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The construction of digital maps typically relies on manual stereoscopic plotting based on
aerial imagery, which demands considerable time and cost. As a result, it is challenging to
promptly reflect frequent building changes associated with urban development in digital maps.
In this study, to automate the modification and updating of digital maps, we proposed an
automated segment anything model (SAM) 2-based building segmentation approach that utilizes
You Only Look Once (YOLO) v8 for building detection and image processing techniques to
extract building boundaries from ortho-images. In the proposed methodology, we were able to
automatically generate prompts for SAM2 by applying image processing techniques to the
bounding boxes of buildings detected by YOLOvVS, removing noise and creating clear masks.
Furthermore, through performance comparison experiments between the pretrained and fine-
tuned SAM?2, we found that the fine-tuned SAM2 significantly improved building segmentation
performance because of the additional training specialized for building data. In experiments on
comparing a single prompt and multiprompt inputs, we observed that multiprompt inputs
enabled a more precise and accurate building segmentation, confirming that prompts play a
crucial role in enhancing model performance.

1. Introduction

In the domain of geospatial information science, there has been active research on applying
artificial intelligence techniques to detect and segment objects in imagery, as well as to generate
outcomes that are applicable to practical industrial contexts.(! ) The construction of digital maps
involves processes such as terrain and feature description, geo-editing, and structured editing
based on aerial imagery, all of which are labor-intensive and require considerable costs and time.
Moreover, since these processes are predominantly carried out manually, the resulting quality is
highly dependent on the operator’s expertise, and rapid changes in terrain and features are
difficult to incorporate in a timely manner.®) Therefore, it is necessary to develop a methodology
of building digital maps in an automated way to solve these problems.
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For applying artificial intelligence technology to geospatial information, researchers have
conducted studies on extracting buildings by applying deep learning to images acquired by
unmanned aerial vehicles,®) building multitemporal high-resolution building object datasets by
applying deep learning to Sentinel-2 images,©® evaluating the influence of the model used
through accuracy comparison and parameter adjustment by applying U-Net and ResUNet to
Sentinel-2 images,”) and extracting geospatial information such as buildings and roads by
applying deep learning to satellite images.®

In previous studies of transfer learning on pretrained models, researchers have analyzed the
accuracy in terms of the weight importance and transfer learning of deep learning models to
automatically extract buildings,® detected building changes through transfer learning by
combining the local feature and global spatial pyramid modules for extracting various building
features,!9 fine-tuned the segment anything model (SAM) using multiprompts for mobility
infrastructure segmentation such as roads, sidewalks, and crosswalks,!) and improved the
performance of SAM through multimodal fusion for detailed building identification.(!?)

When applying pretrained deep learning to geospatial information, the conditions and
environments of the model training and experimental data differ, requiring the fine-tuning of
the model or parameter adjustment. To improve this, the accuracy can be effectively enhanced
by adjusting the pretrained model using data similar to the experimental data and segmenting by
inputting multiprompts for each object.

Accordingly, the purpose of this study was to fine-tune a pretrained object segmentation
deep learning model using ortho-images and to generate multiprompts to segment buildings that
are highly useful in digital maps.

2. Research Methodology
2.1 Methodology

As shown in Fig. 1, we fine-tuned SAM2, a deep learning model for object segmentation,
using aerial ortho-images provided by the Korea National Geographic Information Institute
(NGII) platform,'® and segmented building objects using the fine-tuned model and multiple
prompts. To this end, deep learning training data were first constructed using the ortho-images
and digital maps, followed by model training and fine-tuning.

Second, building bounding boxes were detected by applying You Only Look Once (YOLO)
v8, an object detection model, to the ortho-image, and box prompts were generated for use with
the fine-tuned SAM2. Third, each detected bounding box was cropped and converted into a hue,
saturation, value (HSV) image, from which point prompts were generated through edge and
contour detection, morphological operations, and other image processing techniques.

Finally, SAM2 was fine-tuned using training data constructed by editing ortho-images and
digital maps, and building segmentation was performed using the previously generated prompts
and the fine-tuned model.
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Fig. 1. (Color online) Research flow diagram.

2.2 YOLOvS8

YOLO is a model that detects and classifies multiple objects by processing a single image
only once. In this study, YOLOv8 was used to generate box prompts. YOLOvS is an improved
version of YOLOVS and provides object detection, segmentation, and classification capabilities
within a unified framework.(¥ It demonstrates enhanced performance compared with the
previous v5x model by replacing certain modules and adjusting the backbone’s kernel size. The
model’s speed has also been improved, making it effective for real-time object detection.(®)

2.3 Image processing
2.3.1 Edge and contour detections

Edge detection is a technique that identifies regions in an image where pixel brightness
values change rapidly, recognizing them as edges to detect object boundaries or shapes. It is
typically applied to binary images for accurate detection.(!®) In this study, the Canny edge
detection algorithm, which has been widely used in the field of image processing, was employed
to detect object boundaries.(17)
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2.3.2 Morphological operations

Morphological operations are used to fill the inside of boundary images to convert linear
information into polygonal information. In this study, erosion operations were performed to
remove polygons with areas within 5% from the filled boundary image, and dilation operations
were performed to emphasize polygon areas where building objects exist.(15-18)

2.4 SAM2

SAM2 is a model that improves the performance of the existing SAM and is optimized for
segmenting objects in images and videos by inputting prompts.'”> As shown in the architecture
in Fig. 2, instead of directly using frame embeddings like SAM, the decoder of SAM2 utilizes
the accumulated memory from past prediction results and the prompt information provided by
the user to generate the final mask.?? One of the main features of SAM2 is that it can improve
the prediction accuracy by utilizing the information of the prompt frame located in the future
rather than the current frame time. In addition, the processing and prediction results of each
frame are stored in the memory bank through the memory generation process and then used for
the prediction of the subsequent frames. Afterwards, the memory attention mechanism receives
the embedding of the current frame extracted from the video encoder and the information and
prompt conditions of the past frames stored in the memory bank to output a new embedding, and
the output embedding is passed to the mask decoder to obtain the final object segmentation
mask.(1%-20)

3. Experiments
3.1 Data preprocessing

The target area of this study was the area around the Sports Complex located in Seobuk-gu,
Cheonan-si, Chungcheongnam-do, Korea, and the data necessary for this study, as shown in
Table 1, were obtained using ortho-images and digital maps provided by the NGII platform. The
ortho-images comprised data created by processing 1:5000 aerial images taken in 2023, and the
digital maps had the same spatial resolution as the ortho-images and were updated in 2024.

|

Image Memory — Mask decoder Memory Memory
— —

encoder attention L encoder bank

Prompt encoder |

IR
Mask Point Box

Fig. 2. (Color online) SAM2 architecture.
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Table 1

Information of ortho-image and digital map.

Number of maps Scale Address

36701064 Eumbong-myeon, Asan-si, Chungcheongnam-do
36701065 Chaam-dong, Seobuk-gu, Cheonan-si, Chungcheongnam-do
36701066 Dujeong-dong, Seobuk-gu, Cheonan-si, Chungcheongnam-do
36701067 Budae-dong, Seobuk-gu, Cheonan-si, Chungcheongnam-do
36701074 Tangjeong-myeon, Asan-si, Chungcheongnam-do
36701075 1:5000 Buldang-dong, Seobuk-gu, Cheonan-si, Chungcheongnam-do
36701076 ’ Seongjeong-dong, Seobuk-gu, Cheonan-si, Chungcheongnam-do
36701077 Wonseong-dong, Dongnam-gu, Cheonan-si, Chungcheongnam-do
36701084 Tangjeong-myeon, Asan-si, Chungcheongnam-do
36701085 Baebang-eup, Asan-si, Chungcheongnam-do

36701086 Yonggok-dong, Dongnam-gu, Cheonan-si, Chungcheongnam-do
36701087 Samnyong-dong, Dongnam-gu, Cheonan-si, Chungcheongnam-do

3.1.1 Editing of ortho-images

The ortho-images provided by the NGII platform comprised data without coordinate system
settings. In this study, the coordinate system was set using the range of digital maps with similar
time and spatial resolutions. Additionally, to maximize the performance and efficiency of the
deep learning model, the image size was tiled to 1024 x 1024. Parts of the tiled images are
shown in Fig. 3. Figure 3(a) represents an area where mainly nonresidential buildings exist, and
Fig. 3(b) represents an area where nonresidential buildings and houses are densely distributed.
Additionally, Fig. 3(c) represents an area where nonresidential buildings, houses, and apartments
are diversely distributed, and Fig. 3(d) represents an area with only apartments.

3.1.2 Editing of digital maps

In this study, to classify and segment nonresidential buildings, general houses, townhouses,
and apartments among building layers, the layers other than the target codes were deleted by
referring to the standard feature codes of digital maps shown in Table 2.

Even if digital maps have the same time and spatial resolutions as the ortho-images, they may
not match the actual objects owing to digital map update cycles or worker errors, as shown in
Fig. 4(a). In this study, by overlaying ortho-images with applied coordinate systems and edited
digital maps, areas or locations where objects differ were manually corrected for position as
shown in Fig. 4(b). Therefore, the results of position correction for 12 map sheets corresponding
to the target area of this study are shown in Fig. 4(c). In Fig. 4, red represents nonresidential
buildings, orange represents general houses, yellow represents townhouses, and green represents
apartments.
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Fig. 3.  (Color online) (a) Nonresidential buildings, (b) nonresidential buildings and houses, (c) nonresidential
buildings, houses, and apartments, and (d) apartments.

Table 2

Standard layer codes for digital maps.

Code B0014111 B0014112 B0014113 B0014115
Nonresidential

Subcategory building House Townhouse  Apartment

(@) (b) ©

(Color online) (a) Before correction, (b) after correction and (c) results after correction.

Fig. 4.

3.2 Training YOLOVS for building detection
3.2.1 Constructing training data for building detection

In YOLOWVS, the training data for building detection consist of bounding boxes that include
the top-left and bottom-right coordinates of the target buildings. In this study, the bounding
boxes were constructed using images generated by overlaying the previously edited ortho-
images and digital maps. Some of the constructed building bounding boxes are shown in Fig. 5.

The total number of building objects is 16468, and the number of objects by standard feature
code is presented in Table 3.
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Fig. 5. (Color online) Training data for YOLOVS: (a) nonresidential buildings, (b) nonresidential buildings and
houses, (c) nonresidential buildings, houses, and apartments, and (d) apartments.

Table 3

Number of training data for YOLOVS.

Code B0014111 B0014112 B0014113 B0014115 Total
Number of

. 10480 1104 2440 2444 16468
bounding boxes

3.2.2 Training model for building detection

To build a model for detecting buildings, parameters were configured as shown in Table 4,
and the tiled ortho-images along with the constructed bounding boxes were applied to YOLOVS.
In Table 4, Epochs indicates the number of training repetitions for YOLOVS. Learning rate
denotes the magnitude of updates applied to the model’s weights during each iteration of the
training process. Additionally, Batch size denotes the amount of data used during each training
iteration, and Weight decay represents the degree of regularization applied to prevent overfitting
by penalizing large weights.

The trained model showed a precision of 99.8% and a recall of 99.7%, indicating relatively
high accuracy, as shown in Table 5. Additionally, mAPS50, which is the average precision
calculated by setting the threshold for average precision to 0.50, was 99.5%, and mAP50-95,
which is the average precision calculated by setting the threshold from 0.50 to 0.95, was 98.0%.

3.3 Fine-tuning SAM2 for building segmentation
3.3.1 Constructing training data for fine-tuning

The fine-tuning training data for SAM2 to segment buildings consisted of building mask
images generated by overlaying edited ortho-images with digital maps. In the mask images,
pixel values corresponding to building areas were set to 255, while those corresponding to
background areas were set to 0. Some examples of the generated images are shown in Fig. 6,
where Fig. 6(a) shows the ortho-images and Fig. 6(b) shows the corresponding mask images.
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Table 4
Parameter set for YOLOVS training.
Epochs Learning rate  Resolution Batch size  Weight decay
20000 0.01 1024 16 5% 107
Table 5
Results of trained YOLOVS.

Precision (%) Recall (%) mAP50 (%) mAP50-95 (%)

99.8 99.7 99.5 98.0

(b)
Fig. 6.  (Color online) (a) Ortho-images and (b) mask images.

3.3.2 Fine-tuning SAM2

Fine-tuning is one of the representative techniques in transfer learning. It involves optimizing
a model for a specific purpose by leveraging a pretrained model and further training it on data
related to a particular task or domain.?" Pretrained models may not be well suited to specific
tasks or domains, as they are typically trained to learn general features. However, fine-tuning
helps overcome these limitations by adapting the model to the user’s objectives and enabling it to
learn the relevant features and patterns in greater depth, thereby achieving the high level of
accuracy and precision required for a specific task.(>?) Therefore, in this study, SAM2 was fine-
tuned using tiled ortho-images and the corresponding mask images. The parameters used for
fine-tuning are presented in Table 6.

As shown in Fig. 7 and Table 7, the accuracy of the trained model gradually increased, and
the intersection over union (oU), which represents the object detection accuracy, reached 85.5%.
In addition, the mean squared error (MSE) was 0.4%, and the mean absolute error (MAE) was
0.9%, indicating that the model was fine-tuned with relatively high accuracy.
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Table 6
Parameter set for SAM2 fine-tuning.
Epochs Learning rate Resolution Batch size Weight decay
200000 6x107° 1024 16 0.1
0.8 0.10 0.10
06 0.03 0.05
0.4 0.02 0.03
02 001 0.01
00 0.00 0.00
0 25K 50K 75K 100K 125K 150K 175K 200K 0 25K 50K 75K 100K 125K 150K 175K 200K 0 25K 50K 75K 100K 125K 150K 175K 200K
(@) (b) ©

Fig. 7. (Color online) (a) loU, (b) MSE loss, and (c) MAE loss.

Table 7

Building segmentation using multiprompts.
1ToU (%) MSE Loss (%) MAE Loss (%)
85.5 0.4 0.9

3.4 Detection and segmentation of buildings

On the basis of the existing code provided by YOLOvVS and the open-source implementation
of SAM2, we trained and fine-tuned a deep learning model for building detection and
segmentation. Additionally, we developed and applied a method to generate multiple prompts for
building segmentation during model evaluation, as shown in Table 8.

3.4.1 Detection of buildings

Figure 8 shows some examples of the results of applying YOLOVS to tiled images, where Fig.
8(a) shows an area where mainly nonresidential buildings exist and Fig. 8(b) shows an area
where nonresidential buildings and houses are densely distributed. Additionally, Fig. 8(c) shows
an area where nonresidential buildings, houses, and apartments are diversely distributed, and
Fig. 8(d) shows an area with only apartments.

As a result of building object detection, buildings could be detected at a rate of 89.8%, and
since we did not train data other than building layers among standard feature codes, there were
no cases of false detection of other objects.

Each object detected by YOLOv8 was used as a box prompt, as shown in Fig. 9, where each
box represents a quadrilateral defined by the upper-left and lower-right coordinates.
Subsequently, the image region corresponding to the box prompt was cropped and processed to
generate a point prompt through image processing. The generated point prompt and the original
box prompt were then combined and used as a multiprompt.
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Table 8
Multiprompt building detection and segmentation algorithm using YOLOv8 and SAM2.
YOLOv8_model = YOLOvVS(YOLOVS.pt) SAM2_model = SAM2(SAM2.pt)
# Create a multiprompt # Segmentation using a multiprompt
detection = YOLOv8 model.predict(image) SAM?2 =build_sam2(SAM2_model)
for detect in detection : predictor = SAM2ImagePredictor(SAM?2)
# Create a box prompt for image in images
Box = detect.boxes.xyxy predictor.set_image(image)
# Create a point prompt masks = predictor.predict(point_coords=Point, \
Crop_image = image[bndry] box=Box)

HSV = cv2.cvtColor(Crop _image)
Canny = cv2.Canny(HSV)

Conn = connect_edge(Canny)

Cnt = cv2.findContours(Conn)
Filterlmage=apply contour filter(Cnt)
Erode = cv2.erode(FilterImage)
Filterlmage=apply contour filter(Erode)
Mask = cv2.dilate(Filterlmage)

Point = get_points(Mask)

@ (b) © @

Fig. 8. (Color online) (a) Nonresidential buildings, (b) nonresidential buildings and houses, (c) nonresidential
buildings, houses, and apartments, and (d) apartments.

Fig. 9.  (Color online) Box prompts.

3.4.2 Point prompt generation

To generate point prompts, the previously cropped images were converted to the HSV color
space, followed by edge and contour detection. Figure 10(a) shows the cropped building object
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Fig. 10. (Color online) (a) Clipped image, (b) HSV image, (c) edge detection, and (d) contour detection.

and Fig. 10(b) presents the image after HSV conversion. Figure 10(c) illustrates the result of edge
detection, while Fig. 10(d) shows the detected building contours based on the edge detection
result.

Because of noise in the edge detection process, some linear structures forming the building
objects may be partially missing. To address this, the distances between feature points were
calculated during contour detection, and points within a certain threshold were connected.
Additionally, while filling the interior of the contour lines, redundant lines were removed and
connected linear structures were enhanced.

To generate mask images for building segmentation, Gaussian blur was applied to the images
with detected building contours, followed by morphological operations. Some of the results of
this process are shown in Fig. 11. Figure 11(a) shows the result after applying Gaussian blur, and
Fig. 11(b) shows the result after performing morphological operations. In this study, Gaussian
blur was applied prior to the morphological operations to reduce noise outside the building
boundaries and to enhance the clarity of the object contours.

Point prompts for building segmentation were created as the center points within the masks
of each object generated through image processing, as shown in Fig. 12, minimizing the work of
manually inputting prompts.

As shown in Fig. 13, we combined box and point prompts, derived from object detection and
image processing, respectively, to create a multiprompt that complementarily leverages both
types of information. In the figure, the red quadrilaterals represent box prompts, and the blue
dots represent point prompts.

3.4.3 Segmentation of buildings

To evaluate the building segmentation accuracy of the fine-tuned deep learning model and
the generated prompts, experiments were conducted under two different conditions, as shown in
Fig. 14: using the pretrained SAM?2 with single prompts and using the fine-tuned model with
multiprompts. Figure 14(a) shows the original images for segmentation, while Fig. 14(b) presents
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Fig. 11. (Color online) (a) Blur and (b) morphological images.
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Fig. 12. (Color online) (a) Nonresidential buildings, (b) nonresidential buildings and houses, (c) nonresidential
buildings, houses, and apartments, and (d) apartments.

Fig. 14. (Color online) (a) Original images, (b) single prompt applied to a pretrained model, and (c) multiprompts
applied to a fine-tuned model.
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Fig. 14. (Color online) (Continued) (a) Original images, (b) single prompt applied to a pretrained model, and (c)
multiprompts applied to a fine-tuned model.

the segmentation results obtained using the pretrained model with single prompts. Figure 14(c)
presents the segmentation results obtained using the fine-tuned model with multiprompts.

A comparison of the pretrained model with the model fine-tuned using the building data
targeted in this study showed that the pretrained model failed to segment most buildings owing
to insufficient training on the dataset used in this study. In contrast, the fine-tuned model
showed significantly improved performance in building segmentation, accurately identifying the
majority of building objects. This improvement resulted from the fine-tuning process reflecting
the characteristics of the building data, thereby achieving a higher accuracy than the pretrained
model.

In addition, when performing object segmentation using a single prompt based on the center
point of the mask image, we observed that the object was incorrectly segmented into multiple
objects if the color values within the object varied. In contrast, when using the multiprompts
proposed in this study, the object was correctly segmented as a single object even when the color
values varied, confirming that the use of multiple prompts played an important role in improving
the model performance.

4. Conclusions

In this study, we proposed a methodology of building segmentation by first detecting building
bounding boxes in ortho-images using YOLOVS, then generating multiple prompts based on the
detection results, and finally applying them to a fine-tuned SAM?2. The following conclusions
were drawn:
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First, by generating prompts using various image processing techniques within the building
regions detected by YOLOVS, building boundaries were effectively delineated and background
noise was reduced, enabling the creation of clear and accurate mask images. This approach
significantly reduced the need for manual prompt input and enhanced the accuracy and
efficiency of the building segmentation process.

Second, a comparison between the pretrained SAM2 and the fine-tuned model revealed that
the former exhibited limited segmentation performance owing to its lack of adaptation to
building data. In contrast, the fine-tuned model, trained specifically on building imagery,
demonstrated substantially improved segmentation performance.

Third, when performing object segmentation using a single prompt, one object was often
incorrectly segmented into multiple objects if it contained varying color values. However, when
multiprompts were used as proposed in this study, the object was correctly segmented as a single
object, even in the presence of different color values. From these results, we confirmed that
prompt input plays a critical role in improving the model’s performance.

Future work will be focused on vectorizing and regularizing the segmented building regions
to generate building objects, and the resulting objects, produced through the vectorization and
regularization processes, will be integrated into geospatial information systems.
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