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	 In this study, we aim to develop an automatic identification and diagnostic system for motor 
vibrations based on image processing technology. This technology converts motor time-domain 
vibration signals, acquired from a single-axis accelerometer, into original frequency-domain 
signals and performs multilevel smoothing processing to generate energy trend spectral graphs. 
These graphs are used to reduce the computational load for image recognition and improve its 
accuracy. Subsequently, you only look once version seven (YOLOv7) image processing model is 
used for establishment and training. The established system automatically identifies mechanical 
vibration modes. Digital band-pass filtering technology is also used to select a single mechanical 
vibration mode for analysis. Next, the cumulative enhanced energy operator (CEEO) is used to 
demodulate the original signal, generating CEEO signals. By analyzing the CEEO spectrum and 
motor bearing damage characteristics, the health status of the motor is determined. By using AI 
in this system, the labor and long-term training costs of personnel can be reduced, ensuring the 
appropriate functioning of critical components.

1.	 Introduction

	 Modern manufacturing focuses on automated production to save labor costs, increase 
production speed, and improve product quality. In such automation, consumable parts such as 
motors and gearboxes are widely used, and the failure of these parts leads to production line 
shutdowns and endangers personnel safety.(1−4) Motor bearings are one of the most commonly 
used components in automated production systems, so it is important to monitor their status in 
real time.
	 At present, a prevalent approach to bearing diagnosis is high-frequency demodulation 
analysis. However, one of the challenges preventing the effective automation of this method is 
the reliance on professionals to identify vibration resonance modes. These modes are excited at 
different frequencies as the rotational speed changes, as shown in Fig. 1. This process is time-
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consuming and heavily dependent on expert knowledge.(5,6) In practice, many motor applications 
involve nonfixed rotational speeds. 
	 In recent years, AI has experienced rapid growth, with significant breakthroughs in machine 
learning and its applications across various industries. Among these, image recognition 
technology has emerged as one of the most widely adopted techniques. In this study, image 
recognition was employed to analyze vibration modes, thereby reducing reliance on expert 
judgment and enabling automated analysis.
	 Therefore, we propose a novel method for automatically identifying mechanical resonance 
modes. Once vibration modes can be automatically and quickly identified, the problem of 
fluctuating resonance modes in variable-speed motor systems can be effectively resolved.
	 In this study, fast Fourier transform (FFT) and simple moving average (SMA) were used for 
signal preprocessing to reduce computational load. We also used you only look once version 
seven (YOLOv7) for automatic mode selection. The selected modal frequency bandwidth was 
then subjected to band-pass filtering, followed by cumulative enhanced energy operator (CEEO) 
demodulation. The process can be used to identify the characteristic frequency of a damaged 
bearing. Image recognition is currently one of the most important research topics, with a wide 
range of applications.(7,8) In this study, we used image recognition for automatic mode selection 
to automate the process of bearing damage identification. YOLOv7 was selected as the model 
for this study because it offers higher processing speed and accuracy than previous versions of 
YOLO,(9–11) making it the preferred choice for this research. Since the raw vibration time-
domain signals are highly complex and may negatively affect the training performance of the 
YOLO model, signal preprocessing was performed using FFT and SMA to reduce computational 
load and improve training effectiveness.
	 Researchers are actively seeking new solutions. In this study, we propose a technology that 
focuses on automatic mode identification rather than signal demodulation. Before signal 
demodulation can be performed, it is necessary to first identify the resonance mode. Once the 
resonance mode is identified, the modal signal can be extracted through band-pass filtering and 
subsequently demodulated to reveal the damage characteristic frequency. One commonly used 

(a) (b)

Fig. 1.	 Frequency spectra of the same damaged bearing operating at (a) 800 and (b) 1600 rpm.
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demodulation technique is wavelet analysis; however, it requires significant computational 
resources, making it unsuitable for widespread application in embedded systems.(12,13) 
Additionally, the hardware costs associated with wavelet analysis are relatively high.
	 In recent years, studies have introduced CEEO, a lightweight analysis technique capable of 
delivering results comparable to wavelet analysis but with significantly lower computational 
demands.(14,15) Therefore, we adopted CEEO for modal signal demodulation, aiming to advance 
automated diagnostic technology. The demodulated signal must correspond to the characteristic 
frequencies calculated for different bearing damage locations and rotational speeds.
	 The accuracy of the automatic modal identification technology proposed in this study hinges 
on its ability to accurately identify modal patterns. The integrity of the bearings was intentionally 
compromised using electrical discharge machining with known damage locations, ensuring the 
reliability of the damage results obtained through demodulation. Conversely, if the identified 
modal patterns prove to be inaccurate, no damage characteristic frequencies will be observed 
after demodulation.
	 We integrated FFT, band-pass filtering, SMA, image recognition, and CEEO demodulation 
to develop an automated bearing damage detection system. Compared with the existing 
approaches proposed by other researchers, the proposed method achieves automated bearing 
damage assessment with significantly lower computational requirements.

2.	 Methods

	 In this study, image processing technology for graphical recognition processing was used for 
the automatic mode selection and recognition of vibrations. The vibration signals of mechanical 
bearings were obtained using a graphical recognition model. 
	 Figure 2 shows the system validation process. First, the original vibration signal is obtained 
using a single-axis accelerometer. Signal processing is then performed by converting the time 
domain signal to the frequency domain signal using FFT and then smoothing the signal using 
the SMA method. The processed image is then fed into the trained automatic recognition model 
to obtain the mode frequency band. The identified mode frequency band is set as the region of 
the digital bandpass filter to block components with frequencies above or below this band. The 
original vibration spectrum is simplified to the new one. This is followed by demodulation using 
CEEO to obtain the characteristic frequency of the damaged bearing. Finally, this frequency is 
compared with the characteristic frequencies to verify the accuracy of the model’s prediction.

Fig. 2.	 Illustration of workflow for validating the bearing damage diagnostic system.
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	 The model automatically identifies vibration modes. The accuracy of the model in training 
does not necessarily represent its recognition ability of vibration modes.(16) Therefore, the model 
must be tested to verify its recognition ability. In this case, a confusion matrix is used to present 
the recognition results as shown in Table 1. The measures of the confusion matrix are as follows.
	 •	 TP (True Positive): Correctly predicting the positive class as positive
	 •	 FN (False Negative): Incorrectly predicting the positive class as negative
	 •	 FP (False Positive): Incorrectly predicting the negative class as positive
	 •	 TN (True Negative): Correctly predicting the negative class as negative
	 Precision, recall, and F1 score are used to evaluate the performance of the neural network 
model. 
	 Precision: This metric is used to evaluate the recognition accuracy of individual 
classifications.

	 Precision
( )

TP
TP FP

=
+

	 (1)

	 Recall: This metric represents the proportion of instances of a particular true class that is 
successfully recognized.

	 Recall �
�
TP

TP FN( )
	 (2)

	 F1 score: This metric represents the harmonic means of precision and recall. The closer its 
value to 1, the higher the recognition accuracy of the model.

	
)

F1sc ( )
(

ore 2 Precision Recall
Precision Recall

×
×

+
= 	 (3)

	 In addition to the confusion matrix, the mean average precision (mAP) is also used to 
evaluate the performance of the model. mAP represents the average precision (AP) of all 
categories of vibration modes. AP represents the recognition performance by calculating the 
area under the precision-recall curve. To compute mAP, AP for each category is calculated and 
then averaged to obtain mAP. mAP is classified on the basis of different intersections over union 
(IoU). Common reference values include mAP@0.5 (IoU threshold of 0.5), mAP@0.95 (IoU 
threshold of 0.95), and mAP@0.5:0.95 (averaging AP values over IoU thresholds from 0.5 to 
0.95 with a step of 0.05). In this study, since there is only one category, mAP is equal to AP.(17−20)

Table 1
Confusion matrix table with four different combinations of predicted and actual values.

Confusion matrix Actual value
Positive Negative

Predicted value Positive TP FP
Negative FN TN
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	 The image recognition model requires the vibration spectrum as training data, with features 
marked in the spectrum. However, the vibration spectral graph is complex with nonmodal 
energy peaks that cause recognition errors. Therefore, we simplified the graph and smoothed out 
the nonmodal high-energy signals that lead to false detections to automatically identify vibration 
modes. As a result, the SMA method was adopted. This method suppresses high-energy peaks 
and amplifies less notable energy, thereby increasing the success rate of mode recognition [Eq. 
(4)].

	 1 2 3 4 5 ... nC C C C C CSMA
n

+ + + + + +
= 	 (4)

Here, C represents the energy values at different frequencies and n represents the total number of 
frequencies in the processed spectrum pattern.(21,22)

3.	 Theoretical Analysis of Bearing Damage

	 The bearing signal analysis method used in this system is CEEO. This method analyzes a 
single-mode vibration signal using a bandpass filter and the CEEO signal spectrum to determine 
whether the bearing exhibits characteristic frequencies of damage.(14,15) As the frequency band 
captured in this method is in the high frequency range, low-frequency noise can be filtered out, 
reducing the noise of the signal. In a damaged bearing system, the failure of any component, 
regardless of the specific damage morphology, generates a corresponding vibration signal, and 
the analysis of the demodulated spectrum reveals the characteristic frequency associated with 
the damaged component. Equations (5) to (7) are used to calculate characteristic frequencies in 
four different damage scenarios.(23–25)

	 Damaged inner ring characteristic frequency, fin: 1 cos
2in rpm
N df f

D
ϕ=

 + 
 

	 (5)

	 Damaged roller characteristic frequency, froll: 
2

21 cosroll rpm
D df f
d D

ϕ
  = = −  

   
	 (6)

	 Damaged outer ring characteristic frequency, fout: 1 cos
2 rpmout
N df f

D
ϕ = − 

 
	 (7)

Here, frpm is the true frequency of shaft rotation, D is the pitch diameter of the bearing, d is the 
diameter of the rolling elements, N is the number of rolling elements in the bearing, and φ is the 
contact angle of the rolling elements.
	 In this study, we artificially created defects on the inner ring, roller, and outer ring of the 
bearing using electrical discharge machining. The damaged bearing was then operated at 800, 
1600, and 2400 rpm, and its vibration signals were recorded. The defect characteristic 
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frequencies of the damaged bearing were calculated using Eqs. (5)–(7), and the calculated values 
are shown in Table 2.
	 The accuracy of the model’s predictions was verified by comparing the results obtained from 
image recognition at the characteristic frequencies shown in Table 2. In a bearing, the carrier 
signal is a combination of the resonant frequencies of the bearing or the entire system. Therefore, 
the amplitude-modulated vibration signal v(t) is expressed as(26−29)

	

( )
=1 1

( )
1

( ) ( ) ( ) ( ) cos(2 ( ) )

( ) ( ) ( ) cos(2 ( ) ) ( ) .

l
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∑ ∑ ∫

∑ ∫
	 (8)

	 The three summation terms in Eq. (8) represent the vibrations from defective and normal 
components, and low-frequency mechanical noise ω(t). In the first term, md stands for the 
number of damages and dm(t) is the modulating signal, which represents the damage impulse 
train. qm(t) provides information about the damage dimensions and the sensitivity to impact 
energy, while alm(t) is the characteristic function of the transmission path. The second term is 
related to normal components, where nr is the number of rollers and gn(t) describes the surface 
functions of the normal bearing components for each roller. qn(t) represents the equivalent 
stiffness of roller n and aln(t) is the transmission path function, which determines the vibration 
intensity excited by roller n. The variables σl and fl are the exponential decay and carrier 
frequencies, respectively, which represent structural characteristics of the system. L is the 
number of resonance modes, whereas θlm and θln are the initial angles for amplitude 
modulation.(29)

	 We assume that the impulse responses from dm(t) decay completely within the time interval 
between two consecutive contacts, and that the resonance frequency fl is high. The energy from 
surface irregularities gn(t)qn(t) is much smaller than that from bearing defects. Therefore, the 
second summation term in Eq. (8) can be ignored, simplifying the vibration signal as follows.

	 ( ) ( )
1 1( ) ( ) ( ) ( ) cos(2 h) ( ) , mod( ,1/ ) wit  lL md t

m m lm l lm m dml mv t u t q t a t f t u t e t t fσθ ′−
= =

′= π + = =∑ ∑ 	 (9)

Here, mod(1/fdm) represents a remainder of t and fdm is the frequency of impulse train dm(t). 
	 A new method for processing bearing signals, derived from traditional energy processing 
methods, was proposed by Liang and Bozchalooi.(25) To analyze the energy characteristics of the 
signal, the energy operator of the vibration signal function ψ(g(t)) is used as

Table 2
The characteristic frequencies of damaged bearings were calculated at three different speeds and locations.
Rotation speed (rpm) 2400 1600 800
Feature frequency of damaged inner ring, fin (Hz) 395.2 263.5 131.7
Feature frequency of damaged roller, froll (Hz) 233.6 155.7 77.9
Feature frequency of damaged outer ring, fout (Hz) 284.8 189.9 94.9
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2 2

2( ( )) ( ) ( ) ( ).d dg t g t g t g t
dt dt

ψ  = − 
 

	 (10)

	 This method is commonly used in the frequency and amplitude modulation of speech signals. 
On the basis of its characteristics, the transient signals of damaged impulses are analyzed with 
frequency and amplitude modulation characteristics. Therefore, it is assumed that vibration 
signals are arbitrary signals with frequency and amplitude modulation characteristics, as 
follows:

	 ( ) ( ) cos( ( )),g t f t tϕ= ⋅ 	 (11)

where f(t) is its amplitude variation function over time. 
	 For the analysis of discrete signal D(g(n)), since the sampling frequency is 1 Hz, assuming 
Δt = 1 s, its differential expression at time n can be represented as

	 ( ( )) [ ( ) ( )] / ( ) ( 1)D g n g n g n t t g n g n= − − ∆ ∆ = − − .	 (12)

	 Therefore, the discrete-time representation of the vibration signal y(g(n)) is

	
2

2

( ( )) ( ) ( ) ( ( ))

( 1) ( ) ( 2).

y g n Dg n g n D Dg n

g n g n g n

= −

= − − −
	 (13)

	 When the variable m = n − 1, the above equation is reformulated as

	 2( ( )) ( ) ( 1) ( 1)).y g m g m g m g m= − + − 	 (14)

	 In addition, when performing signal integration in discrete form I(g(n)), the trapezoidal rule 
is used to save computation time.

	 ( ( )) [ ( ) ( )] / 2I g n t g n g n t= ∆ + − ∆ 	 (15)

If we assume Δt = 1 s, the integral expression is simplified to

	 ( ( )) [ ( ) ( )] / 2.I g n g n g n t= + − ∆ 	 (16)

	 Differentiation enhances the signal-to-interference ratio, while integration improves the 
signal-to-noise ratio.(15) Therefore, by defining a layer operator (LO) that includes differentiation 
and integration operations, the advantages of both can be maximized. Therefore, the first-layer 
operator analysis of the vibration signal can be defined by the function g(t) as follows:
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	 1( ( )) ( ( ))
( ) ( 2).

LO g n I Dg n
g n g n

=
= − −

	 (17)

	 By repeatedly applying layer operator analysis, we obtain the second-layer operator as

	 2 1 1( ( )) ( ( ( )))
( ) 2 ( 2) ( 4).

LO g n LO LO g n
g n g n g n

=
= − − + −

	 (18)

	 Similar to the energy operator analysis method, replacing the original first and second 
derivatives with the first and second-layer operators allows for the following equation:

	 2
21( ( )) ( ( )) ( ) (( )).CEEO g m LO g n g n LO gn= − 	 (19)

4.	 Experimental Equipment

	 To validate the developed bearing damage diagnosis system, we set up an experimental 
apparatus, as shown in Fig. 3 and Table 3. Since the same bearing exhibits different vibration 
modes at different rotational speeds, the apparatus included a motor speed controller. The motor 
was connected to a rotating shaft through a coupling, which was then linked to the high-speed 

Table 3
The characteristic frequencies of damaged bearings were calculated at three different speeds and locations.
Components Model
Drive motor TECO three-phase motor
Motor controller rhymebus RM5-2005
Test bearing 32208 Single row tapered roller bearing
Data acquisition NI 9215
Accelerometer PCB 352C68

(a) (b)

Fig. 3.	 (Color online) Diagram of bearing testing machine. (a) Image of bearing testing machine. (b) Position of 
accelerometer.
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headstock. A lubrication system was also integrated. In addition to the mounted bearing 
mechanism, a single-axis accelerometer was installed to measure the vibration signal. In this 
study, the sampling rate was set to 100 kHz, with a sampling time of 1 s, resulting in a total of 
100k samples. The control, data acquisition, and computation of the acquisition card were all 
performed using MATLAB 2014A.
	 In the experiment, we used electrical discharge machining technology to simulate bearing 
damage. We intentionally machined defects on the inner ring, roller, and outer ring, as shown in 
Fig. 4.
	 The damaged area of the bearing was examined under a microscope, revealing a 0.2-mm-
wide trace on the inner ring, as shown in Fig. 5, and the damaged parameters are shown in Table 
4.

(a) (b) (c)

Fig. 4.	 (Color online) Bearing with damaged parts caused by electrical discharge machining. The linear damage is 
highlighted in circles. (a) Inner ring, (b) roller, and (c) outer ring.

Table 4
Damage size of bearing.
Damaged parts Damage size ([length (mm) × width (mm) × depth (mm)]
Inner ring 14.0 × 0.15 × 0.2 
Roller 16.0 × 0.15 × 0.2
Outer ring 18.5 × 0.15 × 0.2

Fig. 5.	 Optical microscopy image of the damaged inner ring.
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	 We ran the model on a computer equipped with NVIDIA GeForce RTX4070 (graphics 
processing unit) with 5888 CUDAs and 12 GB of video memory. The central processing unit was 
Intel(R) Core (TM) i7-14700. The operating system was Windows 10, and PyTorch version 2.20, 
Python version 3.10, and CUDA version 12.5 were used.

5.	 Current Results

	 Figure 6 shows the signal process workflow for model training. First, we measured the 
vibration signal using a single-axis accelerometer. To make the signal easier to analyze, we 
converted the time-domain signal into the frequency-domain signal using FFT. Since the 
original frequency spectrum signal does not perform well for image recognition training, we 
processed it with SMA to improve effectiveness.
	 To train the automatic vibration mode recognition model, we processed the original frequency 
domain signal (Fig. 7) by the SMA method. We applied SMA calculation every 100 data points 
on the signal to produce a smoothed energy distribution graph, and we manually determined the 

Fig. 6.	 Illustration of signal processing workflow for image recognition model training.

Fig. 7.	 Frequency domain signal of damaged inner ring bearing at 800 rpm.
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vibration mode positions (Fig. 8). A total of four vibration modes were identified in the energy 
plot. The dataset included 951 images, similar to Fig. 7, which were used to train the model with 
YOLOv7, resulting in an AI model capable of automatically recognizing vibration modes. The 
vertical axis unit “arb. unit” in the figure represents an arbitrary unit.
	 The dataset contained 951 images of vibration spectra at 800, 1600, and 2400 rpm. We used 
70% of the data for training and 30% for validating, resulting in 666 and 285 images, 
respectively. We trained the model for 50 epochs with a batch size of 8 and set the image 
dimensions to 640 × 640 pixels.
	 Figure 9 shows the confusion matrices of the model, which we used to evaluate the model’s 
performance. The top left corner indicates TP, the top right corner indicates FP, the bottom left 
corner indicates FN, and the bottom right corner indicates TN. The model shows an excellent TP 
score of 0.97, indicating that it successfully identifies modal features. The FP score is 1.00 

Fig. 8.	 Frequency domain signal after SMA processing and manual labeling of resonance features (dashed 
rectangle).

Fig. 9.	 (Color online) Confusion matrices of the model, which evaluates its performance.
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because the model is designed for single-class detection with a background, and there are no true 
negative samples for the background class in the validation set.
	 Table 5 and Fig. 10 show the performance evaluation metrics and their performance curves, 
respectively. The precision confidence curve shows a precision of 1.00 at a confidence level of 
0.957, highlighting the model’s accuracy in correct predictions. The recall confidence curve 
exhibits a recall of 0.99 at a confidence level of 0.000. mAP is 0.973 at a confidence level of 0.5, 
indicating the model’s effectiveness in damage detection. The F1 score confidence curve 
indicates an F1 score of 0.97 at a confidence level of 0.423, reflecting a balance between 
precision and recall, showing that the model successfully identifies almost all positive instances.
	 After completing the training of the image recognition model, we carried out the verification 
process following the steps shown in Fig. 2 to determine whether the model can automatically 
select the correct modes from the original frequency-domain signal. First, we operated the 

Table 5
Performance of YOLOv7 model.

Precision Recall F1 score mAP@0.5 mAP@0.5:0.95
0.9769 0.9569 0.9667 0.973 0.7114
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Fig. 10.	 Performance curves of the model. (a) precision confidence, (b) recall confidence, (c) precision–recall, and 
(d) F1 score confidence curves.
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bearing with the damaged inner ring at 2400 rpm to acquire vibration signals, which we then 
converted into a frequency spectrum using FFT, as shown in Fig. 11. Next, we applied SMA 
processing, as shown in Fig. 12.
	 After processing the data by the SMA method, we used the trained model to perform mode 
recognition. The recognized spectrum is shown in Fig. 13, where the model automatically 
identifies two vibration modes. Next, we applied a digital band-pass filter to extract one of the 
vibration modes, and we programmed the AI model to select the mode. The lowest-frequency 
mode was selected by the model. The result with a band-pass filter to the original spectrum is 
shown in Fig. 14. The wave score indicates the similarity of the recognized vibration mode with 
the selected mode having a bandwidth of 4233 to 7716 Hz.
	 After bandpass filtering, we demodulated the spectrum using CEEO to obtain the 
characteristic frequency of the damaged bearing, as shown in Fig. 15. We compared this 
frequency with the results shown in Table 2 to verify the accuracy of the system analysis. The 
demodulated spectrum shows a characteristic peak at 396.1 Hz and a second harmonic at 792.1 
Hz, which matches the calculated values shown in Table 2.

Fig. 11.	 Frequency domain spectrum of damaged 
inner ring bearing operating at 2400 rpm.

Fig. 12.	 Frequency domain spectrum of damaged 
inner ring bearing operating at 2400 rpm after the 
SMA process treatment is applied.

Fig. 13.	 Automatically selecting vibration mode with 
the trained model.

Fig. 14.	 Band-pass filtering was applied to the 
vibration signal of a damaged inner ring bearing 
operating at 2400 rpm.
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	 We operated the normal bearing at 2400 rpm. We measured its vibration signal and processed 
it using the automatic identification system, as shown in Fig. 16. When Figs. 16(a)–16(c) are 
compared with Figs. 11–14, the waveforms of both normal and damaged bearings, after FFT, 
SMA processing, and band-pass filtering, exhibit similar patterns. This similarity makes it 
difficult to determine whether the bearing is damaged and to identify the location of the damage. 
However, Fig. 16(d) shows that, compared with Fig. 15, the frequency spectrum after CEEO 
processing does not exhibit significant characteristic peaks or harmonics. This indicates that 
when a bearing is damaged, a significant signal intensity appears at the damage characteristic 
frequency. The overall frequency spectrum intensity of a normal bearing is very low, as shown 
in Fig. 16(d). Compared with Fig. 15, this significant difference allows us to determine whether 
the bearing is damaged on the basis of the strength of the characteristic peak.
	 To validate the model, normal bearings were operated at 800 and 1600 rpm, and their 
vibration signals were analyzed, as shown in Figs. 17 and 18. We processed the vibration signals 
obtained at these two rotational speeds through the automatic identification system, yielding 
results similar to those obtained at 2400 rpm. After applying CEEO signal demodulation, we did 
not observe significant damage characteristic peaks in any of the cases.
	 In addition to the normal bearings, we operated bearings with damage to other components 
(inner ring, roller, and outer ring) at 2400, 1600, and 800 rpm. We analyzed their vibration 
signals using the automatic identification system. As the analysis results for the damaged inner 
ring bearing operating at 2400 rpm have already been discussed, they will not be repeated here. 	
	 Figures 19 and 20 show the automatic identification results for bearings with damage to the 
roller and outer ring, respectively. Figures 21–23 show the automatic identification results for 
bearings with damage to the inner ring, roller, and outer ring, operating at 1600 rpm, respectively. 
Figures 24–26 show the automatic identification results for bearings with damage to the inner 
ring, roller, and outer ring, operating at 800 rpm, respectively.
	 On the basis of the results shown in Figs. 19–26, the characteristic frequencies identified by 
the automatic recognition system are compared with the calculated values shown in Table 2, as 
shown in Table 6. Table 6 shows that the values predicted using the automatic recognition system 

Fig. 15.	 After treatment with CEEO, the frequency spectrum of the damaged inner ring operating at 2400 rpm was 
obtained.
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Fig. 17.

(a)

(c)

(b)

(d)

Fig. 16.	 Validation of bearing damage diagnostic system: frequency domain signal of (a) normal bearing operating 
at 2400 rpm, (b) applied SMA treatment and automatic mode selection, (c) after bandpass filtering, and (d) CEEO 
signal demodulation.

Fig. 17.	 Validation of bearing damage diagnostic system: frequency domain signal of (a) normal bearing operating 
at 1600 rpm, (b) applied SMA treatment and automatic mode selection, (c) after bandpass filtering, and (d) CEEO 
signal demodulation.

Fig. 16.

(a)

(c)

(b)

(d)
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Fig. 18.

(a)

(c)

(b)

(d)

Fig. 19.

(a)

(c)

(b)

(d)

Fig. 18.	 Validation of bearing damage diagnostic system: frequency domain signal of (a) normal bearing operating 
at 800 rpm, (b) applied SMA treatment and automatic mode selection, (c) after bandpass filtering, and (d) CEEO 
signal demodulation.

Fig. 19.	 Validation of bearing damage diagnostic system: frequency domain signal of (a) damaged roller bearing 
operating at 2400 rpm, (b) applied SMA treatment and automatic mode selection, (c) after bandpass filtering, and (d) 
CEEO signal demodulation.
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Fig. 20.	 Validation of bearing damage diagnostic system: frequency domain signal of (a) damaged outer ring 
bearing operating at 2400 rpm, (b) applied SMA treatment and automatic mode selection, (c) after bandpass filtering, 
and (d) CEEO signal demodulation.

Fig. 21.	 Validation of bearing damage diagnostic system: frequency domain signal of (a) damaged inner ring 
bearing operating at 1600 rpm, (b) applied SMA treatment and automatic mode selection, (c) after bandpass filtering, 
and (d) CEEO signal demodulation.
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Fig. 23.
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Fig. 22.	 Validation of bearing damage diagnostic system: frequency domain signal of (a) damaged roller bearing 
operating at 1600 rpm, (b) applied SMA treatment and automatic mode selection, (c) after bandpass filtering, and (d) 
CEEO signal demodulation.

Fig. 23.	 Validation of bearing damage diagnostic system: frequency domain signal of (a) damaged outer ring 
bearing operating at 1600 rpm, (b) applied SMA treatment and automatic mode selection, (c) after bandpass filtering, 
and (d) CEEO signal demodulation.
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Fig. 25.
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Fig. 24.	 Validation of bearing damage diagnostic system: frequency domain signal of (a) damaged inner ring 
bearing operating at 800 rpm, (b) applied SMA treatment and automatic mode selection, (c) after bandpass filtering, 
and (d) CEEO signal demodulation.

Fig. 25.	 Validation of bearing damage diagnostic system: frequency domain signal of (a) damaged roller bearing 
operating at 800 rpm, (b) applied SMA treatment and automatic mode selection, (c) after bandpass filtering, and (d) 
CEEO signal demodulation.
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have a very small error compared with the calculated values. This demonstrates the excellent 
performance of the automatic recognition system in automatic modal identification and modal 
demodulation.

6.	 Conclusions

	 To resolve the issue of mode identification in vibration detection, we combined the image 
recognition spectrum and the traditional diagnostic method to develop a new model for the 

Fig. 26.

(a)

(c)

(b)

(d)

Fig. 26.	 Validation of bearing damage diagnostic system: frequency domain signal of (a) damaged outer ring 
bearing operating at 800 rpm, (b) applied SMA treatment and automatic mode selection, (c) after bandpass filtering, 
and (d) CEEO signal demodulation.

Table 6
Characteristic frequencies of damaged bearings at three different speeds and locations (calculated values are the 
same as those in Table 2).
Rotation speed (rpm) Damaged location Calculated value (Hz) Identified value (Hz) Percentage error (%)

2400
Inner ring 395.2 396.1 0.23

Roller 233.6 231.2 1.03
Outer ring 284.8 284.3 0.18

1600
Inner ring 263.5 264.0 0.19

Roller 155.7 154.6 0.71
Outer ring 189.9 189.0 0.47

800
Inner ring 131.7 131.2 0.38

Roller 77.9 77.3 0.77
Outer ring 94.9 94.5 0.42
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diagnosis of the health status of the bearing. We trained the model using YOLOv7 on 666 raw 
spectrum images for 50 epochs, and a prediction precision of 97% was achieved. The model 
integrates AI to accurately identify and analyze vibration modes, thereby enhancing the 
prediction accuracy of vibration modes and damages. The model’s performance can be further 
improved with more data. The model can be embedded in a production system for vibration 
detection to eliminate the need to stop production lines and rely on experts for analysis. A 
comparison of CEEO with wavelet transforms revealed that CEEO requires significantly fewer 
computational resources while yielding analogous results. This reduction in computational 
demand leads to decreases in hardware requirements and diagnostic equipment costs. 
Furthermore, the integration of edge computing capabilities and automatic detection and 
warning systems into the model facilitates fully automated operation and real-time monitoring.

7.	 Future Work

	 In the future, we aim to integrate CEEO with statistical methods and deploy the system on an 
embedded platform, allowing it to be installed on various equipment. This approach will 
eliminate the reliance on professional personnel for spectrum analysis in mechanical diagnostics. 
Frontline operators will be able to utilize this system to assess whether a bearing requires 
maintenance, thereby minimizing equipment damage, reducing personnel injuries, and 
preventing associated losses.
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