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	 The construction of digital maps typically relies on manual stereoscopic plotting based on 
aerial imagery, which demands considerable time and cost. As a result, it is challenging to 
promptly reflect frequent building changes associated with urban development in digital maps. 
In this study, to automate the modification and updating of digital maps, we proposed an 
automated segment anything model (SAM) 2-based building segmentation approach that utilizes 
You Only Look Once (YOLO) v8 for building detection and image processing techniques to 
extract building boundaries from ortho-images. In the proposed methodology, we were able to 
automatically generate prompts for SAM2 by applying image processing techniques to the 
bounding boxes of buildings detected by YOLOv8, removing noise and creating clear masks. 
Furthermore, through performance comparison experiments between the pretrained and fine-
tuned SAM2, we found that the fine-tuned SAM2 significantly improved building segmentation 
performance because of the additional training specialized for building data. In experiments on 
comparing a single prompt and multiprompt inputs, we observed that multiprompt inputs 
enabled a more precise and accurate building segmentation, confirming that prompts play a 
crucial role in enhancing model performance.

1.	 Introduction

	 In the domain of geospatial information science, there has been active research on applying 
artificial intelligence techniques to detect and segment objects in imagery, as well as to generate 
outcomes that are applicable to practical industrial contexts.(1–3) The construction of digital maps 
involves processes such as terrain and feature description, geo-editing, and structured editing 
based on aerial imagery, all of which are labor-intensive and require considerable costs and time. 
Moreover, since these processes are predominantly carried out manually, the resulting quality is 
highly dependent on the operator’s expertise, and rapid changes in terrain and features are 
difficult to incorporate in a timely manner.(4) Therefore, it is necessary to develop a methodology 
of building digital maps in an automated way to solve these problems.
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	 For applying artificial intelligence technology to geospatial information, researchers have 
conducted studies on extracting buildings by applying deep learning to images acquired by 
unmanned aerial vehicles,(5) building multitemporal high-resolution building object datasets by 
applying deep learning to Sentinel-2 images,(6) evaluating the influence of the model used 
through accuracy comparison and parameter adjustment by applying U-Net and ResUNet to 
Sentinel-2 images,(7) and extracting geospatial information such as buildings and roads by 
applying deep learning to satellite images.(8)

	 In previous studies of transfer learning on pretrained models, researchers have analyzed the 
accuracy in terms of the weight importance and transfer learning of deep learning models to 
automatically extract buildings,(9) detected building changes through transfer learning by 
combining the local feature and global spatial pyramid modules for extracting various building 
features,(10) fine-tuned the segment anything model (SAM) using multiprompts for mobility 
infrastructure segmentation such as roads, sidewalks, and crosswalks,(11) and improved the 
performance of SAM through multimodal fusion for detailed building identification.(12)

	 When applying pretrained deep learning to geospatial information, the conditions and 
environments of the model training and experimental data differ, requiring the fine-tuning of 
the model or parameter adjustment. To improve this, the accuracy can be effectively enhanced 
by adjusting the pretrained model using data similar to the experimental data and segmenting by 
inputting multiprompts for each object.
	 Accordingly, the purpose of this study was to fine-tune a pretrained object segmentation 
deep learning model using ortho-images and to generate multiprompts to segment buildings that 
are highly useful in digital maps.

2.	 Research Methodology

2.1	 Methodology

	 As shown in Fig. 1, we fine-tuned SAM2, a deep learning model for object segmentation, 
using aerial ortho-images provided by the Korea National Geographic Information Institute 
(NGII) platform,(13) and segmented building objects using the fine-tuned model and multiple 
prompts. To this end, deep learning training data were first constructed using the ortho-images 
and digital maps, followed by model training and fine-tuning. 
	 Second, building bounding boxes were detected by applying You Only Look Once (YOLO)
v8, an object detection model, to the ortho-image, and box prompts were generated for use with 
the fine-tuned SAM2. Third, each detected bounding box was cropped and converted into a hue, 
saturation, value (HSV) image, from which point prompts were generated through edge and 
contour detection, morphological operations, and other image processing techniques.
	 Finally, SAM2 was fine-tuned using training data constructed by editing ortho-images and 
digital maps, and building segmentation was performed using the previously generated prompts 
and the fine-tuned model.
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2.2	 YOLOv8

	 YOLO is a model that detects and classifies multiple objects by processing a single image 
only once. In this study, YOLOv8 was used to generate box prompts. YOLOv8 is an improved 
version of YOLOv5 and provides object detection, segmentation, and classification capabilities 
within a unified framework.(14) It demonstrates enhanced performance compared with the 
previous v5x model by replacing certain modules and adjusting the backbone’s kernel size. The 
model’s speed has also been improved, making it effective for real-time object detection.(15)

2.3	 Image processing

2.3.1	 Edge and contour detections

	 Edge detection is a technique that identifies regions in an image where pixel brightness 
values change rapidly, recognizing them as edges to detect object boundaries or shapes. It is 
typically applied to binary images for accurate detection.(16) In this study, the Canny edge 
detection algorithm, which has been widely used in the field of image processing, was employed 
to detect object boundaries.(17)

Fig. 1.	 (Color online) Research flow diagram.
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2.3.2	 Morphological operations

	 Morphological operations are used to fill the inside of boundary images to convert linear 
information into polygonal information. In this study, erosion operations were performed to 
remove polygons with areas within 5% from the filled boundary image, and dilation operations 
were performed to emphasize polygon areas where building objects exist.(15,18)

2.4	 SAM2

	 SAM2 is a model that improves the performance of the existing SAM and is optimized for 
segmenting objects in images and videos by inputting prompts.(19) As shown in the architecture 
in Fig. 2, instead of directly using frame embeddings like SAM, the decoder of SAM2 utilizes 
the accumulated memory from past prediction results and the prompt information provided by 
the user to generate the final mask.(20) One of the main features of SAM2 is that it can improve 
the prediction accuracy by utilizing the information of the prompt frame located in the future 
rather than the current frame time. In addition, the processing and prediction results of each 
frame are stored in the memory bank through the memory generation process and then used for 
the prediction of the subsequent frames. Afterwards, the memory attention mechanism receives 
the embedding of the current frame extracted from the video encoder and the information and 
prompt conditions of the past frames stored in the memory bank to output a new embedding, and 
the output embedding is passed to the mask decoder to obtain the final object segmentation 
mask.(19,20)

3.	 Experiments

3.1	 Data preprocessing

	 The target area of this study was the area around the Sports Complex located in Seobuk-gu, 
Cheonan-si, Chungcheongnam-do, Korea, and the data necessary for this study, as shown in 
Table 1, were obtained using ortho-images and digital maps provided by the NGII platform. The 
ortho-images comprised data created by processing 1:5000 aerial images taken in 2023, and the 
digital maps had the same spatial resolution as the ortho-images and were updated in 2024.

Fig. 2.	 (Color online) SAM2 architecture.
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3.1.1	 Editing of ortho-images

	 The ortho-images provided by the NGII platform comprised data without coordinate system 
settings. In this study, the coordinate system was set using the range of digital maps with similar 
time and spatial resolutions. Additionally, to maximize the performance and efficiency of the 
deep learning model, the image size was tiled to 1024 × 1024. Parts of the tiled images are 
shown in Fig. 3. Figure 3(a) represents an area where mainly nonresidential buildings exist, and 
Fig. 3(b) represents an area where nonresidential buildings and houses are densely distributed. 
Additionally, Fig. 3(c) represents an area where nonresidential buildings, houses, and apartments 
are diversely distributed, and Fig. 3(d) represents an area with only apartments.

3.1.2	 Editing of digital maps

	 In this study, to classify and segment nonresidential buildings, general houses, townhouses, 
and apartments among building layers, the layers other than the target codes were deleted by 
referring to the standard feature codes of digital maps shown in Table 2.
	 Even if digital maps have the same time and spatial resolutions as the ortho-images, they may 
not match the actual objects owing to digital map update cycles or worker errors, as shown in 
Fig. 4(a). In this study, by overlaying ortho-images with applied coordinate systems and edited 
digital maps, areas or locations where objects differ were manually corrected for position as 
shown in Fig. 4(b). Therefore, the results of position correction for 12 map sheets corresponding 
to the target area of this study are shown in Fig. 4(c). In Fig. 4, red represents nonresidential 
buildings, orange represents general houses, yellow represents townhouses, and green represents 
apartments. 

Table 1
Information of ortho-image and digital map.
Number of maps Scale Address
36701064

1:5000

Eumbong-myeon, Asan-si, Chungcheongnam-do
36701065 Chaam-dong, Seobuk-gu, Cheonan-si, Chungcheongnam-do
36701066 Dujeong-dong, Seobuk-gu, Cheonan-si, Chungcheongnam-do
36701067 Budae-dong, Seobuk-gu, Cheonan-si, Chungcheongnam-do
36701074 Tangjeong-myeon, Asan-si, Chungcheongnam-do
36701075 Buldang-dong, Seobuk-gu, Cheonan-si, Chungcheongnam-do
36701076 Seongjeong-dong, Seobuk-gu, Cheonan-si, Chungcheongnam-do
36701077 Wonseong-dong, Dongnam-gu, Cheonan-si, Chungcheongnam-do
36701084 Tangjeong-myeon, Asan-si, Chungcheongnam-do
36701085 Baebang-eup, Asan-si, Chungcheongnam-do
36701086 Yonggok-dong, Dongnam-gu, Cheonan-si, Chungcheongnam-do
36701087 Samnyong-dong, Dongnam-gu, Cheonan-si, Chungcheongnam-do
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3.2	 Training YOLOv8 for building detection

3.2.1	 Constructing training data for building detection

	 In YOLOv8, the training data for building detection consist of bounding boxes that include 
the top-left and bottom-right coordinates of the target buildings. In this study, the bounding 
boxes were constructed using images generated by overlaying the previously edited ortho-
images and digital maps. Some of the constructed building bounding boxes are shown in Fig. 5. 
The total number of building objects is 16468, and the number of objects by standard feature 
code is presented in Table 3.

Fig. 3.	 (Color online) (a) Nonresidential buildings, (b) nonresidential buildings and houses, (c) nonresidential 
buildings, houses, and apartments, and (d) apartments.

Fig. 4.	 (Color online) (a) Before correction, (b) after correction and (c) results after correction.

Table 2
Standard layer codes for digital maps.
Code B0014111 B0014112 B0014113 B0014115

Subcategory Nonresidential 
building House Townhouse Apartment

(a) (b) (c) (d)

(a) (b) (c)
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3.2.2	 Training model for building detection

	 To build a model for detecting buildings, parameters were configured as shown in Table 4, 
and the tiled ortho-images along with the constructed bounding boxes were applied to YOLOv8. 
In Table 4, Epochs indicates the number of training repetitions for YOLOv8. Learning rate 
denotes the magnitude of updates applied to the model’s weights during each iteration of the 
training process. Additionally, Batch size denotes the amount of data used during each training 
iteration, and Weight decay represents the degree of regularization applied to prevent overfitting 
by penalizing large weights.
	 The trained model showed a precision of 99.8% and a recall of 99.7%, indicating relatively 
high accuracy, as shown in Table 5. Additionally, mAP50, which is the average precision 
calculated by setting the threshold for average precision to 0.50, was 99.5%, and mAP50-95, 
which is the average precision calculated by setting the threshold from 0.50 to 0.95, was 98.0%.

3.3	 Fine-tuning SAM2 for building segmentation

3.3.1	 Constructing training data for fine-tuning

	 The fine-tuning training data for SAM2 to segment buildings consisted of building mask 
images generated by overlaying edited ortho-images with digital maps. In the mask images, 
pixel values corresponding to building areas were set to 255, while those corresponding to 
background areas were set to 0. Some examples of the generated images are shown in Fig. 6, 
where Fig. 6(a) shows the ortho-images and Fig. 6(b) shows the corresponding mask images.

Fig. 5.	 (Color online) Training data for YOLOv8: (a) nonresidential buildings, (b) nonresidential buildings and 
houses, (c) nonresidential buildings, houses, and apartments, and (d) apartments.

Table 3
Number of training data for YOLOv8.
Code B0014111 B0014112 B0014113 B0014115 Total
Number of 
bounding boxes 10480 1104 2440 2444 16468

(a) (b) (c) (d)
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3.3.2	 Fine-tuning SAM2

	 Fine-tuning is one of the representative techniques in transfer learning. It involves optimizing 
a model for a specific purpose by leveraging a pretrained model and further training it on data 
related to a particular task or domain.(21) Pretrained models may not be well suited to specific 
tasks or domains, as they are typically trained to learn general features. However, fine-tuning 
helps overcome these limitations by adapting the model to the user’s objectives and enabling it to 
learn the relevant features and patterns in greater depth, thereby achieving the high level of 
accuracy and precision required for a specific task.(22) Therefore, in this study, SAM2 was fine-
tuned using tiled ortho-images and the corresponding mask images. The parameters used for 
fine-tuning are presented in Table 6.
	 As shown in Fig. 7 and Table 7, the accuracy of the trained model gradually increased, and 
the intersection over union (IoU), which represents the object detection accuracy, reached 85.5%. 
In addition, the mean squared error (MSE) was 0.4%, and the mean absolute error (MAE) was 
0.9%, indicating that the model was fine-tuned with relatively high accuracy.

Table 4
Parameter set for YOLOv8 training.
Epochs Learning rate Resolution Batch size Weight decay
20000 0.01 1024 16 5 × 10−4

Table 5
Results of trained YOLOv8.

Precision (%) Recall (%) mAP50 (%) mAP50-95 (%)
99.8 99.7 99.5 98.0

Fig. 6.	 (Color online) (a) Ortho-images and (b) mask images.

(a)

(b)
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3.4	 Detection and segmentation of buildings

	 On the basis of the existing code provided by YOLOv8 and the open-source implementation 
of SAM2, we trained and fine-tuned a deep learning model for building detection and 
segmentation. Additionally, we developed and applied a method to generate multiple prompts for 
building segmentation during model evaluation, as shown in Table 8.

3.4.1	 Detection of buildings

	 Figure 8 shows some examples of the results of applying YOLOv8 to tiled images, where Fig. 
8(a) shows an area where mainly nonresidential buildings exist and Fig. 8(b) shows an area 
where nonresidential buildings and houses are densely distributed. Additionally, Fig. 8(c) shows 
an area where nonresidential buildings, houses, and apartments are diversely distributed, and 
Fig. 8(d) shows an area with only apartments.
	 As a result of building object detection, buildings could be detected at a rate of 89.8%, and 
since we did not train data other than building layers among standard feature codes, there were 
no cases of false detection of other objects.
	 Each object detected by YOLOv8 was used as a box prompt, as shown in Fig. 9, where each 
box represents a quadrilateral defined by the upper-left and lower-right coordinates. 
Subsequently, the image region corresponding to the box prompt was cropped and processed to 
generate a point prompt through image processing. The generated point prompt and the original 
box prompt were then combined and used as a multiprompt.

Table 6
Parameter set for SAM2 fine-tuning.

Epochs Learning rate Resolution Batch size Weight decay
200000 6 × 10−5 1024 16 0.1

Fig. 7.	 (Color online) (a) IoU, (b) MSE loss, and (c) MAE loss.

(a) (b) (c)

Table 7
Building segmentation using multiprompts.
IoU (%) MSE Loss (%) MAE Loss (%)
85.5 0.4 0.9
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3.4.2	 Point prompt generation

	 To generate point prompts, the previously cropped images were converted to the HSV color 
space, followed by edge and contour detection. Figure 10(a) shows the cropped building object 

Table 8
Multiprompt building detection and segmentation algorithm using YOLOv8 and SAM2.
YOLOv8_model = YOLOv8(YOLOv8.pt) SAM2_model = SAM2(SAM2.pt)

# Create a multiprompt # Segmentation using a multiprompt
detection = YOLOv8_model.predict(image) SAM2 = build_sam2(SAM2_model)
for detect in detection : predictor = SAM2ImagePredictor(SAM2)
	 # Create a box prompt for image in images
	 Box = detect.boxes.xyxy 	 predictor.set_image(image)
	 # Create a point prompt 	 masks = predictor.predict(point_coords=Point, \
	 Crop_image = image[bndry]                                                box=Box)
	 HSV = cv2.cvtColor(Crop_image)
	 Canny = cv2.Canny(HSV)
	 Conn = connect_edge(Canny)
	 Cnt = cv2.findContours(Conn)
	 FilterImage=apply_contour_filter(Cnt)
	 Erode = cv2.erode(FilterImage)
	 FilterImage=apply_contour_filter(Erode)
	 Mask = cv2.dilate(FilterImage)
	 Point = get_points(Mask)

Fig. 8.	 (Color online) (a) Nonresidential buildings, (b) nonresidential buildings and houses, (c) nonresidential 
buildings, houses, and apartments, and (d) apartments.

Fig. 9.	 (Color online) Box prompts.

(a) (b) (c) (d)
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and Fig. 10(b) presents the image after HSV conversion. Figure 10(c) illustrates the result of edge 
detection, while Fig. 10(d) shows the detected building contours based on the edge detection 
result.
	 Because of noise in the edge detection process, some linear structures forming the building 
objects may be partially missing. To address this, the distances between feature points were 
calculated during contour detection, and points within a certain threshold were connected. 
Additionally, while filling the interior of the contour lines, redundant lines were removed and 
connected linear structures were enhanced. 
	 To generate mask images for building segmentation, Gaussian blur was applied to the images 
with detected building contours, followed by morphological operations. Some of the results of 
this process are shown in Fig. 11. Figure 11(a) shows the result after applying Gaussian blur, and 
Fig. 11(b) shows the result after performing morphological operations. In this study, Gaussian 
blur was applied prior to the morphological operations to reduce noise outside the building 
boundaries and to enhance the clarity of the object contours.
	 Point prompts for building segmentation were created as the center points within the masks 
of each object generated through image processing, as shown in Fig. 12, minimizing the work of 
manually inputting prompts.
	 As shown in Fig. 13, we combined box and point prompts, derived from object detection and 
image processing, respectively, to create a multiprompt that complementarily leverages both 
types of information. In the figure, the red quadrilaterals represent box prompts, and the blue 
dots represent point prompts.

3.4.3	 Segmentation of buildings

	 To evaluate the building segmentation accuracy of the fine-tuned deep learning model and 
the generated prompts, experiments were conducted under two different conditions, as shown in 
Fig. 14: using the pretrained SAM2 with single prompts and using the fine-tuned model with 
multiprompts. Figure 14(a) shows the original images for segmentation, while Fig. 14(b) presents 

Fig. 10.	 (Color online) (a) Clipped image, (b) HSV image, (c) edge detection, and (d) contour detection.

(a) (b) (a) (b)

(c) (d) (c) (d)
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Fig. 11.	 (Color online) (a) Blur and (b) morphological images.

Fig. 12.	 (Color online) (a) Nonresidential buildings, (b) nonresidential buildings and houses, (c) nonresidential 
buildings, houses,  and apartments, and (d) apartments.

Fig. 13.	 (Color online) Multiprompts.

Fig. 14.	 (Color online) (a) Original images, (b) single prompt applied to a pretrained model, and (c) multiprompts 
applied to a fine-tuned model.

(a)

(a) (b) (a) (b)

(a) (b) (c) (d)
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the segmentation results obtained using the pretrained model with single prompts. Figure 14(c) 
presents the segmentation results obtained using the fine-tuned model with multiprompts.
	 A comparison of the pretrained model with the model fine-tuned using the building data 
targeted in this study showed that the pretrained model failed to segment most buildings owing 
to insufficient training on the dataset used in this study. In contrast, the fine-tuned model 
showed significantly improved performance in building segmentation, accurately identifying the 
majority of building objects. This improvement resulted from the fine-tuning process reflecting 
the characteristics of the building data, thereby achieving a higher accuracy than the pretrained 
model.
	 In addition, when performing object segmentation using a single prompt based on the center 
point of the mask image, we observed that the object was incorrectly segmented into multiple 
objects if the color values within the object varied. In contrast, when using the multiprompts 
proposed in this study, the object was correctly segmented as a single object even when the color 
values varied, confirming that the use of multiple prompts played an important role in improving 
the model performance.

4.	 Conclusions

	 In this study, we proposed a methodology of building segmentation by first detecting building 
bounding boxes in ortho-images using YOLOv8, then generating multiple prompts based on the 
detection results, and finally applying them to a fine-tuned SAM2. The following conclusions 
were drawn:

Fig. 14.	 (Color online) (Continued) (a) Original images, (b) single prompt applied to a pretrained model, and (c) 
multiprompts applied to a fine-tuned model.

(b)

(c)
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	 First, by generating prompts using various image processing techniques within the building 
regions detected by YOLOv8, building boundaries were effectively delineated and background 
noise was reduced, enabling the creation of clear and accurate mask images. This approach 
significantly reduced the need for manual prompt input and enhanced the accuracy and 
efficiency of the building segmentation process.
	 Second, a comparison between the pretrained SAM2 and the fine-tuned model revealed that 
the former exhibited limited segmentation performance owing to its lack of adaptation to 
building data. In contrast, the fine-tuned model, trained specifically on building imagery, 
demonstrated substantially improved segmentation performance.
	 Third, when performing object segmentation using a single prompt, one object was often 
incorrectly segmented into multiple objects if it contained varying color values. However, when 
multiprompts were used as proposed in this study, the object was correctly segmented as a single 
object, even in the presence of different color values. From these results, we confirmed that 
prompt input plays a critical role in improving the model’s performance.
	 Future work will be focused on vectorizing and regularizing the segmented building regions 
to generate building objects, and the resulting objects, produced through the vectorization and 
regularization processes, will be integrated into geospatial information systems.
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