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	 In this empirical research, we investigated the impact of artificial intelligence of things 
(AIoT) technologies on global healthcare effectiveness. Using the three-dimensional inter-
influence correlations of social learning theory, we analyzed the AIoT’s technological scalability, 
situational effectiveness, and social adaptability across seven dimensions of the global healthcare 
index. A mixed-method approach combining factor analysis and three-dimensional methods was 
employed to evaluate the AIoT’s influence on worldwide healthcare challenges. Results indicate 
that intelligent medical analysis, medical monitoring and controlling applications, and 
comprehensive medical diagnosis systems have the strongest relationships with healthcare 
improvements, particularly in the skills and capabilities of medical personnel. These 
technological implementations showed the highest efficacy when aligned with the National 
Institutes of Health dimensions of sustainability, participation, and transparency. Additionally, 
significant impacts were observed in the access, distribution, and management of efficient 
healthcare services and adaptability to medical landscapes. In this research, we established a 
hierarchical framework for the AIoT implementation in healthcare settings, providing evidence-
based guidance for policymakers and administrators seeking to leverage these technologies to 
enhance healthcare delivery systems globally. The findings suggest that the strategic 
implementation of AIoT solutions can systematically address critical challenges in contemporary 
healthcare provision across diverse global contexts.
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1.	 Introduction

	 Healthcare systems worldwide face unprecedented challenges, including aging populations, 
resource constraints, increasing prevalence of chronic diseases, and growing patient expectations 
regarding quality of care. The World Health Organization estimates that global healthcare 
spending will exceed $15 trillion annually by 2030, representing approximately 10.2% of the 
global gross domestic product (GDP). This economic pressure, coupled with persistent quality 
issues including medical errors, inefficiencies, and disparities in care access, necessitates 
transformative approaches to healthcare delivery and management. Simultaneously, healthcare 
operations contribute significantly to environmental degradation through energy consumption, 
waste generation, and carbon emissions. These intersecting challenges necessitate innovative 
approaches to healthcare delivery, which enhance accessibility, quality, and efficiency while 
reducing environmental impact. In particular, sustainable development is one of the most 
important global issues in the 21st century; practically, the United Nations announced the 2030 
Sustainable Development Goals (SDGs) in 2015. These SDGs include 17 core sustainable goals, 
which include 169 detailed goals and 230 indicators; they cover important issues, such as poverty 
eradication, climate action, education quality, and gender equality, and demonstrate the major 
challenges and opportunities facing mankind. Extraordinarily, the third SDG of these 17 SDGs 
is “good health and well-being”: ensure and promote healthy lives and well-being for all ages. 
	 First, the development of the sustainability of healthcare quality has evolved significantly 
over recent decades, from primarily outcome-based measures to more comprehensive 
frameworks incorporating structural, process, and experiential dimensions. Therefore, the 
structure–process–outcome model of six dimensions of the National Institutes of Health (NIH) 
has established a foundational approach that continues to affect quality assessment frameworks 
to successfully develop sustainability of healthcare quality. These six dimensions include safe 
(S), effective (EV), patient-centered (P), timely (T), efficient (EI), and equitable (EA) care 
quality measures in the comprehensive scorecard approach adapted for healthcare settings. 
Then, to concretely increase the benefits of global healthcare, the global database website, 
NUMBEO, has been releasing the global healthcare index (GHCI) every year since 2012, 
ranking the healthcare of various countries globally based on user survey satisfaction and data 
from the past three years.(1) In detail, the GHCI includes seven assessed dimensions: (1) skills 
and capabilities of medical personnel (SCMP), (2) speed of completing inspections and reports 
(SCIR), (3) advantages and disadvantages of medical equipment hardware and software 
(ADMEHS), (4) accuracy and completeness of reports (AOR), (5) friendliness and courtesy of 
staff (FCS), (6) queuing and waiting time (QWT), and (7) accessibility of medical locations 
(AML). Furthermore, Taiwan ranked first for the first time in 2016, becoming the country with 
the highest healthcare index in the world. In 2017 and 2018, it was demoted to second place by 
South Korea. In 2019, Taiwan once again ranked first in the world and did not fall back until 
2024, ranking first in the world for six consecutive years. In the latest announcement of the 2024 
GHCI ranking by NUMBEO on January 31, 2024, Taiwan ranked first in the world for the sixth 
consecutive year with 86.1 points, followed by South Korea (82.7) in second place, Japan (79.3) 
in third place, the Netherlands (79.2) in fourth place, and France (78.2) in fifth place.
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	 Therefore, how to effectively overcome these challenges in current healthcare systems 
worldwide to enhance global healthcare by efficiently employing rapidly developing 
contemporary technologies has become one of the main research topics in the sustainable 
development of the entire human race. For this reason, the Internet of Things (IoT)(2) technology 
is the appropriate tool to effectively improve and enhance current healthcare systems worldwide. 
The IoT represents a technological paradigm in which physical devices are interconnected 
through networks, enabling seamless data collection, exchange, and analysis. IoT represents a 
technological paradigm in which physical devices are interconnected through networks, enabling 
seamless data collection, exchange, and analysis. In healthcare contexts, IoT applications range 
from remote patient monitoring and smart medical devices to automated inventory management 
systems and location-tracking technologies. The integration of IoT into healthcare settings 
promises to address persistent challenges by improving operational efficiency, enhancing data-
driven decision-making, and creating more personalized and responsive care environments. 
Despite growing recognition of the potential benefits of IoT technology in healthcare, the 
systematic evaluation of its impact across comprehensive quality indicators remains limited. 
Existing research often focuses on specific applications or isolated metrics rather than the 
holistic assessment of healthcare quality improvement. Additionally, practical implementation 
frameworks that guide healthcare facilities in IoT adoption while addressing technical and 
organizational challenges are underdeveloped.(3)

	 In addition, artificial intelligence (AI) can analyze vast amounts of data to support clinical 
decision-making, optimize resource allocation, and automate routine tasks to strengthen current 
IoT systems for continuous patient monitoring, real-time data collection, and networked 
healthcare infrastructure. For this reason, when AI and IoT technologies are integrated to be the 
artificial intelligence internet of things (AIoT) technology, the integrated AIoT technology can 
comprehensively create intelligent and responsive healthcare systems worldwide capable of 
delivering personalized care while maximizing resource effectiveness and efficiency in these 
aspects of global healthcare. The five AIoT technological aspects are (1) intelligent medical 
analysis (IMA),(4) (2) medical monitoring and controlling applications (MMCAs),(5) (3) 
comprehensive medical diagnosis systems (CMDSs),(6) (4) medical system robotics (MSRs), and 
(5) medical resource warehouse optimization (MRWO).(7) The development of these aspects 
results in the growing interest in AIoT applications for healthcare, and thus, current research 
studies have predominantly focused on initiative development and proof-of-concept studies 
rather than empirical investigations of system-wide technology applications and sustainability 
impacts. As a result, AIoT technological  healthcare research studies should focus more on the 
comprehensive evaluation of the three bottom lines of technological scalability, situational 
effectiveness, and social adaptability in order to discover the best solutions in the empirical 
investigations of system-wide technology applications and sustainability impacts on healthcare 
worldwide.(8)

	 For this reason, we employed the three-dimensional inter-influence correlations of the social 
learning theory (SLT)(9) to analyze and evaluate the triple bottom lines of technological 
scalability, situational effectiveness, and social adaptability of the seven dimensions of the GHCI 
in current healthcare systems worldwide.(10) To effectively and comprehensively assay these 
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triple bottom lines, it is most important to cross-apply the factor analysis approach (FAA)(11) of 
quantitative analysis and the three-dimensional method (TDM)(12) of qualitative analysis to 
examine how AIoT technology affects the seven dimensions of the GHCI in order to develop a 
comprehensive framework and standardize quality assessment in diverse healthcare worldwide 
settings.(13)

2.	 Literature

2.1	 AIoT

	 AIoT technology applications in healthcare settings have proliferated rapidly over the past 
decade. The MMCAs of the AIoT technology, as described in Fig. 1, include the use of wearable 
sensors to track vital signs and physiological parameters, enabling early intervention and 
reducing hospital readmissions. 
	 In IMA and CMDS frameworks of AIoT technology for biological sciences and AI in 
healthcare management (described in Fig. 2), healthcare providers conduct medical analysis and 
treatments to diagnose patients, which enables automated data collection and responsive 
treatment adjustments.
	 In the MSRs of the AIoT technology described in Fig. 3, smart medical devices monitor 
patients, environmental systems track conditions that affect patient recovery and infection 
control, and asset tracking solutions optimize equipment utilization and maintenance.

Fig. 1.	 (Color online) Schematic of MMCAs of AIoT technology.(14)
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Fig. 2.	 (Color online) Schematic of IMA and CMD frameworks of AIoT technology.(15)

Fig. 3.	 (Color online) Schematic of MSRs of AIoT technology.(16)
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	 Finally, in the MRWO of the AIoT technology described in Fig. 4, inventory management 
systems are integrated with clinical workflow optimization systems that track provider 
movements and patient flow to identify efficiency opportunities. This integration is particularly 
valuable because AIoT-enabled medication administration systems have demonstrated 
significant reductions in medication errors. Additionally, IoT-enabled smart patient rooms 
automatically respond to patient needs and preferences while optimizing environmental 
conditions for recovery.

2.2	 Research theory

	 In the early tradition of strict behaviorism, Miller and Dollard(18) initially explored imitation 
learning within the framework of human behavior in 1941, and Rotter(19) further introduced the 
concept of expectation into the human learning process, deriving the concept of early cognitive 
elements in 1960. In the 1960s, Bandura(20) integrated cognitive elements into the human 
learning process and realized that human learning behavior is accomplished in a social context 
through observation, imitation, and modeling. The basic approach of SLT is the model concept 
of triadic reciprocal determinism, which emphasizes that individuals are both products and 
producers of their environment.(21)

	 This model examines six different influencing pathways in three interactive factors: personal 
conditions (cognitive abilities, beliefs and attitudes: individualism), organizational influences 
(sense of belonging, organizational identification, and organizational culture: organizationalism), 
and social reactions (social context and social conventions: socializationism).(22) Furthermore, 

Fig. 4.	 (Color online) Schematic of MRWO of AIoT technology.(17)
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the six different influencing pathways include person to organization (self-efficacy beliefs 
determine organizational choices), organization to person (organizational performance outcomes 
change self-perception), organization to society (organizational culture changes social identity), 
society to organization (social identity establishes organizational norms), society to people 
(social models direct individual behavior learning), and people to society (individual traits 
trigger different social reactions)(23) as shown in Fig. 5.
	 In Fig. 5, the SLT model concept of reciprocal determinism has been extended to a series of 
related studies on the mutual influence between individual learning self-efficacy and 
organizational performance, the development of individual mentality and behavior, and the 
influence of society on individual compliance behavior.(24) These studies together demonstrate 
the enduring value of SLT as a framework that connects behavioral, cognitive, and social 
approaches to human development and learning, making the SLT model concept of reciprocal 
determinism applicable to cross-disciplinary social science research. Finally, the SLT provides a 
powerful framework for understanding human learning and behavior through its recognition of 
the complex interplay among personal, behavioral, and environmental factors. The three-
dimensional inter-influence correlations highlight the dynamic and bidirectional nature of these 
relationships. As research continues to evolve, SLT remains a foundational perspective that 
bridges behavioral, cognitive, and social approaches to human development, cognition, and 
learning in the newest technology.

Fig. 5.	 (Color online) Triadic reciprocal determinism of SLT.
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2.3	 Statistical methods

	 The investigation of interdependencies among evaluated attitudes, criteria, and subcriteria 
employed a comprehensive methodological triangulation incorporating SLT, FAA, and TDM. 
This integrated framework facilitated the systematic examination of large-scale questionnaire 
responses enhanced by expert weighting procedures. Initially, FAA was implemented to 
elucidate complex relationships among dependent and independent variables within the dataset, 
and their underlying patterns and interactive mechanisms. This analytical approach was 
specifically designed to examine multiple influential factors affecting outcomes in complex 
measurement systems. Formally, the dependent variables (directly observed impact-measured 
factors) are denoted as Y(Y1, Y2,…, Yk), corresponding to the independent variables (direct 
unobserved influencing factors) denoted as X(X1, X2,…, Xk).(25)

	 Through inductive reasoning, the relationship among dependent and independent variables 
was formulated as a linear combination:
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where k represents the number of common potential factors, and Λ signifies the weighted factor 
loading of the measured variables. A linear combination equation was subsequently derived 
from Eq. (1)(26) as
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where Ψ = (Λ′Λ)−1Λ′ and the maximum standardized variance equals 1, which means Yi = P1Xi, 
Xi = P1Yi, and the maximum standardized variance is 1.
	 Consequently, Y = ΛΨY + ε, 1 1 2 2k k k k kk k− = + +…+X u f f fλ λ λ .
	 To ensure methodological rigor and precision, triangular assessments were conducted to 
analyze the interactions among dependent and independent variables. The communality results 
from FAA were subsequently integrated with those from TDM.(27) A triangular weight pairwise 
comparison matrix was constructed to measure the interaction-compared values of each 
criterion P(P1, P2,…, Pk), 0 ≤ E(P1, P2,…, Pk) ≤ 1, for discrete probability assessment. The 
entropy equation(28) was then computed as
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where pi represents the normalized quantity, 1i =∑ p  (ϕk = 1/I(k)), and Y(Y1, Y2,…, Yk) 
demonstrates an inverse relationship with interaction dependencies. The weighted interactive 
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dependencies among dependent and independent variables were quantified using entropy 
measurement-conditional triangular weights (Wij) as follows:
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3.	 Research Design

3.1	 Evaluated criteria

	 According to the literature, the five AIoT technological aspects of the IMA, MMCAs, 
CMDSs, MSRs, and MRWO have been defined as the apprised criteria of technological 
scalability in the evaluation of healthcare sustainability.(29) The six dimensions [safe (S), 
effective (EV), patient-centered (P), timely (T), efficient (EI), and equitable (EA)] of the NIH 
have been categorized as the assessed criteria of situational effectiveness in the evaluation of 
healthcare sustainability.(30) Eventually, the seven assessed dimensions [(1) SCMP, (2) SCIR, (3) 
ADMEHS, (4) AOR, (5) FCS, (6) QWT, and (7) AML] of the GHCI have been classed as the 
evaluated criteria of social adaptability in the evaluation of healthcare sustainability(31) as 
presented in Table 1.

3.2	 Data collection

	 Overcoming difficulties, we did our best to interview 200 participants in Taiwan by following 
Taiwan’s academic ethics regulation and policies of the exemption from review of the 
Institutional Review Board (IRB) in social science research. Specifically, in terms of the 
collected data, all the interviewees were over 18 years old and completely agreed with the use of 
their accomplished questionnaires in this research. In particular, the data collection was limited 
to questionnaire responses, excluding any personal identifying information. These large-scale 
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questionnaires for the FAA measurements were formulated by applying the 5-level Likert scale, 
and the questions were designed as “Please evaluate the importance of the IMA of the five AIoT 
technological aspects in developing the global healthcare sustainability.” In detail, from the 200 
people surveyed, 187 valid responses were successfully collected, achieving a response rate of 
93.5%. Thirteen surveyed individuals declined to have their data used for this research because 
of personal considerations.
	 The descriptive statistics of the questionnaire survey are shown in Table 2; 127 males 
(67.91%) and 60 females (32.09 %) were included as respondents; 73 (39.03%) respondents were 
from the central region, whereas 62 (33.155%), 47 (25.15%), and 5 (2.67%) were from the 
northern, southern, and eastern regions of Taiwan, respectively. 71.66% of the respondents had 
experience in receiving sexual services from a sex volunteer, and 88.67% are willing to use 
wearable-based sensor devices during the sexual services from a sex volunteer. Up to 83 
(44.38%) respondents used the AIoT technology from one to three times in a week, and 80 
(42.78%) respondents used the AIoT technology from four to seven times in a week. Specifically, 
143 (76.47%) respondents acknowledged the development of sustainable healthcare practices, 
and 155 (28.87%) respondents recognized that AIoT applications could be employed in 
healthcare.
	 For the TDM evaluation, in-person interviews were conducted with 20 subject-matter experts 
strategically selected to provide comprehensive interdisciplinary insights.(32) This expert panel 
comprised four distinct specialist groups: five scholars with a minimum of 5-year experience in 
global healthcare research, five scholars with at least 5 years of expertise in the IoT research 
domains, five scholars with a minimum of 5-year specialization in the AI research fields, and 
five specialists possessing at least 5 years of professional experience in AIoT interdisciplinary 
applications. This carefully balanced composition ensured thorough evaluation across all 
relevant technological and healthcare dimensions.(33) These experts’ questionnaires for the TDM 
measurements were formulated by applying the 5-level Likert scale, and questions were designed 
as “Please compare the importance of Intelligent Medical Analytics (IMA) of the five major 
AIoT technologies and MMCAs of the five major AIoT technologies in developing global 
healthcare sustainability.”

Table 1
Alternatives and criteria defined by reviewing the relevant literature.

Item Five AIoT technological 
aspects Six dimensions of NIH Seven assessed dimensions of 

GHI
Criteria (1) IMA (1) S (1) SCMP

(2) MMCAs (2) EV (2) SCI
(3) CMDSs (3) P (3) ADMEHS
(4) MSRs (4) T (4) AOR
(5) MRWO (5) EI (5) FCS

(6) EA (6) QWT
(7) AML

Alternatives technological scalability 
situational effectiveness 
social adaptability
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4.	 Measurements

4.1	 FAA  analytical measurements

	 From the measurements delineated in Eq. (1), Table 3 shows the outcomes of the Kaiser–
Meyer–Olkin (KMO) test. The sampling adequacy was determined to be 0.827 with a 
significance level of p < 0.001. This empirical finding substantiates that the FAA for quantitative 
analysis was demonstrably appropriate for the examination of data derived from these 
questionnaires. Additionally, Table 4 enumerates the communality values across all criteria. The 
communality coefficients ranged from 0.671 to 0.826, suggesting substantial interdependencies 
among the criteria and confirming that the factor variances could be effectively explained by 
these variables.

4.2	 TDM analytical measurements

	 On the basis of measurements from Eqs. (2) and (3), communality values in the FAA were 
applied to measure the validity and representativeness of the criteria. Table 5 shows the 
measurement results of the TDM analysis. The top three weights of the five AIoT technological 
aspects were IMA, MMCAs, and CMDSs, and those of the six dimensions of NIH were safe (S), 
patient-centered (P), and timely (T). Furthermore, the evaluation results shown in Table 5 are as 
follows: (1) the first highest comprehensive weights were the SCMP of the seven assessed 
dimensions of the GHI, which were located at IMA (0.1281), MMCAs (0.0986), and CMDSs 
(0.0872) of the five AIoT technological aspects, and safe (S) (0.1197), patient-centered (P) 
(0.0977), and timely (T) (0.0894) of the six dimensions of the NIH; (2) the second highest 
comprehensive weights were the ADMEHS of the seven assessed dimensions of the GHI, which 
were located at IMA (0.1029), MMCAs (0.0973), and CMDSs (0.0852) of the five AIoT 
technological aspects, and S (0.1145), P (0.0974), and T (0.0859) of the six dimensions of the 
NIH; (3) the third highest comprehensive weights were the AML of the seven assessed 

Table 2
Statistical description of interviewees.
Gender 127 males (67.91%) and 60 females (32.09%)

Number of respondents by region

62 (33.15%) from the northern region
73 (39.03%) from the central region

47 (25.15%) from the southern region
5 (2.67%) from the eastern region

How many times do you use AIoT technology in a week?

Never: 21 (11.24%)
One–Three Times: 83 (44.38%)
Four–Seven Times: 80 (42.78%)
More than Eight Times: 3 (1.6%)

Do you know the developed sustainability of healthcare 
before?

Yes: 143 (76.47%)
No: 44 (23.53%)

Were you previously aware of AIoT applications 
employed in healthcare?

Yes: 155 (28.87%)
No: 32 (71.13%)
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Table 3
KMO and Bartlett’s test for factor analysis.
Sampling adequacy 0.827

Bartlett test of sphericity
Chi-squared test 667.583
df 152
Significance 0.000

Table 5
Communalities of criteria and subcriteria.

Five AIoT technological aspects Seven 
assessed 

dimensions of 
GHI

Six dimensions of NIH

IMA
(0.774)

MMCAs 
(0.823)

CMDSs
(0.784)

MSRs
(0.743)

MRWO
(0.826)

S
(0.814)

EV
(0.731)

P
(0.785)

T
(0.671)

EI
(0.679)

EA
(0.705)

0.1281 0.0986 0.0872 0.0722 0.0821 SCMP
(0.738) 0.1197 0.0665 0.0977 0.0894 0.0749 0.0503

0.0961 0. 0936 0.0765 0.0849 0.0728 SCI
(0.793) 0.1097 0.0767 0.0884 0.0739 0.0692 0.0602

0.1029 0. 0973 0.0852 0.0751 0.0683 ADMEHS
(0.716) 0.1145 0.0743 0.0974 0.0859 0.0759 0.0671

0.1041 0.1023 0.0905 0.0875 0.0797 AOR
(0.807) 0.1047 0.0847 0.0964 0.0873 0.0688 0.0659

0.1009 0.0977 0. 0986 0.0767 0.0698 FCS
(0.758) 0.1081 0.0707 0.0839 0.0781 0.0701 0.0658

0.1027 0. 0971 0.0828 0.0665 0.0743 QWT
(0.742) 0.1149 0.0786 0.1052 0.0949 0. 0683 0.0652

0.1019 0. 0978 0.0853 0.0652 0.0687 AML
(0.796) 0.0915 0.0704 0.0907 0.825 0. 0678 0.0786

Table 4
Communalities of criteria and subcriteria.
Criteria and subcriteria Communality
IMA  - Five AIoT technological aspects 0.774
MMCAs - Five AIoT technological aspects 0.823
CMDSs - Five AIoT technological aspects 0.784
MSRs - Five AIoT technological aspects 0.743
MRWO - Five AIoT technological aspects 0.826
S - Six dimensions of NIH 0.814
EV - Six dimensions of NIH 0.731
P - Six dimensions of NIH 0.785
T - Six dimensions of NIH 0.671
EI - Six dimensions of NIH 0.679
EA - Six dimensions of NIH 0.705
SCMP - Seven assessed dimensions of GHI 0.738
SCI  - Seven assessed dimensions of GHI 0.793
ADMEHS - Seven assessed dimensions of GHI 0.716
AOR - Seven assessed dimensions of GHI 0.807
FCS - Seven assessed dimensions of GHI 0.758
QWT  - Seven assessed dimensions of GHI 0.742
AML - Seven assessed dimensions of GHI 0.796
(Extraction method: Principal component analysis)
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dimensions of the GHI, which were located at IMA (0.1019), MMCAs (0.0978), and CMDSs 
(0.0853) of the five AIoT technological aspects, and safe (S) (0.0915), patient-centered (P) 
(0.0907), and timely (T) (0.0825) of the six dimensions of NIH.

5.	 Discussion

	 The empirical measurement results shown in Table 5 reveal that effective AIoT 
implementation in global healthcare requires a three-pronged strategic approach, with human 
capital development emerging as the paramount concern. The analysis identifies SCMP as 
carrying the highest comprehensive weight (0.1281), indicating that successful healthcare 
transformation fundamentally depends on preparing healthcare professionals for technology 
integration. This finding challenges the common assumption that technology alone can solve 
healthcare problems, instead emphasizing that sustainable improvement requires comprehensive 
training programs, adaptive learning systems that evolve with technological advances, and 
cross-disciplinary collaboration among medical professionals and technology specialists. 
Furthermore, establishing international networks for best practice dissemination is crucial for 
ensuring that knowledge gained in one context can be effectively transferred and adapted 
globally. Infrastructure modernization emerges as the second strategic priority, with the study 
revealing that addressing ADMEHS carries a significant weight (0.1029) across all technological 
aspects. This finding underscores the critical importance of developing global interoperability 
standards for medical devices, implementing robust cybersecurity frameworks for connected 
medical systems, and designing scalable technology solutions that can be adapted to various 
resource settings worldwide. The emphasis on infrastructure suggests that without proper 
technological foundations and sustainable technical support systems, even the most sophisticated 
AIoT applications will fail to deliver their promised benefits to global healthcare systems. The 
third pillar of the strategic framework focuses on healthcare accessibility enhancement, with 
AML demonstrating a substantial impact (0.1019) across all measured dimensions. This priority 
highlights the transformative potential of AIoT technologies in expanding healthcare reach 
through telemedicine platforms, deploying AIoT-enabled mobile clinics for underserved 
populations, creating decentralized community health networks, and integrating smart 
transportation systems for medical emergencies. The measurement results indicate that 
accessibility improvements are not merely about geographical reach but encompass the entire 
ecosystem of healthcare delivery, suggesting that AIoT solutions must be designed with equity 
and inclusion as fundamental principles rather than secondary considerations. Ultimately, 
quantitative FAA and qualitative TDM provide compelling evidence that effective global 
healthcare enhancement through AIoT technology requires a multidimensional approach 
prioritizing human capital development, infrastructure modernization, and accessibility 
improvement. The emphasis on safety, patient-centeredness, and timeliness as core quality 
dimensions reinforces the need for responsible innovation that places human welfare at the 
center of technological advancement.



4208	 Sensors and Materials, Vol. 37, No. 9 (2025)

6.	 Conclusions and Recommendations

	 In this empirical research, we demonstrated the significant impact of AIoT technologies on 
the effective improvement of global healthcare outcomes as measured using the GHCI. Through 
the rigorous application of the triple-dimension inter-influence correlations utilizing SLT, FAA, 
and TDM, we provided comprehensive empirical evidence that AIoT technologies systematically 
enhance healthcare delivery across multiple critical dimensions. The measured results 
conclusively established that IMA, MMCAs, and CMDSs represent the three most influential 
AIoT technological aspects, with IMA demonstrating the highest comprehensive weights 
(0.1281, 0.1029, 0.1019) across all priority healthcare dimensions.
	 The findings reveal profound correlations between these AIoT technologies and healthcare 
improvements, particularly within the dimensions of SCMP, ADMEHS, and AML. The 
empirical evidence demonstrates that these improvements are most pronounced when 
strategically aligned with the NIH quality dimensions of safety (S), patient-centered care (P), 
and timeliness (T), which consistently emerged as the top three weighted factors across all 
technological aspects. This alignment suggests that successful AIoT implementation requires 
simultaneous attention to technological capability and fundamental healthcare quality principles. 
Furthermore, we revealed substantial transformative impacts extending beyond immediate 
clinical applications to encompass broader healthcare system improvements in the access, 
distribution, and management of efficient healthcare services. The hierarchical relationships 
established through the TDM provide an evidence-based framework for implementing AIoT 
solutions that maximize healthcare outcomes through strategic alignment with the most 
influential technological aspects and dimensional factors. The measured weights demonstrate 
that effective AIoT integration is not merely about deploying advanced technology but also 
requires systematic consideration of human factors, infrastructure capabilities, and accessibility 
requirements to achieve optimal healthcare delivery enhancement. Critically, we conclusively 
demonstrated that targeted AIoT technological integration, when properly aligned with key 
healthcare dimensions as identified through empirical measurement, can systematically improve 
global healthcare delivery systems and address some of the most pressing challenges in 
contemporary healthcare provision worldwide. This comprehensive weight analysis provides 
policymakers and healthcare administrators with quantified priorities for resource allocation and 
strategic planning, ensuring that AIoT investments deliver maximum impact on global 
healthcare outcomes.
	 Despite the comprehensive nature of this research, several critical research limitations 
warrant acknowledgment and present opportunities for future investigation. First, measurement 
complexity represents a fundamental challenge in quantifying the multidimensional impacts of 
AIoT on healthcare systems, as the inherent complexities in measurement may not capture all 
nuanced interactions between technological implementations and healthcare outcomes. While 
the quantitative FAA and qualitative TDM offer robust analytical frameworks with demonstrated 
validity through communality analysis, the dynamic nature of healthcare systems and rapidly 
evolving AIoT technologies create ongoing challenges in establishing stable measurement 
technological baselines that remain relevant across diverse implementation contexts on the 
employment of AIoT technology for the effective improvement in global healthcare.
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