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	 Black ice is difficult to detect with the naked eye because it reflects the color of the road 
surface. It often forms rapidly owing to freezing rain and leads to severe traffic accidents, 
particularly on expressways. To reduce the risk of casualties, it is essential to assess the 
vulnerability of expressway sections to black-ice-related accidents. In his study, we present a 
large-scale assessment of such vulnerability, aimed at providing a quantitative foundation for 
preventive measures and rational resource allocation. Ten contributing factors were selected 
using the Intergovernmental Panel on Climate Change (IPCC) Climate Change Vulnerability 
Assessment Framework and categorized into three groups: exposure, sensitivity, and adaptive 
capacity. Each factor was normalized and analyzed using entropy weighting within a geographic 
information system (GIS) environment. The exposure factors included hillshade (mean: 94.76), 
precipitation (mean: 219.78 mm), humidity (mean: 70.97%), and temperature (mean: 2.01 °C). 
Sensitivity factors comprised slope (mean: 7.5°), curvature (mean: 0.15), traffic volume (mean: 
62073 vehicles), bridge length (mean: 1452.06 m), and tunnel count (mean: 2.33). Adaptive 
capacity was represented by the density of 119 Emergency Rescue Centers (mean: 0.01). The 
final vulnerability index had an average of 0.96 with a standard deviation of 0.20. These results 
provide a practical basis for formulating black ice accident prevention strategies and optimizing 
the allocation of safety-related resources. The findings also offer valuable policy insights for 
winter road safety planning and infrastructure vulnerability management.
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1.	 Introduction

	 Black ice commonly forms in dark and cold areas, such as roads shaded by frost, freezing 
rain, or melting snow. It creates a thin, transparent layer on asphalt that is nearly indistinguishable 
from the normal road surface, earning it the name “black ice”.(1) This phenomenon often results 
in severe traffic accidents, particularly when it forms rapidly owing to freezing rain. Freezing 
rain refers to supercooled precipitation that remains liquid at or below 0 °C and freezes 
immediately upon contact with subzero road surfaces, rendering its location and intensity 
difficult to predict.(2) From 2015 to 2019, fatalities from black-ice-related accidents in South 
Korea were four times higher than those from snowy road conditions, indicating a significantly 
greater risk.(3) South Korea, the study area, experiences four distinct seasons, with winter 
temperatures frequently falling below −10 °C. Its geography—surrounded by oceans on three 
sides and containing numerous inland water bodies such as rivers and lakes—contributes to a 
high potential for black ice formation.(4) Examples of black ice accidents include a multi-vehicle 
collision on the Sangju–Yeongcheon Expressway on December 14, 2019, which resulted in seven 
fatalities and 32 injuries,(5) and another involving 41 vehicles on National Route 33 in 
Gyeongsangnam-do on January 6, 2020, which left 10 individuals injured.(6) These unexpected, 
high-casualty events underscore the need for proactive vulnerability assessments by expressway 
section. Vulnerability to black ice varies spatially depending on factors such as terrain, climate, 
and traffic volume. Accordingly, expressway management organizations, such as the Korea 
Expressway Corporation, must rationally allocate countermeasure budgets based on regional 
characteristics. In this study, we highlight the importance of conducting large-scale vulnerability 
assessments across expressway sections, incorporating regional meteorological and spatial 
differences to support the development of effective countermeasures and targeted investments. 
In this context, “large-scale” refers to spatial analysis at the national or quasi-national level—for 
instance, Korea’s nationwide expressway network or a state-level scope in federal countries such 
as the United States. The results of this study are expected to contribute to evidence-based 
policy decisions for winter road safety, particularly by supporting the strategic allocation of 
resources to regions with elevated black ice vulnerability.
	 Previous studies have attempted to estimate the vulnerability of roadways to black ice in 
advance. Many of these studies visualized black-ice-related indicators, such as road surface 
temperature, using geographic information system (GIS) tools; however, their analyses were 
limited to localized areas. For instance, some studies modeled black ice occurrence within GIS 
environments,(7,8) but these focused solely on forecasting black ice formation without evaluating 
the associated traffic accident vulnerability. Other studies aimed to predict general traffic 
accidents by integrating various contributing factors but did not specifically address black ice, 
assign relative weights to variables, or incorporate GIS-based spatial analysis.(9–11) Additionally, 
several investigations employed pavement-embedded sensors to monitor surface temperature 
and identify potentially hazardous sections.(12–14) Although road temperature is a critical factor 
in black ice formation, these sensor-based approaches often excluded essential contextual 
variables such as terrain, climate, and traffic volume, and remained limited in spatial coverage.
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	 Further studies have examined the characteristics of winter road weather and temperature 
variation,(15,16) and some incorporated GIS-based analyses of temperature change. However, the 
limited number of variables and the narrow geographic scope rendered these studies insufficient 
for comprehensive black ice accident estimation. Since road weather conditions typically extend 
across broad areas, distinguishing location-specific risk in regional-scale studies remains 
challenging. Other researchers developed predictive models for road surface temperature using 
terrain, roadway design, traffic volume, and meteorological data.(17–19) While these studies 
identified relevant factors and implemented prediction techniques, they did not assess black ice 
vulnerability by road segment, primarily owing to the lack of GIS integration. Nevertheless, the 
terrain, climate, and traffic variables utilized in those studies were found to be relevant and were 
therefore incorporated into the present research.
	 Various technologies have been proposed as countermeasures for black ice and other roadway 
hazards, including safety indicator lights,(14,20) AI-based early warning systems,(21,22) intelligent 
snow and ice removal technologies,(13,23) and surface ice detection sensors.(13,24) However, the 
effective implementation of these technologies requires the prior identification of key 
contributing factors for black ice accident risk, along with a large-scale, GIS-based vulnerability 
assessment of expressways. Previous studies either concentrated primarily on road surface 
temperature despite utilizing GIS or considered topographic, climatic, and traffic-related 
variables without integrating GIS methods. Moreover, most assessments were limited to regional 
scopes. Therefore, a comprehensive, large-scale vulnerability assessment that incorporates 
weighted black ice risk factors is essential to support the efficient deployment of 
countermeasures.
	 In this study, we identify the key factors contributing to black-ice-related traffic accidents on 
large-scale expressways and analyze their spatial vulnerability using a GIS-based approach. The 
study area includes the entire national expressway network of South Korea. The analysis 
incorporates ten variables associated with black ice incidents, all derived through GIS-based 
methods: hillshade, total winter precipitation (rain and snow), average winter humidity, average 
winter temperature, slope, curvature, section-level traffic volume, total bridge length (m), the 
total number of tunnels, and the density of 119 Emergency Rescue Centers.
	 Each factor was categorized as either exposure, sensitivity, or adaptive capacity based on the 
Intergovernmental Panel on Climate Change (IPCC) Climate Change Vulnerability Assessment 
Framework.(25) Hillshade was calculated from a digital elevation model (DEM) with a 5 m 
resolution and averaged over the time period from 08:00 to 13:00. All selected variables were 
normalized and converted into GIS layers. These layers were subsequently overlaid using 
entropy-based weighting to assess the spatial vulnerability of each expressway section at a large 
scale.

2.	 Methodology

	 In this study, we used a GIS-based approach to assess the vulnerability of expressway 
sections to black-ice-related traffic accidents by spatially overlaying ten factors classified 
according to the IPCC Climate Change Vulnerability Assessment Framework: exposure, 
sensitivity, and adaptive capacity. Figure 1 shows the flowchart of the overall assessment 
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process. The exposure category includes hillshade, precipitation, humidity, and temperature, the 
sensitivity category comprises slope, curvature, traffic volume, bridge length, and tunnel count, 
and the adaptive capacity category consists of the density of 119 Emergency Rescue Centers, 
which serve as Korea’s national emergency response facilities.
	 The factor maps were clipped to the expressway feature dataset in GIS, and the corresponding 
values were normalized. Entropy weighting was applied to each factor through the following 
three steps: (1) calculating the probability distribution of each variable, (2) computing the 
entropy values, and (3) deriving the final entropy weights. The resulting black ice vulnerability 
index was visualized within the GIS environment and presented as a spatial vulnerability map.
	
2.1	 Vulnerability framework and factor definitions

	 Table 1 shows the definitions and characteristics of each factor selected on the basis of the 
IPCC vulnerability assessment framework and the GIS-based analysis conducted in this study. 
Each variable was selected not only for its availability and spatial coverage, but also for its direct 
relevance to black ice formation and accident vulnerability. Meteorological factors such as low 
temperature, high humidity, and high precipitation are known to increase the likelihood of 
surface icing. Topographic variables such as slope and curvature affect vehicle control on icy 
roads, while traffic volume increases exposure to potential accidents. Infrastructure elements, 
including bridge length and tunnel count, are highly susceptible to freezing due to air exposure 
or shading. Finally, the density of emergency rescue centers reflects the capacity to respond 
effectively in areas of high vulnerability.
	 The analysis focused solely on national expressways in South Korea, with a total of 30 
expressways included in the study. Expressways were selected as the subject of analysis owing to 

Fig. 1.	 Flowchart of black ice traffic accident vulnerability assessment process.
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their high travel speeds and the correspondingly elevated severity of traffic accidents that occur 
under black ice conditions. This scope enables a focused evaluation of infrastructure segments 
that exhibit high vulnerability to black-ice-related traffic accidents.
	 Hillshade is a dimensionless value, with higher values indicating greater surface illumination. 
As it is inversely correlated with black ice vulnerability, its reciprocal was used for calculating 
the vulnerability index. Precipitation represents the total accumulation over a defined winter 
period (mm), while humidity and temperature represent averages during the same period, 
expressed in percent (%) and degrees Celsius (°C), respectively. Slope ranges from 0 to 90 
degrees, and curvature is a dimensionless value ranging from −4 to 4; larger absolute values 
indicate sharper changes in road geometry.
	 Traffic represents the number of vehicles passing through each expressway section over a 
defined time period. Bridge length denotes the total length of bridges within each section (m). 
Owing to exposure on both the upper and lower surfaces, bridges are more susceptible to black 
ice formation as a result of increased heat loss. Tunnel count indicates the total number of 
tunnels per expressway section. Tunnel entrances and exits are frequently shaded, resulting in 
lower surface temperatures and an elevated risk of black ice formation. Finally, the density of 
119 Emergency Rescue Centers—South Korea’s national emergency response facilities—was 
calculated using kernel density analysis and is represented as a dimensionless value greater than 
zero.
	 The variables hillshade, slope, and curvature were derived through the spatial analysis of a 
DEM. Precipitation, humidity, and temperature were interpolated by the inverse distance 
weighting (IDW) method, based on meteorological data from disaster prevention weather 
stations. The density of 119 Emergency Rescue Centers was calculated using kernel density 
estimation applied to point-based data. All spatial datasets generated through these methods 
were incorporated as attribute data into GIS-based expressway features at a large scale and were 
subsequently aggregated and mapped as averages per route, corresponding to each row in the 
expressway attribute table.

Table 1
Factors used for black ice traffic accident vulnerability analysis based on the IPCC framework and GIS 
methodologies.
Category Factor Symbol Variable range Unit GIS analysis method

Exposure

Hillshade H 0–255 — Spatial analysis
Precipitation P >0 mm IDW

Humidity Hu 0–100 % IDW
Temperature T −15 to10 ℃ IDW

Sensitivity

Slope S 0–90 Degrees Spatial analysis
Curvature C –4 to 4 — Spatial analysis

Traffic volume Tr >0 Count Attribute data
Bridge length B >0 m Attribute data
Tunnel count Tu >0 Count Attribute data

Adaptive capacity 119 Emergency Rescue 
Center density O >0 — Kernel density 

estimation
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2.2	 GIS-based data analysis method

	 Among the selected factors for large-scale analysis, hillshade, slope, and curvature were 
derived through spatial analysis; precipitation, humidity, and temperature were interpolated by 
the IDW method; and the density of 119 Emergency Rescue Centers was calculated via kernel 
density estimation. The hillshade factor (H) was derived using Eq. (1), based on a DEM with a 
spatial resolution of 5 m, representing elevation data across the entire territory of South Korea. 
The elevation values in the DEM range from −23.6896 to 2454.74 m. Higher elevations are 
associated with greater shadow intensity and steeper terrain features such as slope and curvature, 
thereby affecting the topographical characteristics of expressway segments.
	 The variables derived through DEM-based spatial analysis included hillshade, slope, and 
curvature. In Eq. (1), θS  denotes the solar elevation angle (in degrees), φS the solar azimuth 
angle, θi the slope angle of the terrain (in degrees), and φi the terrain aspect angle. Solar elevation 
and azimuth data were obtained from the Astronomical Knowledge Information System of the 
Korea Astronomy and Space Science Institute. Jangyeon-ri, Cheongsung-myeon, Okcheon-gun, 
Chungcheongbuk-do was selected as the representative geographic center of South Korea for 
solar position reference. Average solar position values were computed for the time period from 
08:00 to 13:00 during winter (December 2023 to February 2024). A raster-based average 
hillshade map was then generated from this data and incorporated as an input variable in the 
black ice vulnerability assessment.

	 ( )( )255* cos *cos sin *sin *coss i s i s iH θ θ θ θ ϕ ϕ= + − 	 (1)

	 Slope (S) was calculated using Eq. (2), derived from the DEM. In this equation, Z∂ / x∂  and 
Z∂ / y∂  represent the elevation gradients in the x- and y- directions of each grid cell, respectively. 

These gradients were computed using elevation differences between adjacent cells. The resulting 
slope values, initially calculated in radians, were converted to degrees by multiplying by a 
constant factor of 180/π.(26)

	
22 180arctan *Z ZS

x y π

  ∂ ∂  = +    ∂ ∂    
	 (2)

	 Curvature (C) was calculated using Eq. (3) based on a DEM. Curvature is a key topographic 
metric that describes how the terrain surface bends and how slope varies across space. Along 
with slope and aspect, it is widely used in terrain analysis to characterize surface form. In this 
context, curvature quantifies the rate of change in slope, indicating surface concavity or 
convexity. In Eq. (3), 2Z∂ / 2x∂  and 2Z∂ / 2y∂  represent the second-order partial derivatives of 
elevation in the x- and y- directions, respectively. These values were computed using elevation 
differences among neighboring grid cells in the DEM.(27)
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	 Precipitation (P), humidity (Hu), and temperature (T) were estimated using Eq. (4) through 
IDW. Precipitation refers to the condensation of water vapor in either liquid or solid form that 
falls from the atmosphere to the ground, including phenomena such as rain, snow, sleet, hail, and 
blizzards. Owing to the spatial and seasonal variabilities of precipitation and temperature, 
particularly under climate change scenarios, these variables were included as key risk factors for 
roadway icing.(28)

	 Spatial interpolation was performed by the IDW method based on point observations of 
precipitation, humidity, and temperature. In this study, we applied this technique to estimate the 
value at a specific location by assigning weights to surrounding observations according to their 
distance. In Eq. (4), V(p) denotes the estimated value at location p, Vi is the observed value at 
neighboring point i, d(p, pi) represents the distance between location p and point i, and p is the 
power parameter that controls the weighting function. Typically, the exponent p ranges from 1 to 
3, with higher values assigning greater effect to nearer points. The interpolated raster maps of 
V(p) were clipped to the national expressway shapefile shown in Fig. 2(c), resulting in 
expressway-specific spatial layers for precipitation, humidity, and temperature.(29,30)
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	 The density of 119 Emergency Rescue Centers was calculated using Eq. (5) through kernel 
density estimation (KDE) based on point data. KDE is a spatial interpolation technique used to 
estimate and visualize the continuous distribution of point-based events over space. In Eq. (5), n 
is the total number of points, x is the location at which the density is estimated, xi denotes the 
coordinates of point i, h is the bandwidth, d is the spatial dimensionality, and K is the kernel 
function. The bandwidth h determines the extent of smoothing; larger h values produce broader 
and smoother density surfaces. In this study, the spatial dimensionality d was set to 2, and a 
Gaussian kernel (i.e., normal distribution) was employed as the smoothing function.(31,32)

	 ( ) 1
1  

*
n i

d i
x xO D x K

hn h =
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∑ 	 (5)

2.3	 GIS-based vulnerability analysis method

	 For the GIS-based assessment of black ice traffic accident vulnerability, ten factors—
hillshade, precipitation, humidity, temperature, slope, curvature, traffic volume, bridge length, 
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Fig. 2.	 (Color online) Construction of data layers for GIS-based vulnerability analysis: (a) locations of Automated 
Synoptic Observing Stations (ASOS) and Automated Weather Stations (AWS), (b) point data for 119 Emergency 
Rescue Centers used for kernel density estimation, (c) expressway attribute data including traffic volume, bridge 
length, and tunnel count, and (d) DEM overlaid on the national expressway network, used to derive hillshade, slope, 
and curvature. (Source: Bing Satellite provided via WMS, URL: https://ecn.t3.tiles.virtualearth.net/tiles/a{q}.
jpeg?g=0&dir=dir_n, last accessed: 21 July 2024).

https://ecn.t3.tiles.virtualearth.net/tiles/a{q}.jpeg?g=0&dir=dir_n
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tunnel count, and 119 Emergency Rescue Center density—were classified into three categories, 
namely, exposure, sensitivity, and adaptive capacity, based on the IPCC Climate Change 
Vulnerability Assessment Framework. The classification scheme is shown in Table 1. Entropy-
based weighting was then applied to determine the relative contribution of each factor to the 
overall vulnerability index.
	 Exposure refers to meteorological and environmental factors that contribute to the formation 
of black ice, including hillshade, precipitation, humidity, and temperature. Sensitivity refers to 
the physical and operational characteristics of expressways that interact with exposure 
conditions, such as slope, curvature, traffic volume, bridge length, and tunnel count. Adaptive 
capacity refers to the ability to mitigate accident-related impacts and is represented by the 
density of 119 Emergency Rescue Centers.
	 In this study, we aim to assess the large-scale vulnerability of black-ice-related traffic 
accidents across the national expressway network in South Korea using GIS. We also seek to 
provide foundational data for accident prevention planning and budget allocation by 
comprehensively incorporating multiple contributing factors. Entropy weighting was employed 
to evaluate the relative importance of each factor based on its variability. Concurrently, 
Euclidean distance was used to integrate the normalized variables and account for their 
combined effects. This approach allows for efficient integration within a GIS environment and 
facilitates the effective utilization of spatial information for vulnerability assessment.
	 Each factor was normalized using Eq. (6), where Xi represents the attribute value (i.e., 
expressway section) for variable j, and Xmin and Xmax are the minimum and maximum values of 
that variable, respectively. The normalized values range from 0 to 1. Entropy values (Ej) were 
then calculated using Eq. (7), where m is the total number of expressway sections and n is the 
number of variables. Greater variance among attribute values results in higher entropy. The 
constant k serves to adjust for the number of sections, ensuring that entropy values remain 
between 0 and 1. Diversity (dj) was derived from the entropy values using Eq. (8), and final 
weights (wj) were computed using Eq. (9). The results of this weighting process were then 
applied in subsequent steps of the methodology.(33) This integrated approach enables objective 
weight assignment through entropy analysis while enhancing the spatial interpretability of risk 
by leveraging GIS visualization. As a result, the combination of these methods facilitates the 
prioritization of high-risk areas in a quantifiable and geographically meaningful manner.
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	 Equation (10) presents the Euclidean distance formula used to calculate the overall 
vulnerability index by integrating the three components of the IPCC framework: exposure (E), 
sensitivity (S), and adaptive capacity (A).(34) All input variables were normalized to values 
ranging from 0 to 1 prior to their inclusion in the formula. Equation (11) defines the exposure 
index (E) as the weighted sum of four normalized factors: hillshade (H), precipitation (P), 
humidity (HU), and temperature (T). The associated entropy weights are denoted as Hw , Pw , 

HUw , and Tw , respectively.
	 Equation (12) defines the sensitivity index (S) as the weighted sum of five normalized 
variables: slope (S), curvature (C), traffic volume (Tr), bridge length (B), and tunnel count (Tu). 
The corresponding entropy weights are denoted as wS, wC, wTr, wB, and wTu, respectively. 
Adaptive capacity (A) is represented by a single variable: the density of 119 Emergency Rescue 
Centers, which was already normalized and incorporated directly into Eq. (10).

	 ( )22 2 1V E S A= + + − 	 (10)

	 H P HU TE w H w P w HU w T= + + + 	 (11)

	 S C Tr B TuS w S w C w Tr w B w Tu= + + + + 	 (12)

2.4	 Study area and scenario selection

	 The national expressway network of South Korea was selected as the study area. Previous 
studies have shown that satellite-image-based spatial analysis, when combined with domestic 
topographic and meteorological data, offers sufficient precision for large-scale spatial 
modeling.(35) Thirty major expressway routes with the highest traffic volumes were chosen, as 
listed in Table 2.(36) The average annual traffic across these routes from 2018 to 2022 was 
105,175 vehicles, indicating elevated vulnerability to traffic accidents due to substantial vehicle 
flow. Black ice poses a particularly serious threat on expressways during winter, as it forms 
suddenly and is difficult to detect visually, often resulting in fatal accidents. Topographic, 
meteorological, and traffic data were collected for the selected expressways. GIS layers were 
constructed using spatial analysis, point data interpolation, and kernel density estimation 
techniques. The resulting dataset was categorized into exposure, sensitivity, and adaptive 
capacity based on the IPCC Climate Change Vulnerability Assessment Framework, and the 
previously described GIS-based methodology was applied to integrate and analyze these 
variables.
	 Hillshade values range from 0 to 255, with higher values indicating greater surface 
illumination. The solar elevation and azimuth angles used for hillshade analysis were obtained 
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from the Astronomical Knowledge Information System. Hillshade, slope, and curvature were all 
derived from a DEM using Eqs. (1)–(3). Precipitation represents the total accumulation for the 
winter period of December 2023 to February 2024, while humidity and temperature denote 
averages for the same period. All meteorological data were obtained from the Weather Data 
Open Portal. The detailed scenario definitions and data sources for each variable used in the 
vulnerability analysis are shown in Table 3.
	 Traffic volume was derived from expressway section data spanning the years 2018 to 2022 
and calculated as the average number of vehicles passing through each segment. Bridge length 
refers to the total span of bridges within each expressway section. Bridges are particularly 
susceptible to black ice formation owing to significant heat loss and shading effects caused by 
exposure on both the top and bottom surfaces, as well as at entry and exit points. Tunnel count 
indicates the number of tunnels in each section, with increased shading around tunnel entrances 
and exits also contributing to black ice risk. The data for bridges and tunnels were obtained from 
the National Spatial Information Platform and mapped onto the national expressway network. 
The density of 119 Emergency Rescue Centers was calculated using Eq. (5) and sourced from the 
Public Data Portal.
	 Figure 2(a) shows the locations of the Automated Synoptic Observing Stations (ASOS) and 
Automated Weather Stations (AWS) across South Korea(4). The ASOS network consists of 97 
stations, whereas the AWS network includes 515 stations. Weather data for winter 2023—
specifically precipitation, humidity, and temperature—were obtained from these stations and 
interpolated by the IDW method. The point data were integrated into the GIS to generate 
continuous spatial layers for further analysis.
	 Figure 2(b) shows the point data for 119 Emergency Rescue Centers, which were processed 
using kernel density estimation to produce a continuous spatial distribution map.(36) Figure 2(c) 
includes traffic, bridge, and tunnel data layers derived from public transportation datasets.(38) 

Table 2
Major expressways in South Korea and their average daily traffic volumes (2018–2022).

No. Expressway Name Avg. Daily 
Traffic No. Expressway Name Avg. Daily 

Traffic
1 Gyeongbu Expressway 497657 16 Suncheon–Wanju Expressway 19163
2 Gyeongin Expressway 56788 17 Yeongdong Expressway 207226
3 Gochang–Damyang Expressway 25756 18 Ulsan Expressway 29659
4 Gwangju–Daegu Expressway 32424 19 Iksan–Pohang Expressway 46616
5 Namhae Expressway 168913 20 Second Gyeongin Expressway 29401
6 Namhae Branch Line 1 28816 21 Second Jungbu Expressway 126973
7 Namhae Branch Line 2 47017 22 Jungbu Inland Expressway 89315
8 Dangjin–Yeongdeok Expressway 95342 23 Jungbu Inland Branch Expressway 45966
9 Daejeon Southern Ring Road 24278 24 Jungbu Expressway 162093
10 Donghae–Ulsan–Pohang Expressway 72401 25 Jungang Expressway 185557
11 Busan Outer Ring Expressway 57065 26 Jungang Branch Expressway 79155
12 Seoul–Yangyang Expressway 16733 27 Tongyeong–Daejeon Expressway 162093
13 Seoul Ring Expressway 332330 28 Pyeongtaek–Jecheon Expressway 100035
14 Seocheon–Gongju Expressway 13914 29 Honam Expressway 138777
15 Seohaean Expressway 162781 30 Honam Branch Expressway 101004
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These layers were spatially aligned with and clipped to the national expressway features 
illustrated in Fig. 2(d), which presents the DEM overlaid on the expressway network. Spatial 
analyses for hillshade, slope, and curvature were performed using this elevation dataset.(39)

3.	 Results

	 The results are presented in three stages: data preprocessing, entropy-based weighting, and 
GIS-based vulnerability analysis. The dataset consists of ten variables classified according to the 
IPCC Climate Change Vulnerability Assessment Framework. Specifically, the exposure 
category includes hillshade, precipitation, humidity, and temperature; the sensitivity category 
includes slope, curvature, traffic volume, bridge length, and tunnel count; and the adaptive 
capacity category consists of the density of 119 Emergency Rescue Centers.
	 Hillshade, slope, and curvature were derived through spatial analysis, whereas precipitation, 
humidity, and temperature were interpolated by the IDW method. The density of 119 Emergency 
Rescue Centers was calculated using kernel density estimation. Entropy weighting was 
subsequently applied to determine the relative importance of each factor. A composite 
vulnerability index was then calculated by integrating exposure, sensitivity, and adaptive 
capacity. The final vulnerability results were visualized using GIS.

3.1	 Data preprocessing results

	 Figure 3 presents the raster-based preprocessing results for precipitation, humidity, 
temperature, and 119 Emergency Rescue Center density. Figures 3(a)–3(c) were generated by the 
IDW method, whereas Fig. 3(d) was produced by kernel density estimation.
	 Figure 3(a) shows the spatial distribution of precipitation, with a mean of 229.18 mm, a 
standard deviation of 79.62 mm, a maximum of 1028.24 mm, and a minimum of 18.07 mm. 

Table 3
Scenario definitions and data sources for factors used in black ice traffic accident vulnerability assessment.
Category Factor Unit Value range Data period Data source

Exposure

Hillshade — 63.64–116.96 Dec. 2023–Feb. 2024 DEM, Astronomical 
Knowledge Information(37)

Precipitation mm 0–437.01 Dec. 2023–Feb. 2024 Weather Data Open Portal(4)

Humidity % 0–80.26 Dec. 2023–Feb. 2024 Weather Data Open Portal(4)

Temperature ℃ −3.53–5.39 Dec. 2023–Feb. 2024 Weather Data Open Portal(4)

Sensitivity

Slope Degrees 0–27.08 — DEM
Curvature — −6.34–2.31 — DEM

Traffic volume Count 0–258,198 Jan. 2018–Dec. 2022 Expressway public data 
portal(38)

Bridge length m 0–8289.05 — National Spatial Information 
Platform(39)

Tunnel count Count 0–11 — National Spatial Information 
Platform(39)

Adaptive 
capacity

119 Emergency Rescue 
Center Density — 0–0.05 — Public Data Portal(36)
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Fig. 3.	 (Color online) Preprocessing results of meteorological and spatial variables for GIS-based vulnerability 
analysis: (a) precipitation interpolated by inverse distance weighting (IDW), (b) humidity interpolated by IDW, (c) 
temperature interpolated by IDW, and (d) kernel density map of 119 Emergency Rescue Centers. (Source: Bing 
Satellite provided via WMS, URL: https://ecn.t3.tiles.virtualearth.net/tiles/a{q}.jpeg?g=0&dir=dir_n, last accessed: 
21 July 2024).

https://ecn.t3.tiles.virtualearth.net/tiles/a{q}.jpeg?g=0&dir=dir_n
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Figure 3(b) shows the raster for humidity, with a mean of 80.63%, a standard deviation of 4.54%, 
a maximum of 80.65%, and a minimum of 57.69%. Figure 3(c) shows the temperature 
distribution, with a mean of 1.66 °C, a standard deviation of 2.24 °C, a maximum of 10.36 °C, 
and a minimum of -7.12 °C. Figure 3(d) presents the kernel density map of 119 Emergency 
Rescue Centers, with a mean value of 0.01, a standard deviation of 0.01, a maximum of 0.09, and 
a minimum of 0.
	 Figures 4 and 5 present GIS-based visualizations of the exposure variables. Figure 4 
illustrates the preprocessing results of hillshade, which was obtained via spatial analysis and 
mapped onto the national expressway network. Figures 4(a)–4(f) show hillshade maps for each 
hour from 08:00 to 13:00, whereas Fig. 4(g) shows the average hillshade during that time period. 
For the 493 expressway sections, the average hillshade was 94.76, with a standard deviation of 
6.40, a maximum of 116.96, and a minimum of 63.64 (unitless). Areas with lower hillshade 
values are more prone to shadows, and regions where shading persists across multiple time steps 
are considered more susceptible to black ice formation.
	 Figure 5 presents the exposure variables—precipitation, humidity, and temperature—after 
the interpolated raster layers from Fig. 3 were clipped to the national expressway features. 
Figure 5(a) shows the clipped precipitation layer, with a mean of 219.78 mm, a standard deviation 
of 56.56 mm, a maximum of 437.01 mm, and a minimum of 0 mm. Increased winter precipitation 
raises the likelihood of freezing rain, thereby increasing black ice risk. Figure 5(b) shows the 
humidity layer, with a mean of 70.97%, a standard deviation of 6.47%, a maximum of 80.26%, 

Fig. 4.	 (Color online) Spatial analysis results of hillshade between 08:00 and 13:00: (a)–(f) hourly hillshade maps 
at 1-h intervals from 08:00 to 13:00 and (g) average hillshade across all time intervals. (Source: Bing Satellite 
provided via WMS, URL: https://ecn.t3.tiles.virtualearth.net/tiles/a{q}.jpeg?g=0&dir=dir_n, last accessed: 21 July 
2024).

https://ecn.t3.tiles.virtualearth.net/tiles/a{q}.jpeg?g=0&dir=dir_n
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and a minimum of 0%. Higher humidity levels promote frost accumulation, further contributing 
to black ice formation. Figure 5(c) shows the temperature distribution, with a mean of 2.01 °C, a 
standard deviation of 1.58 °C, a maximum of 5.39 °C, and a minimum of –3.53 °C. Lower 
average temperatures in expressway segments are associated with an increased probability of 
subfreezing conditions and thus a higher black ice risk.
	 Figure 6 shows the GIS-based visualizations of the sensitivity and adaptive capacity 
variables. Figures 6(a)–6(e) depict the five sensitivity factors, whereas Fig. 6(f) shows the 
adaptive capacity layer. Figure 6(a) shows the slope of expressway sections, derived from spatial 
analysis, with a mean of 7.5°, a standard deviation of 4.86°, a maximum of 27.08°, and a 
minimum of 0°. Steeper slopes reduce tire–road friction under black ice conditions, increasing 
the risk of accidents. Figure 6(b) illustrates road curvature, also obtained through spatial 
analysis, with a mean of 0.15, a standard deviation of 0.52, a maximum of 2.31, and a minimum 
of -6.34. Greater curvature increases the difficulty of vehicle control on slippery road surfaces. 
Figure 6(c) presents the average daily traffic volume, with a mean of 62073 vehicles, a standard 
deviation of 51342.77, a maximum of 258198, and a minimum of 0. Sections with higher traffic 
volumes are more exposed to accident risk under black ice conditions due to greater vehicle 
density. Figure 6(d) shows the total bridge length per section, with a mean of 1,452.06 m, a 
standard deviation of 1,219.44 m, a maximum of 8289.05 m, and a minimum of 17.05 m. Bridges 
are highly susceptible to heat loss and freezing due to exposure on both surfaces, increasing 

Fig. 5.	 (Color online) GIS visualization of exposure variables: (a) precipitation interpolated and clipped to the 
national expressway network, (b) humidity interpolated and clipped to the national expressway network, and (c) 
temperature interpolated and clipped to the national expressway network. (Source: Bing Satellite provided via 
WMS, URL: https://ecn.t3.tiles.virtualearth.net/tiles/a{q}.jpeg?g=0&dir=dir_n, last accessed: 21 July 2024).

https://ecn.t3.tiles.virtualearth.net/tiles/a{q}.jpeg?g=0&dir=dir_n
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black ice risk. Figure 6(e) depicts the number of tunnels per expressway section, with a mean of 
2.33, a standard deviation of 1.93, a maximum of 11, and a minimum of 1. Tunnel entrances and 
exits are typically shaded and cooler, elevating the likelihood of black ice formation. Figure 6(f) 

Fig. 6.	 (Color online) GIS visualizations of sensitivity and adaptive capacity variables: (a) slope (degrees), (b) 
curvature (unitless), (c) traffic volume (vehicles/day), (d) total bridge length (m), (e) number of tunnels, and (f) 
density of 119 Emergency Rescue Centers. (Source: Bing Satellite provided via WMS, URL: https://ecn.t3.tiles.
virtualearth.net/tiles/a{q}.jpeg?g=0&dir=dir_n, last accessed: 21 July 2024).

https://ecn.t3.tiles.virtualearth.net/tiles/a{q}.jpeg?g=0&dir=dir_n
https://ecn.t3.tiles.virtualearth.net/tiles/a{q}.jpeg?g=0&dir=dir_n
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shows the clipped density of 119 Emergency Rescue Centers, derived from Fig. 3(d). The mean 
density is 0.01, with a standard deviation of 0.01, a maximum of 0.05, and a minimum of 0. 
Higher rescue center density improves emergency response capabilities and enhances adaptive 
capacity in the event of black-ice-related accidents.

3.2	 Entropy analysis results

	 Table 4 shows the vulnerability factors along with their corresponding entropy weights. 
Entropy-based weighting was applied to the exposure and sensitivity categories, each consisting 
of multiple variables. In contrast, the adaptive capacity category, which contains only a single 
factor—119 Emergency Rescue Center density—was assigned a fixed weight of 1.
	 In the exposure category, humidity had the highest weight (0.36), followed by precipitation 
(0.26), temperature (0.20), and hillshade (0.18). In the sensitivity category, slope received the 
highest weight (0.25), followed by traffic volume (0.23), tunnel count (0.22), bridge length (0.19), 
and curvature (0.10).
	 These entropy-based weights were subsequently applied to the normalized values of each 
factor to compute the composite vulnerability index for all expressway segments. On the basis of 
this index, a series of spatial analyses was conducted using GIS to generate vulnerability maps 
that highlight high-risk areas. The following section presents the results of this spatial mapping.

3.3	 Black ice traffic accident vulnerability map results

	 Figure 7 shows GIS-based mapping results of black ice traffic accident vulnerability, 
calculated using entropy-weighted exposure, sensitivity, and adaptive capacity indices. Figure 
7(a) shows the exposure index computed using Eq. (11), with a mean of 0.50, a standard deviation 
of 0.09, a maximum of 0.77, and a minimum of 0.33. Figure 7(b) illustrates the sensitivity index 
calculated via Eq. (12), with a mean of 0.25, a standard deviation of 0.08, a maximum of 0.56, 
and a minimum of 0.10. Figure 7(c) presents the final vulnerability map derived from Eq. (10), 
with a mean of 0.96, a standard deviation of 0.20, a maximum of 1.29, and a minimum of 0.48. 
All indices are unitless and normalized between 0 and 1, enabling direct spatial comparison.

Table 4
Entropy weights assigned to vulnerability assessment factors.
Vulnerability category Factor Weight

Exposure

Hillshade 0.18
Precipitation 0.26

Humidity 0.36
Temperature 0.2

Sensitivity

Slope 0.25
Curvature 0.1

Traffic volume 0.23
Bridge length 0.19
Tunnel count 0.22

Adaptive capacity 119 Emergency Rescue Center 1
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Fig. 7.	 (Color online) GIS-based vulnerability assessment results: (a) exposure index, calculated from hillshade, 
precipitation, humidity, and temperature, (b) sensitivity index, based on slope, curvature, traffic volume, bridge 
length, and tunnel count, (c) adaptive capacity, represented by the normalized density of 119 Emergency Rescue 
Centers, and (d) composite vulnerability index for black-ice-related traffic accidents, classified into five grades using 
the Natural Breaks method (Grade 1: 0.48–0.69; Grade 2: 0.70–0.86; Grade 3: 0.86–1.00; Grade 4: 1.00–1.11; Grade 
5: 1.11–1.29). (Source: Bing Satellite provided via WMS, URL: https://ecn.t3.tiles.virtualearth.net/tiles/a{q}.
jpeg?g=0&dir=dir_n, last accessed: 21 July 2024).

https://ecn.t3.tiles.virtualearth.net/tiles/a{q}.jpeg?g=0&dir=dir_n
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	 Adaptive capacity, based on the normalized density of 119 Emergency Rescue Centers, 
exhibited a mean of 0.24, a standard deviation of 0.23, a maximum of 1.00, and a minimum of 0. 
The final vulnerability index was classified into five grades using the Natural Breaks method, 
which identifies inherent groupings within the data by maximizing interclass variance. The 
resulting classification thresholds were as follows.
- Grade 1: 0.48–0.69
- Grade 2: 0.70–0.86
- Grade 3: 0.86–1.00
- Grade 4: 1.00–1.11
- Grade 5: 1.11–1.29
	 This classification scheme effectively reveals spatial patterns and allows for a clear 
differentiation of regions with elevated vulnerability to black-ice-related traffic accidents.

4.	 Discussion

4.1	 Black ice traffic accident vulnerability map analysis

	 We conducted a large-scale vulnerability assessment of black-ice-related traffic accidents 
across South Korea’s national expressway network. Ten variables were categorized according to 
the IPCC vulnerability framework and integrated using GIS-based spatial analysis with entropy 
weighting to produce a composite vulnerability index for each expressway section. The resulting 
index ranged from 0.48 to 1.29, with a mean of 0.96 and a standard deviation of 0.20. The index 
values were classified into five grades using the Natural Breaks method. Sections with values 
exceeding 1.11 were classified as Grade 5, representing the highest level of vulnerability. These 
high-risk segments are typically associated with a combination of adverse topographic, 
meteorological, and infrastructural conditions, along with limited access to emergency response 
services. Therefore, they should be prioritized for intervention measures and resource allocation 
within black ice accident prevention strategies.
	 Among the exposure factors, humidity (mean: 70.97%, weight: 0.36) emerged as the most 
influential variable, suggesting that condensation and frost accumulation may contribute more 
significantly to black ice formation than temperature alone. Precipitation (219.78 mm), 
temperature (2.01 °C), and hillshade (94.76) also played substantial roles in promoting surface 
icing conditions. Within the sensitivity category, slope (mean: 7.5°, maximum: 27.08°, weight: 
0.25) and traffic volume (mean: 62,072 vehicles, maximum: 258,198 vehicles, weight: 0.23) were 
identified as the dominant contributors. Curvature, bridge length, and tunnel count further 
increased structural and operational complexity, exacerbating vulnerability. Adaptive capacity, 
represented by the density of 119 Emergency Rescue Centers, exhibited a low mean of 0.01 and a 
maximum of 0.05, indicating limited emergency response infrastructure across certain 
expressway sections. Sections classified as Grade 5 exhibited overlapping vulnerabilities across 
meteorological, structural, traffic, and response dimensions. These segments are not only more 
prone to black ice accidents but also more susceptible to severe damage propagation. The 
findings underscore the necessity of adopting multidimensional risk assessment frameworks that 
incorporate interactions among diverse contributing factors, rather than relying solely on 
isolated indicators.



4066	 Sensors and Materials, Vol. 37, No. 9 (2025)

	 In this study, we developed a black ice traffic accident vulnerability map to provide actionable 
reference data for expressway management agencies to prioritize interventions by season and 
region. In high-risk areas (Grade 5), the targeted deployment of innovative safety signage, high-
friction pavement materials, and automated snow removal systems is recommended. Conversely, 
in low-vulnerability sections, resource allocation may be directed toward preventive monitoring 
and early warning strategies. In addition to operational deployment, the map demonstrates high 
applicability for policy integration—supporting proactive budget allocation, winter safety 
inspection planning, and the incorporation of black ice accident prediction models. Ultimately, a 
robust quantitative foundation for risk-based resource management is established, and a basis for 
the development of real-time, weather-traffic-integrated alert systems and simulation-driven 
preemptive response frameworks is provided.

4.2	 Black ice traffic accident vulnerability spatial autocorrelation analysis

	 To evaluate the spatial validity of the vulnerability index, a spatial autocorrelation analysis 
was conducted in accordance with Tobler’s First Law of Geography: “everything is related to 
everything else, but near things are more related than distant things”.(40) Moran’s Index (Moran’s 
I) was employed to quantify the degree of spatial clustering observed in the vulnerability map 
presented in Fig. 7.
	 Moran’s I ranges from −1 to +1.
-	� Values close to +1 indicate strong positive spatial autocorrelation (i.e., clustering of similar 

values),
-	� Values near –1 indicate negative spatial autocorrelation (i.e., clustering of dissimilar values), 

and
-	 Values around 0 suggest spatial randomness.
	 The computation follows the formulation defined in Eq. (13), where the parameters are as 
follows.
-	 N: total number of spatial units (observations)
-	 X: attribute value of each spatial unit
-	 X : mean of all attribute values
-	 wij: spatial weight between units i and j
-	 W: sum of all spatial weights
	 In this study, the spatial weights were defined using the inverse distance method based on 
Euclidean distance.
	 Table 5 shows the results of the spatial autocorrelation analysis for the vulnerability index. 
Moran’s I was calculated as 0.625650, with an expected E(I) of −0.002033, a variance of 
0.000126, a Z-score of 55.87, and a p-value of less than 0.000001. At a significance level of α = 
0.05, the p-value indicates that the observed Moran’s I is statistically significant, allowing the 
rejection of the null hypothesis of spatial randomness. This result suggests that the vulnerability 
index exhibits strong positive spatial autocorrelation, thereby supporting the spatial coherence 
and structural validity of the GIS-based vulnerability model.
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	 In this validation step, the null hypothesis (H0) assumes spatial randomness in the simulation 
results, whereas the alternative hypothesis (H1) posits the existence of spatial clustering or 
regularity. The statistical significance of spatial autocorrelation is assessed on the basis of the 
p-value derived from the Z-score associated with Moran’s I.
	 If the p-value is less than or equal to 0.05 (i.e., at the 5% significance level), the null 
hypothesis (H0) is rejected in favor of the alternative hypothesis (H1), indicating that the spatial 
pattern is statistically significant. The p-value is derived from the standard normal distribution 
using the Z-score, which quantifies the deviation of the observed Moran’s I from its expected 
value under the null hypothesis. The calculated Z-score lies in the extreme right tail of the 
normal distribution, indicating strong positive spatial autocorrelation.
	 The Z-score is calculated using Eq. (14), where I is the observed Moran’s Index, E[I] is its 
expected value under spatial randomness, and Variance refers to the variance of I across all 
spatial units.

	
[ ]-   
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−
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	 The resulting p-value approached zero, providing compelling evidence to reject the null 
hypothesis (H0) in favor of the alternative hypothesis (H1). Accordingly, the black ice traffic 
accident vulnerability map exhibits statistically significant positive spatial autocorrelation, 
thereby validating the spatial integrity of the GIS-based simulation.
	 Hypothesis Test:
-	� H0: The black ice traffic accident vulnerability map exhibits no spatial autocorrelation. 

(Rejected)
-	� H1: The black ice traffic accident vulnerability map exhibits spatial autocorrelation. 

(Accepted)

Table 5
Results of spatial autocorrelation analysis for black ice traffic accident vulnerability (Moran’s I method).
Metric	 Value
Moran’s Index (I) 0.625650
Expected Index E(I) −0.002033
Variance 0.000126
z-score 55.869821
p-value <0.000001
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5.	 Conclusions

	 In this study, we conducted a nationwide case analysis of South Korea’s expressway network 
to evaluate the vulnerability of black-ice-related traffic accidents on a large spatial scale. Ten 
contributing factors were selected on the basis of the IPCC Climate Change Vulnerability 
Assessment Framework, normalized using GIS, and integrated into a spatial vulnerability index 
through an entropy-weighted Euclidean distance approach. This methodology enabled a 
comprehensive quantitative assessment that incorporated topographic, meteorological, traffic, 
and emergency response characteristics across expressway sections.
	 The vulnerability index ranged from 0.48 to 1.29, with a mean of 0.96 and a standard 
deviation of 0.20. These values were classified into five vulnerability grades using the Natural 
Breaks method. Among the input variables, humidity (mean: 70.97%, weight: 0.36), slope (mean: 
7.5°, weight: 0.25), and traffic volume (mean: 62073 vehicles, weight: 0.23) received the highest 
entropy weights, underscoring their substantial effect on accident vulnerability. A higher entropy 
weight reflects a greater spatial variability in a given factor, thereby increasing its relative 
contribution to the composite vulnerability index.
	 The resulting vulnerability map serves not only as a visual representation of weather-related 
risk but also as a policy-relevant decision-support tool that spatially integrates multiple complex 
factors. Spatial autocorrelation analysis validated the structural reliability of the model, yielding 
a Moran’s I of 0.63 with a p-value < 0.000001, indicating statistically significant clustering in 
vulnerability patterns. These findings provide a practical foundation for expressway 
management agencies to identify and prioritize high-risk segments by season and region, thereby 
enabling a more efficient allocation of safety resources and infrastructure investment.
	 In particular, high-risk areas (Grade 5) should be prioritized for the deployment of advanced 
warning systems, high-friction pavement treatments, and automated snow and ice removal 
equipment. The vulnerability map developed in this study holds potential for further 
advancement into a real-time operational platform through integration with weather–traffic data 
fusion systems and AI-based accident prediction models.
	 However, in this study, we acknowledge limitations arising from the temporal scope of the 
weather data (limited to winter 2023–2024) and from the resolution and completeness of certain 
traffic and infrastructure datasets. Future research would benefit from the incorporation of 
multi-year climatic averages, real-time traffic flow information, and high-resolution terrain 
models to improve the accuracy, robustness, and practical applicability of the vulnerability 
assessment.
	 Despite these limitations, we addressed the shortcomings of previous studies—namely, their 
regional scope and reliance on single-factor analyses—by introducing a comprehensive, GIS-
based vulnerability assessment model at the national expressway scale. The framework 
presented herein provides a robust foundation for future risk-based transportation safety 
planning and spatial decision-support systems.
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