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	 A significant number of wind turbines deployed across the Penghu Islands are exposed to 
challenging coastal and marine conditions. To address the operational risks associated with such 
environments, in this study, we introduce a real-time monitoring and fault detection framework 
aimed at identifying abnormal turbine behavior, particularly those linked to blade damage. The 
proposed system enhances turbine efficiency and reliability by continuously assessing blade 
integrity, swiftly detecting irregularities, and supporting near-instantaneous maintenance 
actions. This capability is especially vital in disaster-prone regions, where turbines may 
encounter conditions exceeding standard design specifications. The framework integrates 
sensor-based data acquisition—capturing input from accelerometers, anemometers, 
hygrometers, thermometers, and barometers—with signal processing and neural network 
techniques to analyze three-axis vibration data. By identifying distinct patterns associated with 
blade faults, the system enables timely detection and reporting of malfunctioning units, thereby 
facilitating effective repair and operational continuity.

1.	 Research Background

	 Enhancing the operational efficiency of wind turbines and minimizing maintenance expenses 
are the shared objectives among wind farm operators. However, much like the corrosive impact 
of seawater and harsh weather on offshore and coastal turbine systems, mechanical components 
remain prone to degradation, leading to reduced energy output. Despite the significance of these 
challenges, they have not been thoroughly addressed in a comprehensive manner.(1–5) Reducing 
operating costs by avoiding the unnecessary replacement of core components remains a top 
priority. However, to achieve this, early and accurate fault detection is essential alongside routine 
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preventive maintenance. Blades, as a critical structural and aerodynamic element of wind 
turbines, play a decisive role in overall system reliability. Their durability and operational 
integrity are major concerns for both operators and manufacturers. Despite this, diagnostic 
assessments of blade condition are still heavily reliant on manual inspections, such as visual or 
acoustic evaluations conducted by trained personnel. These methods are inherently subjective 
and often inefficient. At present, there is a pressing need for objective, automated diagnostic 
solutions for blade condition monitoring.(1–5)

	 Recent research offers promising directions. Benbouzid et al. surveyed advancements in 
turbine condition monitoring, noting a shift from conventional analysis methods toward machine 
learning and data mining for predictive maintenance.(6) Complementing this, Natili et al. 
presented a multiscale modeling technique for detecting gearbox faults using industry-grade 
monitoring datasets.(7) In a separate effort, Papi et al. introduced probabilistic modeling 
frameworks to assess how blade damage impacts the performance of large-scale wind turbines. 
This approach, by treating damage as a stochastic variable, avoids biases tied to isolated case 
studies and supports more generalized insights.(8) Meanwhile, Santoramazza et al. applied 
machine learning to supervisory control and data acquisition (SCADA) system outputs to 
forecast anomalies in turbine operation. Their models, built using artificial neural networks, 
successfully detected faults in key components such as gearboxes and generators, and were 
validated on real turbine data from Italy.(9)

	 Maintaining full awareness of blade condition is fundamental to optimizing operational 
efficiency and minimizing costs, particularly as wind power becomes a leading renewable 
energy source. With the increasing deployment of wind farms—especially in offshore and island 
locations—equipment failures can lead to substantial losses if not addressed swiftly. Offshore 
infrastructure, although capable of continuous power generation, requires immediate attention 
during malfunctions. Delays in repair or diagnosis not only escalate costs but also jeopardize 
energy output.(1–5) These issues are further complicated in places like Taiwan, where 
maintenance is often handled by foreign contractors who may restrict access to proprietary 
maintenance procedures. While the broader implications of this practice extend beyond the 
scope of this study, the need for rapid, reliable fault detection in offshore wind farms remains 
clear.(1–5)

2.	 Study Overview

	 In this study, we developed a comprehensive mechanical condition monitoring system 
designed to track operational parameters such as vibration and noise from wind turbines. The 
system enables remote data collection, storage, and reporting, with the collected information 
organized into structured datasets. These datasets are analyzed through rule-based logic to 
identify signal patterns associated with varying degrees of blade damage severity. Unlike 
conventional manual inspection methods, this approach enables the automatic assessment of 
turbine health by continuously monitoring vibration behavior. The monitoring system offers 
near-real-time alerts for blade faults, allowing operators to proactively schedule maintenance 
and minimize turbine downtime. Unlike traditional predictive maintenance—which depends on 
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scheduled interventions aimed at preventing failures—the proposed system activates upon 
detection of actual anomalies. For instance, conventional predictive strategies may prompt 
component replacement based on expected wear, which may sometimes lead to unnecessary 
intervention or even system errors. By contrast, the system introduced here delivers timely alerts 
upon detecting real damage, improving the precision and efficiency of maintenance responses. 
The proposed method supports responsive, unplanned maintenance through rule-based 
diagnostic predictions. When integrated into a fully operational monitoring platform, this 
mechanism enables maintenance teams to allocate resources more effectively, such as 
prepositioning spare parts or tools. In practice, this contributes to safer, more efficient turbine 
operation, lower maintenance costs, and enhanced system reliability.(1–5,10–14)

3.	 Condition Monitoring Systems and Methods

	 In this section, we outline the development of condition monitoring systems, focusing on both 
remote and server-side architectures. Because the remote monitoring units are physically 
installed on the turbine’s structural foundation, a brief overview of wind turbine components is 
first provided for context. A typical wind turbine consists of several key systems: control units, 
transmission assemblies, generators, power converters, blades, towers, electrical cabling, and 
transformers. Within the transmission assembly, critical elements include the wheel hub and yaw 
system.
	 Turbine performance varies by model and is heavily influenced by environmental factors at 
the installation site. Harsh weather conditions or natural disasters can impair turbine 
functionality, leading to unexpected failures that must be addressed through predictive 
maintenance strategies. Beyond environmental stressors, turbines may also suffer from internal 
design limitations—such as incompatible specifications, subpar build quality, or misalignment 
between design and local site conditions—that increase the likelihood of operational instability 
and premature wear, particularly in components such as the blades.
	 Blade failures generally stem from two main categories: internal and external causes. 
Internally, degradation may result from prolonged mechanical stress, leading to the deformation 
of structural elements. During standard operation, the tower structure itself is subject to shifts 
and displacements depending on the load, foundation integrity, and operational dynamics. 
Externally, severe weather events such as typhoons or earthquakes can inflict substantial, often 
unpredictable, damage to the blades. While these external incidents are unplanned, their impacts 
can be systematically addressed using the fault detection and diagnostic tools proposed in this 
study.

4.	 Condition Monitoring System Hardware

	 The remote monitoring system is built around ADLINK’s USB-2405 module, which serves 
as the primary data acquisition unit. This device supports dynamic signal capture through a 24-
bit USB interface and includes four analog input channels, each capable of simultaneous 
sampling at rates up to 128 kS/s. It features a BNC connector for signal input and supports both 
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AC and DC coupling. Additionally, it incorporates an integrated electronic piezoelectric sensor 
interface, providing a precise 2 mA excitation current for connected sensors.
	 In this configuration, each input channel can be linked to either an accelerometer or a 
microphone, allowing for the accurate detection of vibration and acoustic signals. Specifically, 
the setup employs P.C.B. 601A01 accelerometers, which have a sensitivity of 100 mV/g and 
operate within a frequency range of 0.27 to 10,000 Hz. The system also integrates an anemometer 
for monitoring wind speed as part of the broader environmental data collection effort.
	 Anemometers are an essential tool for meteorologists studying weather patterns. They are 
also crucial to the work of physicists who study the movement of air. Figure 1 shows a wind 
speed line chart of the environment where the wind turbine is located. Wind speed refers to the 
speed of air movement relative to a fixed location on Earth. In daily life, we call the movement 
of air wind. Wind speed is commonly used to measure the speed of outdoor air movement. There 
are also situations where measuring the indoor air flow rate is necessary, but these are relatively 
rare. Wind speed plays a vital role in our daily lives: weather forecasting, aviation and navigation 
operations, construction, and civil engineering all require reference to wind speed. High wind 
speed will cause adverse consequences, and for specific levels of high wind speed, we will use 
appropriate terms to identify them, such as strong wind, gale, storm, and hurricane. 
Anemometers are instruments used to quantify wind speed, typically providing measurements 
in units such as knots (kn), meters per second (m/s), or kilometers per hour (km/h).
	 Figure 2 shows a wind direction–time line chart in the environment where the wind turbine is 
located. Wind is often described in terms of its intensity and direction. Differences in air 
pressure cause the wind. Air flows from regions of higher pressure to those with lower pressure, 
generating winds that vary in speed depending on the pressure gradient. The Coriolis force 
deflects the airflow on a rotating planet outside the equator. Globally, the two main drivers of 
large-scale winds are the heating difference between the equator and the poles and the planet’s 
rotation. Large-scale winds tend to reach geostrophic equilibrium at high altitudes beyond the 

Fig. 1.	 (Color online) Time-series chart depicting wind speed conditions at the wind turbine installation site.
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equator, unaffected by ground friction. On Earth’s surface, friction causes winds to slow down 
gradually. Surface friction also pushes more wind into low-pressure areas.
	 Figure 3 shows a time-series graph illustrating temperature variations at the wind turbine 
site. Temperature represents the physical measure of how hot or cold a substance is. On a 
microscopic level, it reflects the average kinetic energy associated with molecular motion. Since 
temperature cannot be measured directly, it is inferred through the properties of materials that 
vary with temperature. The system used to quantify temperature is referred to as a temperature 
scale, which defines both the reference point and the unit of measurement. The theoretical high 
point of temperature is the Planck temperature, and the theoretical low point is absolute zero. 
The Planck temperature and absolute zero cannot be reached through finite steps. The most 
widely adopted temperature measurement systems worldwide include the Celsius (°C) scale, the 
Fahrenheit (°F) scale, the Kelvin (K) thermodynamic scale, and the International Practical 
Temperature Scale. Temperature manifests the average kinetic energy between molecules in an 
object.
	 Figure 4 shows a humidity–time line chart of the environment where the wind turbine is 
located. In the measurement system, we used a hygrometer, which is a device designed to 
quantify the moisture content or water vapor present in the atmosphere. Humidity generally 
refers to air humidity in meteorology, which is the content of water vapor in the air. Air without 
water vapor is called dry air. Since water vapor in the atmosphere can account for 0% to 4% of 
the air volume, when the components of various gases in the air are listed, they generally refer to 
the components in dry air.
	 Figure 5 shows a time-series chart of atmospheric pressure conditions at the wind turbine 
site. The monitoring setup includes a barometer, an instrument specifically used to measure 
ambient air pressure. Observing changes in barometric pressure is useful for forecasting short-
term weather patterns. Surface pressure data also plays a key role in identifying meteorological 

Fig. 2.	 (Color online) Wind direction–time line chart in the environment where the wind turbine is located.
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Fig. 4.	 (Color online) Humidity–time line chart of the environment where the wind turbine is located.

Fig. 3.	 (Color online) Temperature–time line chart of the environment where the wind turbine is located.

Fig. 5.	 (Color online) Air pressure–time line chart of the environment where the wind turbine is located.
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features such as troughs, pressure systems, and frontal zones. Atmospheric pressure—
commonly referred to as air or barometric pressure—represents the force exerted by Earth’s 
atmosphere. A standard atmospheric pressure is defined as 1013.25 hectopascals (hPa).
	 Figure 6 shows the voltage–time line graph generated by wind turbines. In the measurement 
system, we used a voltmeter, which is a device used to measure the voltage or the electrical 
potential difference between two points in a circuit, and it is connected in parallel with the 
component being measured. It usually has high resistance, drawing negligible current from the 
circuit.
	 Figure 7 shows the current–time polyline generated by wind turbines. Electric current is the 
average directional movement of charges in an electric field or semiconductor. Current direction 
is defined as the direction in which positive charges move; the current size is called current 
intensity, which refers to the net charge transfer amount through a specific section of the wire 
per unit time.
	 Figure 8 shows the power–time polyline generated by wind turbines. Power is defined as the 
energy conversion or use rate, expressed in terms of the amount of energy per unit time, which is 
the rate of work done. The international standard power unit is the watt (W), named after the 
eighteenth-century steam engine designer James Watt. The rate at which a light bulb transforms 
electrical energy into heat and light over time is represented by its power output. The higher the 
wattage, the higher the capacity or power per unit of time.

5.	 Utilizing Radial Basis Function (RBF) Neural Networks for Diagnosing Faults 
in Wind Turbines

	 Machine learning first appeared in 1949, when Hebb developed a learning mechanism based 
on neuropsychology, using machine learning as a learning method to solve various problems. An 

Fig. 6.	 (Color online) Voltage–time line graph generated by wind turbines.
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neural network typically follows a three-layer feedforward architecture. The input layer consists 
of source nodes that simply pass data forward without modifying it. The hidden layer, whose 
number of neurons is determined on the basis of a specific application, employs Gaussian 
functions as activation mechanisms to perform nonlinear mapping of the input space. Finally, 
the output layer processes the signals from the hidden layer using a linear activation function, 
producing the final output through a weighted sum of the hidden layer responses. After years of 
development, it has been applied to multiple branches of artificial intelligence, but each learning 

Fig. 7.	 (Color online) Current–time polyline generated by wind turbines.

Fig. 8.	 (Color online) Power–time polyline generated by wind turbines.
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algorithm for each machine has advantages and disadvantages. The wind turbine is one of the 
most common types of power generation equipment in modern production and is widely used in 
various fields. As a mechanical power equipment, its operating status directly affects the 
working status of the equipment. However, the working conditions of wind turbines are very 
harsh, so the possibility of failure is relatively high. In this example, a probabilistic neural 
network is used to establish a classification model, and the vibration signal of the wind turbine is 
collected as input to detect whether there is a fault and to determine the fault type. The status 
detection of wind turbines can promptly detect and effectively predict and eliminate faults, 
enhance the safety of wind turbines, increase service life, and is of great economic significance 
for reducing maintenance costs and avoiding significant accidents. We have many years of 
experience in mechanical equipment diagnostic technology. Owing to the simplicity of sensing 
equipment, fault diagnosis mainly relies on information obtained by experts using their senses 
and simple instruments—fault judgment based on experience and the rise of artificial 
intelligence technology. With the continuous development of sensor technology, the acquisition 
of fault signals has gradually become standardized and accurate. With the complexity of 
equipment and instruments, correct analysis of collected signals has become the key to fault 
diagnosis, so intelligent diagnosis can simulate the human thinking process and significantly 
improve the diagnosis process. Fault diagnosis of wind turbines can be abstracted into a 
classification problem.
	 Determining whether a fault is a two-classification problem and judging a specific fault type 
is a multiclassification problem. We have defined six failure modes of wind turbine blade 
damage: 0 blades, 0.5 blades, 1.0 blade, 1.5 blades, 2.0 blades, 2.5 blades, plus 3.0 blades under 
normal conditions, a total of seven modes. Time domain accelerometer signals are used as input 
samples. Therefore, the probabilistic neural network model for wind turbine fault diagnosis 
includes input samples, classification patterns, and probabilistic neural network structures. Each 
node corresponds to an input training sample with six classification modes. Implementing wind 
turbine fault diagnosis uses six modes to represent the wind turbine’s working status and realizes 
the modes’ classification. The diagnosis process is shown in Fig. 9.

6.	 Formulation and Discussion of Rules

	 After preprocessing and cleaning the collected data sets, the first stage involves visualizing 
the source time domain data sets to make preliminary comparisons. For this purpose, server-side 
vibration data sets were sampled and calculated for wind turbine setups of 3.0 blades (all blades), 
2.5 blades, 2.0 blades, 1.5 blades, 1.0 blade, 0.5 blades, and 0.0 blades. These simplified visual 
representations are used to highlight the distinguishing features among various blade failure 

Fig. 9.	 (Color online) Fault diagnosis process.(15,16)
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scenarios and to formulate rule-based criteria for automatic classification. The diagram below 
offers a clear comparison, facilitating the identification of blades operating under faulty 
conditions in contrast to those under normal conditions. On the basis of these results, the blades 
on the wind turbine are judged to be 0 blades, 0.5 blades, 1.5 blades, and 2.5 blades. Under 
normal operating conditions, all blades function as expected, allowing for the development of an 
accurate diagnostic model. By applying the established rules, both intact and damaged wind 
turbine blades can be effectively characterized. The simplicity and low computational demand of 
these rules enable rapid fault identification and timely alert generation, which greatly supports 
reactive maintenance efforts and enhances operational efficiency in wind farm management. 
The Pacific Rim is an area prone to supertyphoons, with wind speeds reaching over 150 
kilometers per hour. Wind turbine blades breaking or falling off completely is not news to 
anyone. In addition to typhoons, earthquakes represent another unpredictable but significant 
source of turbine damage in the study region. Given their sudden nature, integrating predictive 
diagnostic mechanisms alongside routine maintenance protocols is advisable—even under 
otherwise manageable weather conditions. Although such events are sporadic, incorporating 
even a partial diagnostic component into the turbine’s blade assembly can enhance overall 
operational efficiency. This approach contributes to a more comprehensive and integrated 
maintenance strategy, helping reduce costs and better accommodate unplanned repair needs in 
wind farm operations. Figure 10 shows the prediction results of different blade failure speeds 
using time domain data. Figure 11 shows the absolute error for different sample sizes using time 
domain data. The maximum absolute error is. Figure 12 shows the results of predicting various 
blade failures using frequency domain data. Figure 13 shows the absolute error for different 
samples using frequency domain data. The maximum absolute error is 1.0395 × 10−10. Figure 14 
shows the prediction results for various wind speeds using time domain data. Figure 15 shows 
the absolute error for different samples using time domain data. The maximum absolute error is 
6.2528 × 10−13. Figure 16 shows the absolute error for different samples using time domain data. 
Figure 17 shows the results of predicting various wind speeds using frequency domain data. The 
maximum absolute error is 1.0128 × 10−8. Unlike conventional SCADA-based diagnosis 
systems,(6–9) our model uses raw accelerometer time- and frequency-domain data to classify 

Fig. 10.	 (Color online) Prediction results of various blade failure speeds using time domain data.
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Fig. 11.	 (Color online) Absolute error for different numbers of samples using time domain data.

Fig. 12.	 (Color online) Results of using frequency domain data to predict various blade failures.

Fig. 13.	 (Color online) Absolute error for different numbers of samples using frequency domain data.
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Fig. 14.	 (Color online) Prediction results for various wind speeds using time domain data.

Fig. 15.	 (Color online) Absolute error for different numbers of samples using time domain data.

Fig. 16.	 (Color online) Results of predicting various wind speeds using frequency domain data.
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multiple levels of blade damage using RBF neural networks, allowing near-instant fault 
localization and predictive alerts.

7.	 Conclusion

	 In this study, we demonstrated a practical sensor-integrated approach using time–frequency 
analysis and machine learning to achieve real-time wind turbine fault diagnostics. Future work 
will aim to deploy the proposed system on operational turbines to validate its scalability and 
robustness under real-world conditions. With the construction and operation of more and more 
wind farms worldwide, the practical value of wind turbine status monitoring and fault diagnosis 
for reducing maintenance costs and improving wind farm operation efficiency is increasing. As 
market competition intensifies, wind farm operators are under growing pressure to lower both 
operational and maintenance expenditures to boost profitability and sustain long-term 
competitiveness. This economic imperative demands that maintenance approaches be not only 
efficient but also highly reliable. In response, the implementation of condition monitoring 
systems and early-stage fault detection has become standard practice across the industry, as 
these methods enhance both the reliability and productivity of wind energy systems. Among the 
various components, wind turbine blades pose particular challenges during the operational and 
maintenance phases owing to their susceptibility to failure. Monitoring blade integrity has 
become increasingly important, especially given the distinct structural characteristics associated 
with different turbine models and manufacturers. To address this, it is essential to leverage real-
time, high-resolution data and develop robust diagnostic methods tailored to blade-specific 
failure modes. Experimental investigations in this study revealed that vibration signals serve as a 
key medium for detecting mechanical anomalies. By interpreting these signals, it is possible to 
trace the origins of specific failures. However, our laboratory trials also indicated that relying on 
conventional plausibility frameworks—originally designed for generator diagnostics—is 
inadequate for identifying blade faults in remote turbine configurations, highlighting the need 

Fig. 17.	 (Color online) Absolute error for different numbers of samples using frequency domain data.
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for customized diagnostic strategies in such contexts. Therefore, regulatory standards for 
detecting fault conditions must be reconsidered. We determine the damage type of wind turbine 
blades on the basis of the accelerometer’s time and frequency domain signals and choose the 
wind speed when the wind turbine blades are operating. Frequency and time domain signals 
determine which blades the wind turbine is operating under.
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