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	 As China’s urban landscape evolves, the frequency and complexity of fire incidents have 
increased, causing severe secondary disasters and widespread damage. Fire-induced disaster 
chains present cumulative and unpredictable risks, exacerbated by environmental, structural, 
and human factors. We construct a fire propagation model based on disaster chain theory, 
integrating hazard-causing elements, vulnerable assets, and disaster-inducing environments. 
Using data from 75 government-reported fire incidents and on the basis of complex network 
theory, we identified key risks and analyzed their fire propagation capabilities using 
comprehensive degree, clustering coefficient, and eigenvector centrality. Thirty-nine 
interconnected risks were identified, and their effect on fire propagation was assessed. Several 
risks, despite high propagation potential, had minimal influence, while others with strong 
connectivity required extensive monitoring. The role of sensor networks in early detection and 
control was emphasized, and simulation results supported targeted risk management strategies. 
The results of this study emphasize the need for data-driven fire control, optimizing sensor 
deployment, and prevention strategies to mitigate the cascading effects of fire disasters.

1.	 Introduction

	 As community functions, structures, and landscapes continue to evolve in China, the number 
of fire incidents has been increasing significantly. The causes of fires are diverse with strong 
interdependencies affected by numerous factors. Fires cause disasters in time, space, and 
environmental conditions,(1) leading to secondary hazards, such as smoke and toxic gas 
emissions, explosions, and environmental pollution, and severe consequences, including 
infrastructure damage, public panic, and casualties. For example, the ‘1·24’ fire disaster in 
Jialeyuan Community, Xinyu, Jiangxi, China in 2024 caused secondary and derivative impacts, 
including smoke and toxic gas release, structural damage, and combustible explosions, resulting 
in 39 fatalities, 9 injuries, and an economic loss of 43.53 million yuan (USD 6.0 million).(2) Fires 
cause interconnected secondary and derivative disasters, which is referred to as a fire-induced 
disaster chain.(3) Such incidents show cumulative effects and unpredictability, making their 
progression difficult to forecast and control. The absence of effective intervention in disasters 
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escalates risks and severely damages and disrupts the community system. Therefore, it is 
important to understand the fire-induced disaster chains and develop strategies to minimize 
losses. Being different from natural disasters such as floods and earthquakes, fires are triggered 
by multiple causes, including humans, objects, management failure, and environmental factors, 
resulting in a series of disasters.(4) 

	 Recently, research on fire risk assessment and analysis has been conducted using fire risk 
assessment and simulation, correlation analysis, and prediction. However, the complex 
relationships between risk factors have rarely been studied. To explore these relationships, 
complex network theory is employed owing to its inherent advantages in analyzing the coupling 
effects and pathways generated by various factors. This theory is widely applied to study the 
development of fire-induced disaster chains, such as those in urban environments, fire 
propagation in underground commercial complexes, and oil tank accidents.(5–8) While existing 
research contributes to fire risk assessment, it presents several limitations. 
	 First, most studies concentrate on the analysis of a single risk factor, lacking a systematic 
characterization of the coupling effects between secondary risk factors that initiate a fire-
induced disaster chain. This insufficient understanding of the disaster propagation chain makes 
it challenging to study the cross-layer transmission mechanisms of secondary disasters, such as 
explosions and toxic smoke spread. Second, traditional assessment methods heavily rely on 
static network models, which fail to capture the dynamic characteristics of fire propagation. 
Furthermore, common risk identification methods depend solely on single topological indicators 
such as risk level and the clustering coefficient of risks. While these metrics reflect the 
characteristics of risks, information on sensor data is not considered.
	 Therefore, we constructed a fire propagation model based on the disaster chain theory, which 
presents the risk connectivity level, the propagation effect of each risk in a disaster, and 
vulnerable assets to disaster. The model can address the limitations of topological indicators and 
identify risks that require extensive monitoring with sensor data. The results of this study 
provide a basis for formulating a strategy to prevent a fire and minimize the secondary disaster 
and for optimizing sensor deployment for effective monitoring and preventing fires.

2.	 Fire Propagation Model

2.1	 Disaster chain theory

	 A disaster chain is a complex system affected by hazard-causing factors, disaster-inducing 
environments, vulnerable assets to disaster, and disaster events.(9) In the chain, hazard-causing 
factors are defined as elements that might trigger or exacerbate disasters and cause losses, 
including extreme climate changes and human activities, which are unpredictable and sudden; 
disaster-inducing environments refer to collective environmental conditions that might lead to 
disasters in natural and social environments; vulnerable assets are entities, such as residents and 
infrastructure, that directly suffer severe losses from hazard-causing factors.(10) A hazard-
causing factor can cause a disaster that can damage multiple vulnerable assets. Vulnerable assets 
might trigger continuous disasters in a disaster chain or disaster cluster.(11) On the basis of the 
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interaction mechanism that involves the elements, the factor set of a fire-induced disaster chain 
is expressed as 

	 G = {C, E, R, S},	 (1)

where G is the fire-induced disaster chain system, C is the hazard-causing factor, E is the 
disaster-inducing environment, R is the disaster event caused by the coupling of C and E, and S 
is the vulnerable assets to disaster.
	 The topological structure of a disaster chain consists of multiple risks that have complex 
structural characteristics. A simple model is required to analyze fire development and 
propagation paths in the chain. Fire incidents can trigger secondary and derivative disasters on 
the interconnected path that resembles a topological network. Therefore, it is necessary to 
explore the fire propagation chain. In the developed model, risks with a high level of connection 
and fire propagation effect on other risks were identified.

2.2	 Sensor network for fire control

	 The sensor network plays an important role in early warning and fire control. The sensor 
network monitors smoke, temperature, or flame in real time and issues alarms in the early stage 
of a fire for effective evacuation and fire control. The integrated sensor network detects fire 
hazards and activates suppression mechanisms, including water spraying, inert gas release, 
oxygen supply cutoff, and ventilation duct closure, effectively preventing fire propagation before 
human intervention is required. However, its effectiveness is limited by sensor sensitivity, 
system response speed, fire control device functions, and equipment maintenance, which 
requires manual intervention. Nevertheless, owing to early detection, the sensor network 
significantly strengthens proactive fire protection and control and rapid response, and plays an 
essential role in reducing fire-related losses. The structure of a fire detection and control system 
is shown in Fig. 1. The roles of the components of the system are described in alphabetical order 
as follows.
•	� Broadcast line: This is part of the fire alarm system’s public address or voice evacuation 

system. Its role is to broadcast prerecorded or live messages to guide people to safety during 
an emergency. 

•	� Bus short-circuit isolator: This device isolates a short circuit on a communication bus. It 
prevents a fault in one section of the circuit from disabling the entire loop, ensuring that other 
devices on the bus continue to function correctly.

•	� Bus telephone extension: This is an extension of the internal communication system, allowing 
for direct voice communication with the fire alarm control panel from various locations 
within a building.

•	� Bus telephone jack: This is the connection point for a bus telephone extension.
•	� Cable-type line-type heat detector: This uses a heat-sensitive cable to sense a fire. When the 

temperature along the cable exceeds a certain threshold, it triggers an alarm.
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•	� Communication bus: This is the primary communication pathway for all devices connected 
to the fire alarm control panel. It transmits data and signals between detectors, modules, and 
the panel.

•	� Device bus: This is a specialized bus for communication with specific intelligent or 
addressable devices, often carrying more complex data than a standard signal bus.

•	� Direct line: This is a dedicated telephone line used for direct, private communication between 
specific points in the system, typically used by emergency personnel.

•	� Fire alarm control panel: This is the brain of the system. It receives signals from detectors, 
initiates alarms, and monitors the entire fire alarm system.

•	� Fire audible and visual alarm: Also known as a horn/strobe, this device provides both an 
audible alert (siren or horn) and a visual warning (flashing strobe light) to alert building 
occupants of a fire.

•	� Fire display panel: This is an ancillary display unit, typically a simplified version of the main 
control panel. It shows the status of the system and the location of a fire without requiring 
access to the main control panel.

•	� Fire hydrant button: This is a device used to signal the fire alarm control panel that a fire 
hydrant is being used, often activating related systems such as pumps.

Fig. 1.	 (Color online) Fire detection and control system with sensor network (from this study).



Sensors and Materials, Vol. 37, No. 9 (2025)	 4215

•	� Input module: This module connects non-addressable devices (e.g., a sprinkler flow switch or 
a manual pull station) to the addressable communication bus, allowing the fire alarm control 
panel to monitor their status.

•	� Input/output module (level output): This provides a continuous or variable output signal, 
often used to control systems that require a specific voltage or current level.

•	� Input/output module (pulse output): This provides a series of electrical pulses, often used to 
control or interface with equipment that operates on the basis of a pulsed signal.

•	� Input/output module (switching value): This can be used for both input and output functions. 
It provides a simple on/off or open/close signal, often used to activate or monitor other 
building systems such as fans or dampers.

•	� Line-type beam flame detector: This is a specialized detector that uses an infrared or 
ultraviolet light beam to detect the presence of an open flame over a long distance.

•	� Line-type beam smoke fire detector: This is used in large open areas (e.g., warehouses) and 
uses a beam of light to detect smoke. When smoke obstructs the beam, an alarm is triggered.

•	� Manual fire alarm button: This is a manually operated device that allows a person to activate 
the fire alarm system by pulling a lever or pressing a button.

•	� Manual interface: This is a device that allows for manual control or input into the fire alarm 
system, often used for specialized functions.

•	� Output module: This receives a signal from the fire alarm control panel and activates other 
external systems, such as magnetic door locks, smoke dampers, or elevators.

•	� Point-type heat fire detector: This senses a fire when the temperature at a specific point in a 
room reaches a predefined threshold or when the temperature rises quickly.

•	� Point-type infrared: This is a detector that senses the infrared radiation emitted by a fire at a 
specific location.

•	� Point-type smoke fire detector: This is a common detector that senses a fire by detecting 
smoke particles at a specific location, using either ionization or photoelectric technology.

•	� Power line: This is the wiring that supplies electrical power to all the devices in the system.
•	� Signal bus: This is a simple communication pathway that carries signals from detectors and 

other devices to the fire alarm control panel.
•	� Speaker: This is part of the voice evacuation system. It plays prerecorded messages or live 

announcements to guide building occupants to safety.
•	� Telephone line: This is a standard telephone line used to connect the fire alarm system to an 

external monitoring station or for internal communication.

2.3	 Fire propagation 

	 To improve the fire detection and control capability, the comprehensive degree, clustering 
coefficient, and eigenvector centrality of risks need to be evaluated to analyze the risk network’s 
characteristics. The results are used to evaluate the risk’s connectivity level and the fire 
propagation effect on other risks. 
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2.3.1	 Key risk identification 

	 Key risks are those that exert the greatest effect on a network’s topological structure and 
functionality. Accurately identifying these risks enhances control over fire propagation 
efficiency and optimizes network performance.(12) Although the traditional K-shell method 
determines the importance of risks by calculating their positions in the network and assigning 
different shell values, it does not reveal the importance of risks in the same layer. This method 
heavily relies on risk characteristics while ignoring the impact of risks on fire propagation, 
thereby failing to accurately identify the propagation capabilities of the risks. The model 
developed in this study integrated local and global fire propagation characteristics to evaluate 
the importance of risks.(13) This method aligns with the disaster chain theory. The calculation 
method of the developed model is as follows:

	 ( ) ( ) ( )i iC i K i D i Sµ θ= + + ,	 (2)

	 ( )
( )i

K i
N i

µ = ,	 (3)

where C(i) is the risk degree for risk i, K(i) is the total number of risks within the two-step 
neighborhood of risk I, N(i) is the number of subneighbor risks (or direct neighbors) of risk I, μi is 
the neighborhood influence coefficient, calculated as the ratio of risks in the two-step 
neighborhood to the number of direct neighbors, D(i) represents the direct influence degree, 
which is the number of risks directly connected to risk I, θ is the sensor correlation coefficient, 
and Si is the sensor correlation strength, Si indicates the relationship between risk i and a sensor 
deployment point. If a risk is directly connected to a sensor deployment point, Si = 1, while Si = 
0.5 if a risk is indirectly connected (or related to) a sensor deployment point.

2.3.2	 Vulnerability 

	 Vulnerability refers to the degree of change in the risk network structure and connectivity of 
the risks. Risk propagation efficiency declines when risks are randomly distributed. We 
examined the connectivity level and the level of fire propagation effect of risks. 
	 The risk connectivity level is determined by the fire propagation capability of risks to other 
risks [Eq. (4)].

	 ( ) min{ :  is a node cut set of }k G S S G= ,	 (4)

where k(G) represents the network connectivity of graph G (the network of risks), |S| denotes the 
number of risks in set S, and the “node cut set” is a set of nodes (risks) whose removal 
disconnects the graph.
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	 The stability of the network with risks is affected by the ratio of the number of risks 
connected (N ') to others to the total number of risks (N) (5).

	 'NS
N

= 	 (5)

	 The level of the propagation effect of risk represents the fire propagation speed, reflecting the 
level of connection between risks,(14) and is calculated as

	
( )

1 1
1 i j

ij
e

N N d≠
=

− ∑ ,	 (6)

where dij is the shortest path between risks i and j.

3.	 Risk Identification and Model Construction 

	 In this study, the Octopus data collector was used to obtain 75 fire incident analysis reports 
published by government emergency management departments over the past five years. A 
corpus was constructed as a fire disaster event dataset. Relationships between the identified 
risks were analyzed on the basis of the elements (C, E, R, and S) of the disaster chain and 
extracted risk factors. The elements and factors were mapped to identify direct and indirect 
causes, casualties and losses, and secondary disasters. Identified factors were coded and 
transformed into an n × n co-occurrence matrix A, where Aij represents the number of times of 
the occurrence of event i that might trigger event j. A was then converted into an adjacency 
matrix C using Eq. (7).

	
0, 0

1, 0
ij

ij
ij

A
C

A

==  >
	 (7)

When Cij = 1, risk i leads to risk j. If Cij = 0, there is no relationship between risks i and j.
	 Nine hazard-causing factors, 21 disaster-inducing environments, five vulnerable assets to 
disaster, and four disaster events were identified in this study (Table 1 and Fig. 2).(15) The Kappa 
index of the risks was higher than 0.8, indicating reliable coding results. Out of 75 reports, 10 
reports were analyzed to extract and code the number of risks. Until the increasing rate of the 
number of extracted risks reached 0, texts were coded and analyzed.
	 On the basis of the adjacency matrix C, the network structure was constructed using Gephi 
software (Fig. 2). The network consisted of 39 risks. The PageRank algorithm was used to 
identify risks and present the correlation and level of connection between risks. The five most 
severe risks were identified as R1, R2, S1, E19, and E13. These risks were critical factors in fire 
incidents, requiring extensive monitoring and preventive measures to avoid disaster.
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Table 1
Fire-induced disaster chain event risks.

Factor Risk Factor Risk Factor Risk 

Hazard-
causing 
factors

C1 Electrical failure

Disaster-
inducing 

environments

E5 Blocked fire escape

Disaster-
inducing 

environments

E18
Delayed rescue 

response

C2 Gas leakage E6
Lack of fire 

protection design
E19

Poor emergency 
escape ability

C3
Improper use of 

electrical appliances
E7

Improper 
accumulation of 

flammable materials
E20

Unclear management 
responsibility

C4
Unattended ignition 

source
E8

Illegal modification 
of electric bicycles

E21
Insufficient 

professional skills

C5 Battery fire E9
Poor fire resistance 

performance of 
building materials

Disaster 
events

R1 Sudden fire

C6
Nonstandard 

flammable materials 
used

E10
Nonstandard 
installation of 

electrical wiring
R2

Flammable material 
deflagration

C7
Formation of 
explosive gas 

mixture
E11

Inadequate 
ventilation measures

R3
Generation of toxic 

smoke

C8 Delayed alarm E12
Lack of anti-static 

measures
R4 Explosion

C9 High fire load E13 Poor living habits

Vulnerable 
assets to 
disaster

S1 Casualties

Disaster-
inducing 

environments

E1
Lack of safety 

awareness
E14

Insufficient safety 
education and 

training
S2 Property damage

E2
Lack or failure of 

fire-fighting facilities
E15

Inadequate 
implementation of 
safety supervision 

responsibilities

S3
Daily life 

inconvenience

E3 Illegal construction E16
Ineffective inspection 
and rectification

S4
Online public 

opinion

E4 Illegal leasing E17
Inadequate 

fulfillment of safety 
responsibilities

S5
Building collapse 

and damage

Fig. 2.	 (Color online) Risk network identified in this study.
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4.	 Fire Propagation Model 

	 The comprehensive degree of risk is presented as the sum of its out-degree and in-degree. In-
degree represents the number of other risks that can trigger it, suggesting that it is easily 
triggered, while out-degree represents the number of risks it can trigger, suggesting a strong fire 
propagation effect. Risks with high in-degrees (higher than out-degrees) included S1, S3, S4, and 
S2, indicating that these risks were easily triggered. Risks with high out-degrees (significantly 
higher than in-degrees) include E1, E13, E14, and E20, suggesting that these risks had strong fire 
propagation effects (ability to trigger other risks) and must be monitored with well-defined 
preventive measures. The clustering coefficient represents the similarity in fire propagation and 
relationships between risks.(16) 

	 The clustering coefficient presents the degree to which nodes (risks) in a graph tend to 
cluster. It is calculated for a single node or for the entire graph based on the number of 
connections between a node’s immediate neighbors. 
	 The average clustering coefficient for the entire network is the average of the local clustering 
coefficients for all nodes in the graph and is calculated as(17)

	
  

1 v
v G

C C
N ∈

= ∑ ,	 (8)

where, N is the number of nodes (risks) in the graph and Cv is the local clustering coefficient of 
each node. A high average clustering coefficient for a network indicates a highly interconnected 
and structured network, whereas a low average coefficient suggests a more sparse and less 
connected network where nodes’ neighbors are not necessarily neighbors with each other.
	 The clustering coefficient of the network was small (0.162), indicating low connectivity levels 
of the risks.(16) Risks with the highest clustering coefficients (R1, E15, and E3) exhibited close 
connections with adjacent risks (Fig. 3). Controlling such risks effectively reduces the possibility 
of secondary disaster.
	 The importance of risks is determined by the mutual influence and measured by eigenvector 
centrality. Eigenvector centrality is a measure of a risk’s influence within a network. Unlike 
degree centrality (which just counts direct connections), eigenvector centrality considers the 
quality of those connections. A risk receives a higher score if it is connected to other risks that 

Fig. 3.	 (Color online) Clustering coefficients of risks.
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are themselves highly connected and influential. Eigenvector centrality is a recursive calculation. 
The score for a node is proportional to the sum of the scores of all the nodes connected. For a 
given network represented by an adjacency matrix, the eigenvector centrality of all the nodes is 
the eigenvector corresponding to the largest eigenvalue of that matrix. The top five risks in 
eigenvector centrality included S3, S1, S2, S4, and E19. These risks showed close relationships, 
and their eigenvector centralities were used to identify adjacent risks to prevent fire propagation 
and determine preventive measures (Fig. 4). Comprehensive degrees of the risks calculated using 
Eqs. (2) and (3) were used to identify risks with high potentials of causing a disaster. R1, S1, R4, 
R2, and S5 were identified as the risks with high comprehensive degrees and require prevention 
and control measures (Fig. 5).

Fig. 4.	 (Color online) Eigenvector centralities of risks.

Fig. 5.	 (Color online) Comprehensive degrees of risks.
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5.	 Vulnerability of Risk Network

	 To evaluate the performance of the fire propagation network, we assessed its vulnerability. 
This involved identifying vulnerability indicators and analyzing how they relate to one another. 
The results of this assessment were then used to guide the development of targeted fire control 
measures designed to reduce the risk and spread of fire.
	 Figure 6 illustrates how four different metrics, namely, risk hedging degree, comprehensive 
degree, eigenvector centrality, and clustering coefficient, are related to the overall risk 
connectivity level across 39 identified risks. The risk hedging degree, represented by the black 
line with triangle markers, starts at a high connectivity level and gradually declines. This trend 
suggests that as risk hedging increases, the network becomes less interconnected. In other 
words, random hedging can effectively reduce systemic fire risk by weakening the pathways 
through which fire might propagate. The comprehensive degree, shown as a red line with circle 
markers, exhibits a stepwise decline. This pattern indicates that some risks are significantly 
more connected than others. On the basis of this metric, three distinct groups of risks were 
identified: C1–C8, E1–E11, and E12–S5. Additionally, risks C9 and E1 were found to fall 
between the first and second groups, suggesting that they serve as transitional nodes within the 
network. 
	 The eigenvector centrality, represented by the green line with star markers, fluctuates but 
generally trends downward. This metric reflects the varying influence of individual risks within 
the network. The analysis revealed five connectivity clusters: C1–C8, C9–E3, E5–E15, E16–E20, 
and E21–S4. These groupings help identify which risks are most central to fire propagation and 
therefore require closer monitoring and control. The clustering coefficient, depicted by the blue 
line with square markers, also shows a stepwise decline with some fluctuations. This suggests 
that certain risks are embedded in tightly knit clusters, while others are more isolated. Two 

Fig. 6.	 (Color online) Groups of risks by risk connectivity levels of comprehensive degree (red), eigenvector 
centrality (green), clustering coefficient (blue), and under risk hedging (black). 
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primary groupings were observed on the basis of this metric: C1–E15 and E16–E21. These 
clusters represent localized zones of vulnerability where fire could spread rapidly if triggered.
	 We evaluated the fire propagation effect across 39 identified risks in the network. On the 
basis of simulation results and the figure provided, the average level of the fire propagation 
effect was estimated to be 49.02%. The average level of the fire propagation effect was calculated 
as the overall mean propagation effect after the normalization of all risk levels of the four metrics 
(Fig. 7). Among the risks analyzed, R1, E6, E14, R4, and R2 exhibited the highest levels of the 
fire propagation effect.
	 For the comprehensive degree, two distinct groups were identified on the basis of this metric, 
namely, E3 to E12 and E13 to E18. Risks in the first group exhibited higher propagation effects, 
indicating their stronger effect on the network’s structure and function. For clustering 
coefficients, the risk effects were grouped into C1 to E14 and E16 to R3, reflecting localized 
clusters where fire could spread more rapidly owing to tight interconnections. Five propagation 
effect groups were observed for the eigenvector centrality: C1 to C8, C9 to E1, E4 to E20, E21 to 
R2, and R3 to S2. These groupings highlight varying levels of influence and centrality within 
the network, helping to identify which risks are most critical to monitor. When risk hedging is 
applied randomly, the overall propagation effect decreases. This suggests that hedging strategies 
effectively reduce systemic vulnerability by weakening the connectivity between high-risk 
nodes. These risks are particularly influential in accelerating fire spread and triggering chain 
reactions. As such, they must be prioritized for targeted control measures to reduce their impact 
and enhance the network’s resilience. In contrast, 17 risks demonstrated a low fire propagation 
effect. Although these risks pose less immediate danger in terms of spread, they require 
substantial resource allocation to prevent initial fire outbreaks. Their presence in the network 
underscores the importance of proactive fire prevention strategies, even for seemingly minor 
threats.

Fig. 7.	 (Color online) Groups of risks by propagation effect in risk network of comprehensive degree (red), 
eigenvector centrality (green), clustering coefficient (blue), and under risk hedging (black). 
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	 Overall, the results suggest that while a small number of risks have a disproportionately high 
influence on fire propagation, the majority exhibit lower levels of connectivity and impact. This 
distribution indicates that the fire propagation network possesses a degree of robustness, which 
helps mitigate the risk of widespread fire incidents and supports the effectiveness of strategic 
intervention.
	 The results underscore the importance of understanding how different metrics affect the fire 
propagation network. Risks with higher comprehensive degrees play a pivotal role in shaping the 
network’s structure and functionality. If these risks are mismanaged or overlooked, the network’s 
integrity may be compromised, making it more susceptible to rapid fire spread. Therefore, it is 
essential to develop corresponding control measures for these influential risks. By doing so, we 
can minimize the likelihood of fire propagation and delay the progression of chain reactions, 
ultimately enhancing the safety and resilience of the entire system.

6.	 Key Risk Control Measures

	 Fire incidents are caused by diverse causes, and fire control strategies need to be selected 
according to their characteristics (Table 2). On the basis of the identification of risks in the risk 
propagation network and the results of risk propagation simulations, sudden fire (R1), casualties 
(S1), explosion (R4), building collapse and damage (S5), and flammable material deflagration 
(R2) were identified as high-propagation risks. However, such risks showed a low level of effect 
on propagation in the risk network. Insufficient safety education and training (E14) and a lack of 
safety awareness (E1) were classified as mid-propagation risks. Risks with low comprehensive 
degrees showed no impact on network risk connectivity level and the propagation effect in the 
risk network. Electrical failure (C1) and the formation of an explosive gas mixture (C7) were 

Table 2 
Management strategies for different risks.
Risk Strategy

R1

Link smoke sensors with intelligent sprinkler systems to detect smoke concentration in real time and 
automatically activate sprinklers to suppress fire spread. Use infrared thermal imaging cameras to locate 
high-temperature fire sources, integrate with ventilation systems to exhaust toxic gases, and guide personnel 
evacuation through acoustic-optic alarms.

S1

Deploy wearable vital sign sensors (heart rate, blood oxygen) and positioning tags to monitor personnel 
status in real time. Trigger emergency broadcasts on the basis of environmental data, dynamically adjust 
evacuation route indicator lights, and dispatch rescue robots to accurately locate trapped individuals and 
reduce casualty risks.

R4

Monitor hazardous environments using gas concentration and dust concentration sensors, and link 
explosion-proof ventilation equipment to rapidly dilute combustible gases. Install pressure sensors to detect 
pipeline overlimits, automatically cut off gas sources, and trigger explosion suppression devices to prevent 
explosions.

S5
Install vibration sensors and stress-strain sensors to monitor building structure deformation data in real 
time. Analyze load-bearing limits using digital twin models, issue warnings, and integrate hydraulic 
support systems to reinforce weak areas and avoid sudden collapses.

R2

Deploy temperature-humidity sensors and static electricity monitors in flammable material warehouses, and 
link environmental control systems to maintain low-temperature and low-static conditions. Use ultraviolet 
flame sensors to detect abnormal fire sources, trigger fire-resistant rolling shutters to isolate hazard zones, 
and inject nitrogen to reduce oxygen concentration and block deflagration conditions.
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identified as low-propagation risks. Optimized risk management strategies are required by 
integrating real-world scenarios and selecting appropriate sensor types and deployment. 
	 The simulation results summarized that 25% of the identified risks had a low propagation 
effect in the risk network, 55% showed a high risk connectivity level, and 45% required 
preemptive prevention strategies.

7.	 Conclusions

	 We analyzed fire-induced disaster chains through the development and simulation of a fire 
propagation model based on disaster chain theory and complex network analysis. By integrating 
empirical data from 75 official fire incident reports, we developed a model that identifies and 
quantifies the fire propagation capabilities of 39 interconnected risks, highlighting their roles in 
triggering secondary and derivative disasters. Comprehensive degree, clustering coefficient, and 
eigenvector centrality were measured, revealing that several risks were highly connected and 
critical to fire propagation, while others had minimal impact. Simulation results confirmed the 
robustness of the fire propagation network and underlined the importance of risk control 
measures. The deployment of sensor networks plays a pivotal role in early detection, risk 
suppression, and proactive fire management, although it is limited by system response and 
maintenance constraints. The results emphasize the need for tailored risk prevention strategies 
based on the specific propagation characteristics of each risk. As fire disasters become 
increasingly complex in urban environments, a systematic, data-informed approach is essential 
to enhance disaster resilience. The results of this study provide a basis for the development of 
predictive modeling, sensor optimization, and integrated disaster prevention systems to 
minimize loss and disruption from fire-induced disasters.
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