business owing to challenges in securing local labor, materials, or equipment, as well as the 
local project experience of the workers. “Legal risk” refers to the impact on the business owing 
to the different legal systems or administrative procedures in the host country.
	 Previous studies have identified and analyzed country risks. For example, Wang et al. 
focused on political risk factors. They identified and categorized these into six areas including 
“change in law”, “delay in approval”, and “force majeure”.(9) Baloi and Price further refined the 
classification of country risks into seven categories, such as “construction practices in the host 
country”, “level of competition with local construction companies”, and “economic conditions of 
the host country”.(10) Dikmen et al.  proposed a classification system for the major country risk 
factors in international construction projects. It comprises nine categories including “cultural/
religious differences” and “political instability”.(11) Bu-Qammaz et al.  differentiated country 
risks into “country risk” related to the host country and “intercountry risk” concerning the 
differences between the host and home countries.(12) Thereby, they presented a classification 
system for these risk factors. Other studies that have identified and analyzed country risks are 
summarized in Table 1.

2.2	 Analysis of risk factor relationships

	 Analyses considering the relationships among risk factors have been performed for a long 
time. Presently, more advanced analyses that combine the advantages and mitigate the 
disadvantages are being performed. 
	 Analyzing risks in construction projects is a crucial process for developing and managing 
responses to the uncertain factors that affect project costs and durations, thereby ensuring 
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project success. Conventional methods for risk analysis include risk probability-impact (PI) 
evaluation, risk matrices, and extensive expert interviews. However, risk analysis has evolved 
through continuous research, leading to the proposal of various new methods. Recently, the 
importance of analyzing the relationships among risk factors has been emphasized, and related 
analyses are now being conducted. Previous studies focusing on these relationships are 
summarized in Table 2.
	 Previous studies have explored various methods for analyzing the relationships among risk 
factors, including Bayesian network analysis, regression analysis, analytic hierarchy process 
(AHP) analysis, and CB-SEM.(23–28) However, each of these methods has its limitations. 
Regression analysis can consider only the relationships between individual risk factors and the 
dependent variable. This hinders the estimation of the organic relationships among risk factors. 
AHP analysis allows for an analysis with a small number of samples. It can prioritize the key 
risk factors through hierarchical analysis and weight application. However, similar to regression 
analysis, it cannot estimate the organic relationships among risk factors. Bayesian network and 
CB-SEM can estimate these relationships. However, these require a large number of samples. 
For example, CB-SEM typically requires a minimum of 150 samples and is generally used to 
validate existing theories. This involves stringent assumptions and reduces the accessibility for 
analysis. 
	 Owing to these limitations, PLS-SEM has attracted attention recently. It is an analytical 
method that performs path analysis based on exploratory factor analysis and is generally used for 
theory development and prediction. PLS-SEM overcomes the limitations of CB-SEM and has 
emerged as a viable alternative. It uses nonparametric bootstrapping for significance testing of 
research models. This enables it to circumvent distributional assumptions. Additionally, PLS-
SEM is more flexible than CB-SEM with regard to the determination of the minimum sample 
size. This is because it can be utilized effectively with sample sizes smaller than 100 while 
maintaining a high level of statistical validation capability.(30) Therefore, PLS-SEM is more 
advantageous than CB-SEM when the data does not satisfy the fundamental assumptions of CB-
SEM, and the focus is more on estimation rather than validation of existing theories.

Table 1
Literature review on risk identification and analysis.
Analysis method Research method Reference

Risk breakdown structure (RBS)

Literature review, case study Ref. 13
Survey Ref. 14
Survey Ref. 15

Case study Ref. 16
Literature review, interviews Ref. 17

Literature review Ref. 18

SWOT analysis Case study Ref. 19
Questionnaire, case study Ref. 20

Risk impact analysis
Literature review, case study Ref. 21

Survey, case study Ref. 22
Literature review, case study Ref. 23
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3.	 Research Method

3.1	 Risk PI evaluation

	 The PI evaluation technique applies the concept of distance to assess the level of risk.(31) The 
distance concept refers to defining the axes of a coordinate plane as the probability and impact 
of the risk, and calculating the distance from the origin to the point representing the risk. The 
calculation method for the PI evaluation of international construction country risk factors is 
given by Eq. (1).

	 2 2  PI P I= + 	 (1)

Here, PI represents the distance from the origin to the specific risk, whereas P and I denote the 
probability of occurrence of the risk factor in construction and its impact on the construction 
costs, respectively. 

3.2	 PLS-SEM

	 PLS-SEM is a nonparametric method that estimates relationships by minimizing the 
prediction error among latent variables by repeatedly performing ordinary least squares 
regression analysis and exploratory factor analysis with principal component factor rotation. The 
structural equation model combines a measurement model (which represents the causal 
relationships between observed and latent variables) and a structural model (which represents 
the causal relationships among latent variables). In this context, measurement variables are 
directly observed variables used to measure latent variables. Latent variables are variables that 
are not observed directly and are measured indirectly through measurement variables.

3.2.1	 Measurement model

	 The evaluation of the measurement model pertains to assessing the relationship between 
latent variables and observed variables. To evaluate the measurement model, we adopted widely 
accepted thresholds for internal consistency reliability, convergent validity, and discriminant 
validity, as recommended in the PLS-SEM literature. 

Table 2
Literature review on analysis of risk factor relationship.
Analysis Method Research method Reference

Structural equation modeling (SEM) Literature review, survey Ref. 24
Case study, survey Ref. 25

AHP Case study, survey Ref. 26

Regression analysis
Case study Ref. 27

Literature review, survey Ref. 28
Survey, expert interviews Ref. 29
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	 Internal consistency reliability assesses whether the various observed variables that compose 
a latent variable are consistent. The common metrics for evaluating the internal consistency 
reliability include Cronbach’s alpha, Dijkstra–Henseler’s rho, and composite reliability (CR). 
Among these, CR is considered the most suitable metric for PLS-SEM.(32) Typically, a CR value 
of 0.6 or above is considered reasonable. This threshold supports the reliability of the constructs 
by confirming that the observed variables consistently represent the intended latent concepts. 
The formula for calculating CR is given by Eq. (2). Here, Li represents the standardized outer 
loading of measurement variable i for a specific latent variable, ei is the measurement error of 
measurement variable i, var(ei) is the variance of the measurement error, and M is the number of 
measurement variables.
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	 Convergent validity determines the degree to which the observed variables are related to their 
corresponding latent variable. It is evaluated through the average variance extracted (AVE). 
Following the criterion proposed by Fornell and Larcker,(33) an AVE value of 0.5 or higher 
indicates that a latent construct explains more than half of the variance in its associated 
indicators. The formula for AVE is given by Eq. (3). Here, λ represents the standardized loading, 
and ϵ denotes the measurement error of the variables.
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	 Discriminant validity assesses whether the observed variables are not related to other latent 
variables. The discriminant validity can be evaluated using the Fornell–Larcker criterion, cross-
loadings, and heterotrait–monotrait (HTMT) ratio. The HTMT ratio is the most suitable criterion 
for assessing discriminant validity in PLS-SEM. The acceptance criteria for HTMT can be 
broadly categorized into three types: HTMT, HTMT.90, and HTMT inference using 
bootstrapped confidence intervals. First, HTMT.85, as proposed by Clark and Watson(34) and 
Kline,(35) is the most conservative criterion. The discriminant validity is considered established 
if the HTMT ratio is less than 0.85.(32,33) Second, HTMT.90 (recommended by Gold et al.(36) and 
Teo et al.(37)) is a more general, intermediate criterion. The discriminant validity is considered 
established if the HTMT ratio is less than 0.90.(38,39) Finally, the HTMT inference using 
bootstrapped confidence intervals (proposed by Shaffer(40)) is the most liberal criterion. The 
discriminant validity is considered established if the confidence interval does not include one.(41) 
The HTMT ratio, used as the preferred criterion for assessing discriminant validity in PLS-
SEM, is computed as shown in Eq. (4).
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	 Here, Y1 and Y2 represent each latent variable, α is the average of the H–H correlations, and 
M1 and M2 are the averages of the M–H correlations for each latent variable.

	 ( )1 2
1 2

,  
  

HTMT Y Y
M M
α

= 	 (4)

3.2.2	 Structural model

	 Structural model evaluation refers to the assessment of the relationships among latent 
variables. It involves several metrics including the statistical significance and fit of path 
coefficients, coefficient of determination (R2), effect size ( f2), and predictive relevance (Q2). 
	 Multicollinearity refers to the presence of strong correlations among latent variables and is 
assessed using the internal variance inflation factor (VIF). An internal VIF below 5.0 indicates 
that multicollinearity is not a concern among the latent variables; however, an internal VIF of 5.0 
or higher suggests problematic multicollinearity. In such cases, the issue can be addressed by 
removing the problematic latent variable or by combining it with other latent constructs to 
mitigate redundancy.(42)

	 To evaluate the significance and fit of path coefficients, standardized path coefficient 
estimates are used. Path coefficients range from −1 to +1. These indicate the strength and 
direction of relationships among latent variables. A value close to −1 or +1 indicates a strong 
negative or positive relationship, respectively. Meanwhile, a value close to zero implies a weak 
relationship. The significance and fit of path coefficients should be verified using bootstrapping 
methods. If the magnitude of the t-value exceeds the critical value (typically ±1.96 at a 5% 
significance level), the path coefficient is considered statistically significant.
	 R2 serves as a measure of the explanatory capability of the structural model. It is calculated 
as the squared correlation between the actual and predicted values. In complex models such as 
PLS-SEM, a coefficient of determination (R2

adj) that accounts for the number of latent variables 
and sample size is generally used. No absolute standard exists for the coefficient of 
determination. However, values above 0.26 are generally considered to indicate a high 
explanatory capability, those between 0.13 and 0.26 a moderate explanatory capability, and those 
between 0.02 and 0.13 a low explanatory capability.
	 Effect size ( f2) measures the extent to which latent variables contribute to the coefficient of 
determination. The formula for calculating the effect size is given by Eq. (5).
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Here, Ri
2  represents the coefficient of determination for a latent variable when it is included in 

the model, and Rd
2  represents that for the same variable after reestimation with the latent variable 

removed. In general, an effect size of 0.35 or higher indicates a large effect, 0.15–0.35 indicates a 
medium effect, and 0.02–0.13 indicates a small effect.(38)
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	 Q2 assesses whether the latent variables in the structural model have predictive relevance. It 
is determined using the cross-validated redundancy measure. A value higher than zero indicates 
that the model has predictive relevance, whereas that less than zero indicates an insufficient 
predictive relevance.(38)

3.3	 Framework

	 In this study, a framework was developed to identify the latent relationships among risk 
factors with a small sample size and to determine the impact of these risk factors on cost 
overrun. The developed framework is illustrated in Fig. 1.

Fig. 1.	 (Color online) Risk analysis framework considering relationships among risk factors.
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	 In Step 1, the risks to be analyzed are collected to construct a risk breakdown structure 
(RBS). In this study, we aimed to analyze country risks in international construction projects. 
Therefore, country risk factors were investigated through previous research, and the key country 
risk factors were selected to construct the RBS. 
	 In Step 2, a basic evaluation of the risk factors is conducted. In this study, an expert survey 
was used to evaluate the country risk factors. This basic evaluation involves assessing the impact 
and occurrence probability of each country risk factor on cost overrun for international 
construction projects. The experts in this context are practitioners with experience in executing 
international construction projects.
	 In Step 3, the risk indices for the risk factors are calculated using the probability and impact 
information collected from the surveys. The risk indices are calculated by a PI evaluation, which 
is a method for comprehensively assessing the occurrence probability and impact of risks. The 
risk indices derived from this analysis help identify the apparent level of risk for each risk factor. 
Furthermore, it can be observed that the same risk factors exhibit different characteristics 
depending on spatial differences. In this study, the risk indices were calculated on the basis of 
country risk factors.
	 In Step 4, a PLS-SEM analysis is conducted using the calculated risk indices to reveal the 
latent relationships among the risk factors and determine their impact on cost overrun.

4.	 Results

4.1	 RBS

	 In this study, the RBS of country risk factors proposed in a previous research was utilized.(43) 
First, a total of 29 risk factors were identified by integrating overlapping and semantically 
similar risk factors. Second, 21 key country risk factors primarily considered in international 
construction projects were derived through consultations with experts experienced in executing 
such projects. Country risks were categorized into six types: Political, Economic, Culture, 
Environment, Market, and Legal. The finalized RBS is presented in Table 3. 

4.2	 Risk PI evaluation

	 In this study, a PI evaluation of country risk factors was conducted using survey data. 
Through this evaluation, the risk levels of each factor were calculated, and their risk ranks were 
derived. The survey served as a “detection sensor” that collected data on risks by leveraging the 
expertise of professionals to identify and evaluate country risk factors.(44) The survey data 
consisted of 93 responses regarding country risk factors, as outlined by Na et al.(43) 

	 The survey targeted Korean experts with experience in executing international construction 
projects. The evaluation criteria used in the survey for risk factors were categorized into 
probability and impact. Probability refers to the likelihood that country risk factors will occur 
during international construction projects. Impact refers to the extent to which these risk factors 
affect construction cost. The evaluations were conducted using a 7-point Likert scale, ranging 
from “Very Low” (1) to “Very High” (7).
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	 The PI evaluation of country risk factors revealed the top five factors most significantly 
affecting international construction costs: “En1 (economic/financial downturn in target country)”, 
“L1 (delay in licensing and construction paperwork process)”, “M4 (difficulty in securing local 
material/equipment)”, “E2 (fluctuation in wage or unit price of materials)”, and “En3 (ground/
territorial effects)”. The PI evaluation results of the country risk factors are summarized in 
Table 4.

4.3	 Results of PLS-SEM for country risk factors

4.3.1	 Measurement model evaluation results

	 In this study, we constructed a measurement model based on the PI evaluation results of the 
previously identified risk factors and performed a significance assessment of the measurement 
model. From the significance verification, three risk factors were determined to be 
nonsignificant: “En1 (climate/weather-related impacts)”, “C1 (language barriers and cultural 
differences)”, and “C2 (religious and cultural differences)”. Therefore, these were excluded from 
the analysis. The risk factor “C3 (conflicts with relevant organizations)” was excluded from the 
significance evaluation because it individually represented a “Culture” risk. For the remaining 
measurement variables (which were not considered inadequate), the CR values exceeded the 
reasonable threshold of 0.6. This ensured internal consistency reliability. The results of the 
internal consistency reliability evaluation are shown in Table 5.

Table 3
Identification of country risk factors in international construction projects.
Category Item Risk

Political
P1 Interference and regulation by state and central government
P2 Business suspension and adverse results due to regime change, civil war, etc.
P3 Corruption in target country, such as bribery, conspiracy, etc.

Economic
E1 Economic/financial downturn in target country
E2 Fluctuation in wage or unit price of materials
E3 Effects of fluctuations in international currencies and exchange rates

Culture
C1 Language barrier and cultural differences
C2 Conflict due to religious and cultural differences
C3 Conflict with relevant organizations, etc.

Environment

En1 Climate and weather effects
En2 Force majeure effects
En3 Ground/territorial effects
En4 Environmental protection regulation in the target country

Market

M1 Status of technical personnel in target country
M2 Different field conditions from design
M3 Lack of infrastructure
M4 Difficulty in securing local material/equipment
M5 Project experience in target country

Legal
L1 Delay in licensing and construction paperwork process
L2 Irrational claims and litigation
L3 Unfair imposition of tax and application of tax rates
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	 Next, in the evaluation of convergent validity, the measurement variables achieved an AVE 
exceeding the reasonable threshold of 0.5. This validated the relationship between the latent and 
measurement variables. The results of the AVE evaluation are presented in Table 6.
	 Finally, in the evaluation of the discriminant validity, the HTMT ratios of the measurement 
variables were below 0.85. This verified that the individual measurement variables did not relate 
to the other latent variables, thereby ensuring discriminant validity. The results of the HTMT 
evaluation are shown in Table 7. Note that the “Political” category (composed of one 
measurement variable) was excluded from the HTMT evaluation criteria.
	 The thresholds applied for evaluating the measurement model were selected in accordance 
with established guidelines for PLS-SEM to ensure the reliability and validity of the constructs. 
The CR values for all latent variables exceeded the threshold of 0.6, indicating satisfactory 
internal consistency reliability across the measurement model. Similarly, the AVE values 
surpassed the 0.5 benchmark, thereby confirming convergent validity and demonstrating that 
each latent construct adequately captures the variance of its associated indicators (Fornell and 
Larcker(33)). Furthermore, the HTMT ratios for all constructs were below the conservative 
threshold of 0.85, as recommended by Clark and Watson(34) and Kline,(35) thereby verifying 
discriminant validity and confirming the empirical distinctiveness of the latent constructs.
	 Collectively, these results substantiate the robustness of the measurement model, despite the 
challenges associated with the relatively small sample size, which is a common limitation in 
empirical studies involving international construction projects.

Table 4
Results of PI evaluation for country risk factors.

Rank Risk factors Results Rank Risk factors Results Rank Risk factors Results

1 En 1 5.408 8 E 3 4.317 15 En 4 3.654
2 L 1 4.715 9 M 2 4.293 16 C 1 3.570
3 M 4 4.644 10 P 1 4.127 17 L 3 3.258
4 E 2 4.565 11 L 2 4.076 18 C 3 3.176
5 En 3 4.461 12 M 3 4.025 19 C 2 3.120
6 M 1 4.426 13 En 2 3.752 20 P 2 2.976
7 M 5 4.418 14 E 1 3.726 21 P 3 2.972

Table 5
Internal consistency reliability evaluation of the measurement model.
Category CR values
Economic 0.883
Environment 0.871
Legal 0.853
Market 0.886
Political 0.826
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4.3.2	 Assessment of structural model

	 In this study, the structural model was evaluated to identify the impact relationships among 
latent variables. The results are shown in Fig. 2.
	 First, the significance and fit of the path coefficients were assessed. All the latent variables 
had path coefficients that did not include zero within their confidence intervals. The t-values and 
p-values satisfied the acceptance criteria, being above 1.96 and below 0.05, respectively. In terms 
of the relationship between the country risk factors and cost overrun, “Environment” risk was 
verified to have a direct impact on cost overrun. Meanwhile, “Culture”, “Economic”, and 
“Legal” risks were observed to have indirect effects. Among the relationships among country 
risk factors, “Culture” risk was observed to directly affect “Environment” risk. “Economic” risk 
directly impacts “Environment”, “Market”, and “Political” risks. Meanwhile, “Legal” risk has a 
direct effect on “Culture” risk and an indirect effect on “Environment” risk. The results of the 
path coefficients and their significance and fit evaluations for the structural model are shown in 
Table 8.
	 The evaluation results of the structural model verified that all the latent variables had 
explanatory capability. Moreover, the effect sizes for explanatory capability were also achieved.  
Additionally, by verifying that all the items had values higher than zero, the predictive relevance 
of the model was established. The results related to the explanatory capability, effect size, and 
predictive relevance of the country risk factors are shown in Table 9.

5.	 Discussion

	 In this study, PLS-SEM was used to analyze the direct and indirect relationships of key 
country risk factors encountered in international projects and to assess the impact of these 
factors on cost overrun. The analysis yielded the following key findings:

Table 7
HTMT evaluation results of the measurement model.

Cost Overrun C E En L M P
Cost Overrun
C 0.280
E 0.289 0.262
En 0.406 0.625 0.660
L 0.343 0.379 0.562 0.566
M 0.353 0.395 0.766 0.808 0.741
P 0.165 0.257 0.608 0.393 0.688 0.581

Table 6
AVE evaluation results of the measurement model.
Category AVE
Culture 1.000
Economic 0.716
Environment 0.693
Legal 0.665
Market 0.609
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	 Environmental risk exhibited the strongest direct effect on cost overrun (β = 0.360, p < 0.001), 
underscoring the importance of early environmental risk assessments, contingency planning for 
weather-related disruptions, and strict adherence to environmental regulations in the host 
country.

Fig. 2.	 (Color online) Final structural equation model of country risk factors.

Table 8
Significance and fit evaluation of path coefficients.

Latent variables
Path 

coefficients 
(β)

Confidence intervals
t-value p-value Relationship2.5% 97.5%

Environment → Cost Overrun 0.360 0.147 0.535 3.646 0.000 direct
Culture → Cost Overrun 0.171 0.058 0.298 2.778 0.005 indirect
Economic → Cost Overrun 0.145 0.045 0.248 2.786 0.005 indirect
Legal → Cost Overrun 0.067 0.022 0.133 2.332 0.020 indirect
Culture → Environment 0.475 0.303 0.633 5.724 0.000 direct
Economic → Environment 0.402 0.222 0.554 4.787 0.000 direct
Economic → Market 0.646 0.539 0.760 11.269 0.000 direct
Economic → Political 0.495 0.339 0.660 6.033 0.000 direct
Legal → Culture 0.392 0.259 0.542 5.410 0.000 direct
Legal → Environment 0.186 0.103 0.297 3.730 0.000 indirect
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	 Cultural risk had an indirect impact on cost overrun (β = 0.171) through its strong association 
with environmental risk (β = 0.475), indicating that cultural misalignment may intensify 
environmental challenges. This suggests the need for effective stakeholder communication 
strategies, local workforce integration, and culturally tailored project governance.
	 Economic risk showed statistically significant indirect effects on cost overrun (β = 0.145) 
while also affecting market (β = 0.646), political (β = 0.495), and environmental risks (β = 0.402). 
This highlights the critical role of macroeconomic conditions in shaping multiple project risks. 
Consequently, international firms should adopt financial risk mitigation strategies such as 
hedging, flexible contracting, and cost indexing mechanisms.
	 Although legal risk had the smallest effect on cost overrun (β = 0.067), it significantly 
affected cultural risk (β = 0.392), which in turn affected environmental risk. This finding points 
to the indirect but impactful role of legal risk in shaping project uncertainty. Early-stage legal 
due diligence, engagement with local regulatory bodies, and clear contract structuring are 
essential to minimize legal risk.
	 These findings highlight that effective risk management in international construction projects 
requires a holistic approach that accounts for both direct and mediated relationships among 
multiple risk categories. Prioritizing interconnected risks rather than treating them in isolation 
can enhance project resilience and cost control.

6.	 Conclusion

	 In this study, we aimed to develop an analytical framework that systematically analyzes the 
interactions and causal relationships between country risk factors, leveraging expert-driven 
experience and intuition-based sensing data, and we quantitatively assessed their impact on cost 
overruns in international construction projects. By conceptualizing expert judgment as sensor-

Table 9
Evaluation results of the structural model.
Method Criteria Results

Coefficients 
(R2)

High 
explanatory 
capability 
R2 > 0.26

Mid 
explanatory 
capability

0.13 < R2 < 0.26

Low 
explanatory 
capability
R2 < 0.13

Environmental 0.463 High
Market 0.411 High
Political 0.236 Mid
Culture 0.144 Mid

Cost Overrun 0.120 Low

Effect size 
( f2)

High effect 
size 

f2 > 0.35

Mid effect size
 0.15 < f2 < 0.35

Low effect 
size 

f2 < 0.15

Economic → Market 0.716 High
Culture → Environment 0.406 High
Economic → Political 0.324 Mid

Economic → Environment 0.292 Mid
Legal → Culture 0.182 Mid

Environment → Cost Overrun 0.149 Low

Predictive 
relevance 
(Q2)

Q2 > 0

Cost Overrun 0.119
Predictive 
relevance 

established

Culture 0.140
Environment 0.315

Market 0.236
Political 0.128



Sensors and Materials, Vol. 37, No. 9 (2025)	 3943

like qualitative inputs and integrating these sensor-inspired data into PLS-SEM, the framework 
bridges tacit insights and quantitative modeling under data-constrained conditions. The findings 
provide significant insights into risk prioritization and mitigation strategies, contributing to the 
development of appropriate country risk management strategies for international construction 
projects.
	 The theoretical considerations in this study reviewed and categorized country risk factors 
into six dimensions: political, economic, cultural, environmental, market, and legal risks. The 
literature review reinforced the necessity of moving beyond traditional risk analysis 
methodologies by emphasizing the importance of quantifying the organic causal relationships 
among risk factors. Previous studies have primarily utilized regression models or CB-SEM, 
which require large datasets. However, we demonstrated that PLS-SEM effectively addresses 
these limitations by facilitating analysis with small sample sizes while capturing complex 
interactions among risk factors.
	 The research methodology employed a structured framework in which expert-driven inputs 
were integrated for PLS-SEM analysis to quantitatively assess the causal relationships among 
country-specific risk factors. Expert-driven inputs were treated as proxy sensing data, enhancing 
data accuracy and robustness when direct measurements are infeasible. The PI evaluation 
quantified risk factors on the basis of expert perceptions, serving as a foundation for constructing 
the structural equation model. The integration of sensors in data collection methodologies 
allowed for the enhancement of data accuracy and reliability, ensuring robust model estimation. 
The PLS-SEM framework validated the relationships among risk factors and provided empirical 
evidence supporting the hypothesized risk dependencies.
	 The results of this study confirmed that economic and environmental risks exert the most 
significant impact on cost overruns in international construction projects. The analysis revealed 
that economic risk factors, such as currency fluctuations and market instability, not only affect 
cost overruns but also propagate their effects through other risk categories, including market and 
political risks. Similarly, environmental risks demonstrated a direct impact on cost fluctuations, 
further emphasizing the necessity of country risk factors into project planning.
	 In the discussion section, we interpreted the findings within the broader context of 
construction risk management, reinforcing the practical implications for industry stakeholders. 
We underscored the importance of developing comprehensive risk mitigation strategies that 
account for the interdependencies among country risk factors rather than treating them as 
isolated variables. By leveraging PLS-SEM as an analytical tool, construction firms can 
optimize their risk management frameworks and enhance decision-making processes in 
international markets.
	 In conclusion, this study contributes to the field of construction risk management by 
proposing an innovative analytical framework that systematically evaluates the organic causal 
relationships among country-specific risk factors. The application of expert-driven experience 
and intuition-based sensing data and PLS-SEM demonstrated its effectiveness in overcoming the 
limitations of traditional methods, offering a viable alternative for analyzing complex risk 
structures with limited datasets. The key findings and implications derived from the analysis are 
as follows:
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	 First, the organic causal relationships among country risk factors were identified, and their 
impact on cost overrun in international construction projects was quantified and verified. The 
analysis confirmed that the risk factor with the most direct and indirect relationships among 
country risks is “Economic” risk. Additionally, “Environment” risk was identified as the country 
risk factor with the greatest impact on cost overrun. These findings indicate that construction 
companies need to develop comprehensive response strategies that consider the interrelationships 
among risk factors, rather than addressing individual risk factors in isolation, when executing 
international construction projects.
	 Second, the validity of PLS-SEM was verified. By effectively analyzing complex organic 
causal relationships with a small sample size, PLS-SEM was shown to overcome the limitations 
of CB-SEM, such as its high sample size requirement and strict distributional assumptions.
	 This study is significant in that it proposed a framework capable of identifying the organic 
causal relationships among risk factors and quantifying their impact on cost overrun, even with 
a small sample size. However, the study has certain limitations that require further research to 
address, as follows:
	 First, the data used for the analysis relied on surveys of Korean experts, which may be 
affected by the subjective judgments of the respondents. To enhance the reliability of the 
analysis, it is necessary to expand objective analytical data, including quantitative indicators 
derived from this study’s findings. Future work could explore integration of actual sensing 
technologies or secondary datasets (e.g., real-time economic indicators, environmental 
monitoring via IoT) to complement expert-derived inputs and strengthen empirical robustness.
	 Second, the validity of PLS-SEM should be further verified through comparative studies 
with existing methodologies such as Bayesian Network analysis and CB-SEM. Moreover, 
comparative evaluations could assess how the sensor-inspired expert inputs perform relative to 
purely objective sensor or big-data-driven approaches when such datasets are available.
	 Future research should secure sufficient sample sizes and, where appropriate, narrow the 
scope to specific countries or project types while validating the applicability of PLS-SEM 
through comparative evaluations with CB-SEM and Bayesian Network analysis. To enhance 
generalizability and practical relevance, datasets should be expanded to encompass diverse 
project contexts across regions and industry sectors, and longitudinal studies should be 
undertaken to observe how regional, institutional, and temporal conditions affect risk 
interactions over time. By embedding sensor-inspired expert inputs into this quantitative 
modeling paradigm, such efforts will pave the way for technology-supported risk analysis in 
international construction—enabling practitioners to make informed decisions under 
confidentiality and data constraints—and contribute to a more robust, adaptive, and data-driven 
framework for managing global construction risks. 
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