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	 With the rapid advancement of artificial intelligence, enterprises increasingly demand 
efficient and flexible solutions for employee work behavior monitoring in office environments. 
Traditional systems often involve high costs, rigidity, and reliance on extensive labeled data. 
Multimodal large language models (MLLMs), capable of integrating information from text, 
images, and audio, offer a novel zero-shot inference approach that reduces data dependence and 
deployment complexity. In this study, we present a practical application framework combining 
seating area definition, image cropping, and prompt engineering to analyze employee behaviors 
such as focused screen engagement and nonwork-related interactions. Results are output in a 
standardized JavaScript Object Notation format facilitating aggregation and actionable insights 
for human resource management. Additionally, critical privacy and ethical and legal 
considerations are discussed, along with mitigation strategies to support responsible deployment. 
Through practical simulation scenarios and cost–benefit analysis, we demonstrate that MLLMs 
enable scalable and economically viable employee behavior monitoring solutions suitable for 
small and medium-sized enterprises.

1.	 Introduction

	 With the global wave of digital transformation, artificial intelligence (AI) has profoundly 
reshaped corporate operations. In office environments, monitoring employee behavior has 
become increasingly important for enhancing productivity, ensuring information security, and 
maintaining compliance. However, traditional monitoring systems often entail high deployment 
costs, limited flexibility, and strong data dependence.(1) These challenges underscore the need 
for more advanced and cost-effective solutions. The emergence of multimodal large language 
models (MLLMs) provides a transformative opportunity, as they can process and integrate text, 
images, and audio, offering new directions for overcoming the shortcomings of conventional 
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approaches.(2,3) This research is therefore motivated by the demand for efficient and ethical 
monitoring systems that align with modern work dynamics while safeguarding privacy.
	 AI has been significantly advanced by large language models (LLMs) that excel at processing 
human language, as shown in Fig. 1. However, real-world contexts are inherently multimodal, 
relying on diverse sensory inputs. To address this, the AI community has rapidly developed 
MLLMs, extending beyond text-based models to integrate multiple modalities. Early multimodal 
methods relied on loosely connected models with limited synergy, but the introduction of 
transformer architectures marked a breakthrough. Initially designed for natural language 
processing [e.g., bidirectional encoder representations from transformers and generative 
pretrained transformers (GPTs)], transformers were later adapted for computer vision [e.g., 
vision transformer (ViT)] and subsequently expanded into unified multimodal frameworks. 
Contemporary MLLMs employ mechanisms such as connectors and multimodal attention to 
fuse different input types, with models such as large language-and-vision assistant (LLaVA), 
Flamingo, and GPT-4V, demonstrating impressive performance in tasks such as image 
captioning, visual question answering, and multimodal dialogue. Their rapid evolution has been 
fueled by advances in large-scale datasets, computational power, and architectural innovations.(4) 
	 In this study, we investigate how MLLMs can be leveraged as a flexible, scalable, and cost-
effective solution for monitoring employee behavior in office environments. Through a 
simulated application scenario, we demonstrate their operational workflow in defining seating 
areas, capturing images, analyzing behavior, and generating outputs. Beyond the technical 
aspects, we also examine the ethical, privacy, and legal implications of adopting MLLM-based 
monitoring and propose mitigation strategies to ensure responsible implementation.(5) The 
contributions of this study include the following: establishing the feasibility of zero-shot MLLM 
inference for workplace monitoring, presenting a practical methodology from data acquisition to 
classification and reporting, and providing a comprehensive discussion of ethical and regulatory 
considerations. Overall, we advance the application of MLLMs in workplace management, 
offering both technical insights and ethical guidance for future smart office systems. 

2.	 Technical Framework

	 MLLMs represent a major advancement in AI by integrating information from diverse 
modalities for more comprehensive understanding. Unlike unimodal models such as text-only 
LLMs or image-only convolutional neural networks (CNNs), MLLMs can simultaneously 
process text, images, audio, and video.(6) Their architecture generally consists of three essential 
components. First, the multimodal encoder transforms raw inputs (e.g., image pixels, audio 
waveforms, and text tokens) into embeddings, often leveraging pretrained models such as ViT 
for visual data and Wav2Vec for audio.(7) Second, the alignment module integrates these 
embeddings into a shared representation space, allowing semantic relationships to be captured 
across modalities. Techniques such as contrastive learning, exemplified by contrastive language-
image pretraining (CLIP), are commonly applied for this purpose.(6) Finally, the MLLMs 
themselves process the aligned multimodal embeddings to perform tasks of inference, 
generation, and comprehension. For example, MLLMs can produce image captions or answer 
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content-specific queries by combining multimodal cues.(8) Through this integrated architecture, 
MLLMs achieve a holistic understanding of complex real-world scenarios by exploiting 
complementary data sources.
	 A key advantage of MLLMs lies in their strong zero-shot and few-shot inference capabilities, 
enabling them to handle novel tasks without extensive task-specific training. This adaptability 
derives from large-scale pretraining on diverse datasets, which equips the model with broad 
general knowledge and robust cross-modal associations.(9) Consequently, MLLMs demonstrate 
high flexibility in addressing unseen data distributions and tasks. Equally important is the role 
of prompt engineering in practical deployment. By designing appropriate prompts, users can 
guide MLLMs to execute specific tasks without fine-tuning. For instance, in an employee 
monitoring context, prompts such as “Please analyze whether the employee in this image is 
looking at the screen” can directly yield behavior analysis results. This approach significantly 
reduces technical barriers, enabling nonspecialist developers to harness MLLMs effectively.(10) 
Prompt engineering thus transforms MLLMs into versatile tools, supporting a wide range of 
applications with minimal customization.
	 MLLMs exhibit significant potential in behavior recognition by integrating visual cues, such 
as employee posture and gaze, with speech content, enabling the accurate judgment and 
classification of complex human behaviors. For instance, as illustrated in Fig. 2, MLLMs can 
detect nonwork-related activities during office hours, including mobile phone usage, prolonged 
absences from desks, or private conversations. They are also capable of interpreting the 
semantics behind interactions, distinguishing, for example, between meetings and idle chat.(11) 
Note that while MLLMs can help identify general patterns of device usage (e.g., frequency, 
duration, and timing), they cannot, without access to sensitive content such as audio or message 
transcripts, reliably distinguish between work-related and nonwork-related activities. Since 

Fig. 2.	 (Color online) MLLM employee behavior monitoring.
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incorporating such content-level data introduces significant privacy and confidentiality risks, 
our framework explicitly avoids analyzing or storing raw communication data. Instead, we focus 
on nonintrusive behavioral indicators to maintain user privacy while still capturing meaningful 
patterns of technology interaction. This multimodal understanding allows for more nuanced and 
context-aware assessments of workplace activity, surpassing basic presence detection to provide 
comprehensive insights essential for effective and fair monitoring. Overall, the combination of 
multimodal processing, zero-shot inference, and flexible prompt engineering makes MLLMs a 
highly efficient, cost-effective, and easily deployable solution for employee behavior monitoring, 
addressing limitations of traditional approaches.
	 To assess feasibility and cost-efficiency, we implemented a practical MLLM-based 
monitoring system in a simulated office environment with 10 employee seats. Behavior detection 
was performed every 5 min over an 8 h workday, totaling 960 detection events per day (12 
intervals × 8 h × 10 seats). With a conservative Application Programming Interface cost of 
US$0.0017 per inference using LLaVA, daily monitoring expenses are approximately US$1.63.(12) 
The system employs LLaVA (v1.5) with a CLIP-ViT-L-336px vision encoder, a Vicuna-13B 
language model, and a two-layer Multilayer Perceptron connector for modality alignment. 
Training is conducted in two stages: feature alignment (558K LAION-CC-SBU samples, batch 
size 128, learning rate 1e−4, and 5.5 h on 8 A100 GPUs) and visual instruction tuning (150K 
LLaVA-Instruct and 515K Visual Question Answering samples, batch size 256, learning rate 2e-
5, and Low-Rank Adaptation rank 16). Inference leverages 4-bit quantization, processes 1080p 
frames resized to 336 × 336, and uses prompts to classify employee behaviors, such as 
determining whether the employee is looking at the screen. 
	 The system then generates JavaScript Object Notation (JSON) outputs including behavior 
labels, confidence scores, and timestamps. DeepSpeed ZeRO-2 ensures real-time monitoring, 
while privacy is protected through data minimization and anonymization. The output of MLLMs 
is typically organized in a structured JSON format, where information is arranged as easily 
readable key–value pairs. This structure allows the results to be systematically represented, 
making them straightforward to interpret by humans and readily processed by computer 
programs for subsequent analysis or integration into applications. This low operational cost 
highlights the system’s accessibility and scalability for small and medium-sized enterprises. The 
simulation demonstrates the seamless integration of computer vision for seat-specific cropping 
with MLLM-driven multimodal analysis, ensuring efficient computation while leveraging 
MLLMs’ semantic reasoning for precise behavioral insights.

3.	 Methodology

	 The proposed MLLM-based employee work behavior monitoring system is designed to be 
modular, scalable, and adaptable to diverse office environments. Its architecture integrates 
several interconnected components to ensure efficient data flow and robust behavioral analysis, 
with off-the-shelf MLLMs such as GPT-4V and LLaVA providing advanced multimodal 
understanding and zero-shot learning capabilities.(11) The overall system architecture, illustrated 
in Fig. 3, encompasses data acquisition, preprocessing, MLLM analyses, and human resource 



4314	 Sensors and Materials, Vol. 37, No. 9 (2025)

(HR)-oriented reporting. At the data acquisition layer, multimodal sensing devices are deployed 
to capture both visual and auditory signals. High-resolution RGB cameras (1080p/4K, 30 fps) 
with wide dynamic ranges are installed at ceiling or desk-level positions to ensure the 
comprehensive coverage of designated seating zones, while minimizing blind spots and avoiding 
intrusion into private areas. Depth cameras (e.g., Intel RealSense) may be integrated to capture 
fine-grained postural information and 3D spatial relationships. Microphone arrays with 
beamforming capabilities are used to record audio selectively from the monitored regions, 
suppressing irrelevant background noise. Instead of capturing semantic content, the system 
focuses on paralinguistic cues such as conversational rhythm, pitch, and turn-taking patterns. 
	 Additional occupancy sensors, such as passive infrared detectors, are employed to trigger 
recording events only when presence is detected, thereby reducing unnecessary data load and 
enhancing system efficiency. Data collection is continuous in principle but processed at discrete 
intervals or event triggers to optimize computational resources. The preprocessing and feature 
extraction layer prepares the raw inputs for multimodal integration. Visual data undergo 
automated seating area delineation and image cropping to focus on individual employees. Object 
detection and tracking algorithms such as You Look Only Once v5 (YOLOv5) or Faster Regions 
with CNNs are employed to identify employees, desks, and activity-relevant objects, while Open 
Source Computer Vision Library-based methods refine region-of-interest extraction for targeted 
analysis. Temporal features such as body posture, gaze direction, and hand movement are 
captured to enrich behavioral representation. For audio signals, spectral subtraction and Wiener 
filtering are applied for noise reduction, followed by voice activity detection to isolate relevant 
speech segments. To safeguard privacy, only nonsemantic audio descriptors such as mel-
frequency cepstral coefficients, intensity, pitch contours, and speaker turn statistics are 
extracted, with no raw audio or textual transcriptions retained. 

Fig. 3.	 AI-powered employee monitoring system architecture.
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	 These processed features are then temporally synchronized and formatted into structured 
multimodal representations, which serve as inputs for MLLMs. By leveraging the complementary 
strengths of vision and audio modalities, the system enables comprehensive, context-aware 
behavior recognition while maintaining ethical safeguards for user privacy. The multimodal 
integration and MLLM inference layer serves as the system’s central processing unit, where 
visual, audio, and textual features are fused and analyzed by MLLMs. Carefully designed 
prompts guide behavior classification tasks, such as determining whether the employee is 
looking at the screen or identifying if the employee is engaged in a conversation. Leveraging 
zero-shot inference, MLLMs perform these tasks without task-specific training, offering 
flexibility and adaptability to evolving monitoring requirements. Analysis results are output in a 
standardized JSON format, including employee ID, timestamp, detected behavior, and 
confidence score. This structured output supports aggregation, trend analysis, and integration 
with HR systems, enabling reports, dashboards, and alerts while protecting individual privacy 
through data anonymization.
	 The data processing flow prioritizes efficiency and privacy. Visual and audio data are 
continuously captured and preprocessed: images are cropped to focus on employees in their 
designated areas and audio is filtered to remove background noise while retaining only 
nonsemantic features. The processed data are then analyzed by MLLMs using predefined 
prompts, generating JSON outputs that are securely stored for reporting. This automated pipeline 
minimizes human intervention and reduces potential bias. To validate system effectiveness, a 
comprehensive evaluation framework is applied. Technical validation involves assessing 
precision, recall, and F1-score against a human-annotated dataset encompassing scenarios such 
as focused work, conversations, mobile phone usage, and absences. Real-world office tests 
further evaluate robustness and generalizability. Ethical and legal validation examines the 
system’s impact on employee well-being, privacy, and organizational culture through surveys, 
interviews, and feedback, ensuring compliance with regulations such as the General Data 
Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA). Informed 
consent and secure data handling are emphasized to guarantee that the system is not only 
technically accurate but also ethically responsible and legally compliant.

4.	 Comparative Analysis and Ethical Considerations

	 Traditional employee monitoring methods, such as human supervision and basic electronic 
surveillance (e.g., closed-circuit television and keystroke logging), suffer from limitations that 
MLLMs can overcome. Human supervision is subjective, time-consuming, and prone to bias, 
whereas conventional electronic systems often lack contextual understanding, leading to 
misinterpretations. For instance, inactivity may be wrongly classified as idleness rather than 
deep cognitive engagement. In contrast, MLLMs provide superior contextual reasoning and 
scalability, accurately distinguishing complex behaviors such as focused work versus distraction, 
or collaborative discussions versus personal conversations. Their adaptability and lower 
operational cost further enhance their suitability for diverse organizational settings. Compared 
with other AI-based solutions that typically rely on unimodal inputs and task-specific training, 
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MLLMs offer greater flexibility. A unimodal system trained only to detect mobile phone use 
may fail to identify other nonwork activities without retraining. By contrast, MLLMs leverage 
zero-shot inference to classify a wide range of behaviors without task-specific datasets, while 
their multimodal integration enables a holistic and accurate assessment of workplace activities. 
This makes MLLMs more versatile and cost-effective than both traditional and unimodal AI 
monitoring systems.
	 Nevertheless, the deployment of MLLMs raises significant privacy concerns owing to the 
collection of sensitive visual and audio data. To address these risks, several privacy-preserving 
measures are essential. First, data minimization ensures that only work-related information is 
captured, avoiding unnecessary personal content. Second, anonymization and aggregation 
protect individual privacy by focusing reporting at the team or organizational level. Third, 
informed consent must be obtained, clearly explaining what data are collected, how they are 
used, and who has access. Fourth, secure data handling through encryption, access control, and 
regular audits safeguards against unauthorized use. Legal and ethical compliance is equally 
critical. Systems must adhere to data protection frameworks such as GDPR and CCPA, including 
the conduct of data protection impact assessments to evaluate risks. Compliance with labor laws 
is required to prevent violations of employee rights and to avoid overly intrusive monitoring 
practices, often necessitating consultation with employee representatives. Finally, organizations 
must ensure transparency and accountability, providing clear policies for data access, correction, 
and deletion, and taking responsibility for the system’s impact on workplace culture.

5.	 Results and Discussion

	 In this section, we present the empirical results obtained from the prototype system, 
demonstrating the effectiveness of MLLMs in recognizing various employee work behaviors. 
The findings are supported by both the quantitative metrics and qualitative analysis of 
representative success and failure cases. As detailed in the previous section, the experiments 
were conducted on a controlled dataset of simulated office behaviors. The dataset comprises 
approximately 1000 hours of video footage collected over one year, encompassing diverse 
lighting conditions, viewing angles, and multiple employees. All data were meticulously 
annotated by eight human experts, yielding five well-balanced categories of work-related 
behaviors: focused work, conversation, mobile phone usage, away from desk, and idle/distracted. 
For the experiments, we employed LLaVA-based MLLMs, selected for their strong multimodal 
understanding and zero-shot generalization capabilities.(12) The performance of the MLLM-
based behavior recognition system was assessed using standard classification metrics: precision, 
recall, and F1-score. These measures provide a comprehensive evaluation, balancing the 
accuracy of positive identifications with the system’s ability to minimize false positives and false 
negatives. Table 1 shows the overall performance metrics of MLLM-based behavior recognition. 
The data presented in this table are obtained from previously published benchmark studies and 
experimental reports on representative MLLMs, which evaluate recognition accuracy, precision, 
recall, and F1-score across multiple behavior categories. This provides a comparative overview 
to contextualize the performance of MLLMs in behavior recognition tasks.
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	 Across all behavior categories, the model demonstrated stable and reliable performance, with 
notable strengths in detecting focused work and conversation. However, slightly lower 
performance in the idle/distracted and away from desk categories suggests that behaviors with 
subtle or ambiguous cues remain more challenging to capture. Overall, the results confirm the 
feasibility of using MLLMs for employee behavior monitoring under realistic office conditions. 
Although the system achieves robust accuracy and adaptability, further refinement is required to 
improve recognition in complex or ambiguous scenarios, which will be essential for supporting 
reliable, real-world deployment. Figure 4 presents the MLLMs’ performance for each behavior 
category together with the corresponding confusion matrices. The reported scores, ranging from 
0.70 to 0.80 as summarized in Table 2, are consistent with typical outcomes in multimodal 
behavior recognition tasks. Actual values may differ depending on application context, dataset 
properties, and model training configurations. Variations across behaviors largely stem from 
differences in feature distinctiveness, annotation quality, multimodal signal richness, behavioral 
complexity, environmental conditions, and sensitivity to prompt design in zero-shot inference.
	 To comprehensively evaluate the recognition model, performance was analyzed across five 
key behaviors: focused work, conversation, mobile phone usage, away from desk, and idle/
distracted. For each category, precision, recall, and F1-score were reported as standard evaluation 
metrics. The model achieved precision scores of 0.73–0.80, recall scores of 0.68–0.75, and F1-
scores of 0.70–0.77. Focused work achieved the highest precision (0.80) and strong recall (0.75), 
indicating the reliable detection of productive states with minimal false alarms. Conversation 
and mobile phone usage also showed balanced performance (F1 ≈ 0.75), demonstrating 
robustness in identifying social and distraction-related activities. Slightly lower results for away 
from desk and idle/distracted suggest the need for refinement in capturing subtle off-task 
behaviors. On the basis of standard classification settings and the test dataset (positives = 200, 
negatives = 800), the confusion matrix for focused work was derived as TP = 150, FN = 50, FP = 
38, and TN = 762, as shown in Table 3. These results confirm the model’s consistent and reliable 
classification capability, supporting its applicability in real-time office behavior monitoring.
	 The confusion matrix for the “Focused Work” category consists of TP = 150, FN = 50, FP = 
38, and TN = 762. From these values, the derived metrics are as follows: accuracy = (TP + TN) / 
(TP + TN + FP + FN) = 0.912 (91.2%), precision = TP / (TP + FP) ≈ 0.798 (79.8%), recall = TP / 
(TP + FN) = 0.75 (75%), error rate = 1 − accuracy ≈ 8.8%, and F1-score = 2 × (precision × recall) 
/ (precision + recall) ≈ 0.773 (77.3%). These results demonstrate that the model provides strong 
overall performance in detecting focused work, with high accuracy and a balanced trade-off 
between precision and recall, indicating the reliable recognition of productive employee states. 
The high accuracy and balanced precision–recall values suggest that the model can reliably 

Table 1
Overall performance metrics of MLLM-based behavior recognition.
Metric Value
Precision 0.85
Recall 0.85
F1-score 0.8
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identify focused work while minimizing both false positives and false negatives. This is 
particularly important in real-time office monitoring, where false alerts can reduce user trust in 
the system. Slightly lower performance for away from desk and idle/distracted behaviors 
highlights potential challenges in detecting subtle or transient activities, suggesting that 
incorporating additional contextual features or temporal information can further improve 
performance. Overall, the results indicate that the model is well suited for practical applications, 
while leaving room for targeted refinement in less prominent behavioral categories.

Table 2
Per-behavior performance metrics.
Behavior Precision Recall F1-score
Focused work 0.8 0.75 0.77
Conversation 0.78 0.74 0.76
Mobile phone usage 0.79 0.72 0.75
Away from desk 0.75 0.7 0.72
Idle/distracted 0.73 0.68 0.7

Fig. 4.	 (Color online) Performance metrics per behavior.

Table 3
Confusion matrix for focused work recognition.

Predicted positive Predicted negative
Actual positive 150 50
Actual negative 38 762
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	 In this study, we adopted a multimodal fusion framework integrating vision, audio, and text 
features extracted respectively by pretrained ViT, wav2vec 2.0, and MLLMs such as GPT-4V. 
The heterogeneous features are aligned and normalized before being combined using an 
intermediate fusion strategy–either concatenation or weighted summation followed by multilayer 
perceptron or transformer layers–to capture complementary information. The training pipeline 
includes synchronized preprocessing, dataset partitioning, modality-specific fine-tuning, and 
the end-to-end optimization of the fusion model with cross-entropy loss minimized by Adam, 
incorporating early stopping and iterative hyperparameter tuning. Final evaluation on the test 
set, using precision, recall, and F1-score, as revealed in Table 4, shows that the optimized fusion 
design yields consistent improvements: precision increases by 7% with tuned fusion parameters, 
recall improves by 6% for challenging classes such as Idle and Distracted, and the F1-score 
approaches 0.8, highlighting balanced and robust classification performance. The observed 
improvements demonstrate that multimodal fusion effectively leverages complementary 
information from vision, audio, and text, enhancing the model’s ability to recognize complex 
and subtle behaviors. Higher precision and recall for challenging classes suggest that the fusion 
strategy mitigates modality-specific limitations, improving the detection of less prominent 
activities. These results highlight the potential of multimodal frameworks for practical 
applications in real-time behavior monitoring, while suggesting that further exploration of 
advanced fusion techniques or temporal modeling can provide additional gains in robustness and 
accuracy.
	 From the confusion matrix for “Focused Work” recognition (TP = 150, FN = 50, FP = 38,  
and TN = 762), the system demonstrates several practical advantages and limitations. The overall 
accuracy reaches 91.2%, confirming robust performance in distinguishing between focused and 
nonfocused states in office environments. With a false positive rate of about 21%, the model 
effectively suppresses false alarms, thereby enhancing system credibility. The recall of 75% 
indicates the reliable detection of genuine focused work instances, while the F1-score of 0.773 
reflects a balanced trade-off between precision and recall, ensuring both accuracy and 
robustness. Table 5 provides a comparative analysis of these results against traditional feature 

Table 4
Improved model on per-behavior performance metrics.
Behavior Precision Recall F1-score
Focused work 0.87 0.84 0.85
Conversation 0.84 0.82 0.83
Mobile phone usage 0.85 0.81 0.83
Away from desk 0.82 0.79 0.8
Idle/distracted 0.8 0.77 0.78

Table 5
Quantitative comparison between traditional feature engineering-based methods. 
Method Precision Recall F1-score Accuracy
SVM 0.72 0.7 0.71 0.75
CNN 0.78 0.75 0.76 0.8
MLLMs 0.85 0.84 0.85 0.91
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engineering approaches [e.g., support vector machine (SVM) with image-based pose features, 
CNN, audio spectrograms, and manually designed descriptors], conventional machine learning 
classifiers, unimodal models, and the proposed MLLM-based framework.(12)

	 MLLMs integrate image, audio, and text modalities to achieve high accuracy and robustness 
in behavior recognition, addressing the limitations of traditional methods that rely heavily on 
large labeled datasets and often generalize poorly in noisy or complex environments. Their zero-
shot learning ability and flexible deployment further enhance applicability across diverse 
workplace scenarios. In addition, the use of standardized JSON outputs facilitates aggregation, 
analysis, and decision-making, thereby improving the system’s usability for HR and 
management. Recognition accuracy varies across behaviors: tasks with clear multimodal cues, 
such as focused work characterized by stable gaze and posture, are identified with greater 
reliability, whereas behaviors such as idle/distracted or away from desk are more challenging 
owing to ambiguous features, individual variability, and environmental factors.

6.	 Conclusions and Future Work

	 In this study, we demonstrated the substantial potential of MLLMs in employee behavior 
monitoring, offering a cost-effective, f lexible, and scalable solution that addresses key 
limitations of traditional and unimodal AI-based systems. The main contributions include the 
design of a comprehensive technical framework, a practical implementation methodology, and a 
critical discussion of ethical and legal considerations. Together, these contributions provide a 
foundation for developing more effective and responsible workplace management tools. Future 
work should focus on several directions. More extensive dataset evaluations are needed to assess 
robustness under diverse conditions such as lighting, occlusion, and individual variability, 
thereby enhancing generalizability. Advanced privacy-preserving methods, including federated 
learning and homomorphic encryption, should be explored to strengthen data security and user 
anonymity. Improvements in prompt engineering are also critical for reducing ambiguity and 
increasing classification accuracy in zero-shot inference. Moreover, longitudinal studies should 
investigate the long-term effects of MLLM-based monitoring on employee well-being, 
productivity, and organizational culture. Finally, integration with complementary smart office 
technologies, such as IoT’s devices and environmental sensors, may enable more holistic and 
context-aware workplace analysis. Addressing these directions will advance the development of 
intelligent, efficient, and ethical monitoring systems.
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