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In this study, we investigated the optical and electrical properties of transparent conductive
zinc oxide (ZnO) thin films doped with titanium (Ti) deposited through radio frequency (RF)
sputtering at different annealing temperatures and sputtering powers. The ZnO:Ti thin films
exhibited the lowest resistivity of 1.60 x 1073 Q-cm, a high transmittance of 89%, and the
optimal figure of merit (FOM) of 9.31 x 1078 Q! when sputtered at 100 W for 30 min and
annealed at 500 °C. The scanning electron microscopy of the films’ surface morphology
revealed that higher annealing temperatures promoted grain growth.

1. Introduction

Thin films are a unique class of materials widely used in solar cells, liquid crystal displays,
and sensors. For example, the transparent conductive oxide (TCO) film is a critical optoelectronic
material exhibiting high electrical conductivity and excellent transmittance in the visible
wavelength range; therefore, it is widely used in the optoelectronics industry. The advent of
TCOs represents a significant scientific breakthrough as transparent materials such as glass are
generally insulating, whereas conductive materials such as metals or graphite are typically
opaque.(1->)

TCOs have become one of the most functional thin films by combining electrical
conductivity with optical transmission. In particular, indium tin oxide (ITO) thin films
have broad applications because of their superior conductivity and transmission.®%
These films achieve a transmittance exceeding 85% in the visible range, demonstrating a
lower resistivity (107> to 1073 Q-cm), a higher hardness, and a higher wear resistance than
metal thin films. In addition, they can be easily etched into electrode patterns and exhibit
a high microwave attenuation (approximately 85%). However, they have several
limitations. For example, metallic indium (In) precipitates from the films under reducing
atmospheres leading to toxicity. In is a rare metal with limited global supply; thus,
manufacturing optoelectronic devices containing ITO thin films has become prohibitively
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expensive. Therefore, the search for alternative transparent conductive films is ongoing.
Zinc oxide (ZnO) has emerged as a promising replacement but the electrical properties of
undoped ZnO thin films are inherently unstable, largely because the surface adsorption of
oxygen atoms introduces surface charges.®~'? Titanium (Ti) doping was performed in
this study to improve the films’ electrical properties.(13:14)

The annealing process leads to more oxygen vacancies, thereby increasing the carrier
concentration and conductivity of ZnO films,>-1®) but the sputtering parameters such as
the partial pressure of oxygen and sputtering power must be carefully controlled.
Moreover, numerous researchers have focused on the role of the substrate temperature
during sputtering and the annealing temperature after sputtering in the electrical
properties of the films. Several researchers have also proposed that factors in addition to
work function and thermal stability—e.g., raw material costs and etching processes—
must be taken into consideration when evaluating the performance of TCOs. In this study,
ZnO acted as the sputtering target, which was doped with Ti as an aliovalent impurity.
The ionic radius of Ti*" (0.68 nm) is comparable to that of Zn?" (0.74 nm), thereby
minimizing lattice distortion when Zn2* was substituted by Ti**, potentially contributing
two electrons to enhance the film conductivity.

2. Experimental Methods and Procedures

Corning quartz glass was cleaned of dust and organic contaminants using deionized water
and acetone under ultrasonic agitation before oven drying at 90 °C for 30 min. The sputtering of
ZnO:Ti (95:5 at%) was performed using a radio frequency (RF) sputtering system (Ishien
Vacuum) in vacuum with specific changes in sputtering power and time. The sputtering work
distance was 60 mm with a fixed bias of 6 mTorr, a gas flow rate of 15 sccm, an ambient gas of
Ar, and a sputtering time of 30 min. Furthermore, the sputtering powers were 60, 80, and 100 W.
Finally, the deposited dual-layer films were annealed in vacuum at 200, 300, 400, and 500 °C
with each temperature maintained for 5 min in a vacuum annealing furnace. The transmittance
and conductivity of the films were then measured using a spectrophotometer and a Hall effect
measurement system, respectively. The phase composition of the films was analyzed by X-ray
diffraction (XRD), and their surface morphology was examined by SEM.

3. Results and Discussion
3.1 XRD characterization

The XRD patterns of ZnO:Ti thin films sputtered at 60 W (Fig. 1) revealed that the films
remained amorphous from the as-deposited state up to annealing at 400 °C with no crystalline
phases observed. Crystallization did not occur until annealing at 500 °C. There were no Ti-
related peaks due to the uniform distribution of Ti ions within the ZnO lattice. ZnO (002)
diffraction peaks appeared after annealing at 400 °C and when thin films were sputtered at 80 W
(Fig. 2) and 100 W (Fig. 3). It is different for films sputtered at 60 W.
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Fig. 1. (Color online) XRD patterns of ZnO:Ti thin films sputtered at 60 W and annealed at different temperatures.
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Fig. 2.  (Color online) XRD patterns of ZnO:Ti thin films sputtered at 80 W and annealed at different temperatures.
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Fig. 3. (Color online) XRD patterns of ZnO:Ti thin films sputtered at 100 W and annealed at different temperatures.

3.2 Electrical properties of ZnO:Ti thin films

A Hall effect measurement system was used to estimate the mobility, carrier concentration,
and resistivity of the conductive ZnO:Ti thin films (Tables 1-3). The lowest resistivity of
3.38 x 1073 Q-cm was achieved after annealing at 500 °C and the sputtering power was 60 W.
Notably, when the sputtering power was increased to 80 and 100 W, the lowest resistivity was
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Table 1
Electrical properties of ZnO:Ti thin films sputtered at 60 W and annealed at different temperatures.
ZnO:Ti 60 W 30 min
Annealing temperature (°C) Resistivity (Q-cm) Mobility (cmz/V-s) Carrier (i:?lzlf%ntratlon
As-deposited 519 x 1072 14 2.5 x 10'°

200 878 x 1073 19 375 x 10"

300 553 %1073 21 8.75 x 10"

400 407 %1073 30 9.2 x 10"

500 338 x 1073 35 97 x 10"
Table 2

Electrical properties of ZnO:Ti thin films sputtered at 80 W and annealed at different temperatures.
ZnO:Ti 80 W 30 min

Carrier concentration

Annealing temperature (°C) Resistivity (Q2-cm) Mobility (cmz/V-s) (cm73)
As-deposited 311 %1072 20 4.5 x 10"
200 577 %1073 23 5.3 x 10"
300 4.04 %1073 28 6.9 x 10"
400 371%x 1073 33 9.3 x 10"
500 2.85%x1073 37 1.2 x 10"
Table 3

Electrical properties of ZnO:Ti thin films sputtered at 100 W and annealed at different temperatures.
ZnO:Ti 100 W 30 min

Carrier concentration

Annealing temperature (°C) Resistivity (Q-cm) Mobility (cm?/V-s) (em™)
As-deposited 2.50 x 1072 21 5.6 x 10"
200 449 %1073 28 7.2 x 10"
300 3.51%x 1073 32 9.3 x 107
400 2.58x 1073 38 1.4 % 10"
500 1.60 x 1073 40 2.2 x10'®

also observed at the same annealing temperature, decreasing further to 2.85 x 1073 and
1.60 x 1073 Q-cm, respectively. Therefore, the films exhibited the highest conductivity when
sputtered at 100 W.

3.3 Transmittance of ZnO:Ti thin films

The transmittance of ZnO:Ti thin films sputtered at different powers and annealed at different
temperatures decreased as the sputtering power increased (Figs. 4—8). This inverse relationship
was attributed to the corresponding increase in film thickness with higher sputtering power,!?)
reducing the transmittance. Therefore, post-sputtering annealing was performed to improve the
film transmittance. However, the transmittance did not significantly improve with annealing
temperature, and in some cases, it decreased slightly. This was mainly due to the enhanced free
carrier absorption increasing the film absorption in the visible and infrared regions, thereby
reducing the film transmittance.
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Fig. 4. (Color online) Transmittance of ZnO:Ti thin Fig. 5. (Color online) Transmittance of ZnO:Ti thin
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3.4 Figure of merit (FOM)

The quality of the transparent conducting films (TCFs) was evaluated on the basis of their
FOM calculated as?0-22)

T 10
@TC =4 5 (1)
Rsh

where T, is the average optical transmittance and R, is the sheet resistance expressed in Q1. In
this equation, the tenth power of transmittance is directly proportional to the FOM, indicating
the significance of transmittance for the FOM (see Tables 4—6). Achieving a higher FOM
necessitates maintaining high transmittance while reducing resistance. Indeed, at the sputtering
powers of 60, 80, and 100 W, the optimal FOMs of 4.46 x 1072, 1.91 x 107, and 9.31 x 1078 Q!,
respectively, were obtained at the annealing temperature of 500 °C. However, the highest FOM
occurred at the sputtering power of 100W.

Table 4
FOMs of ZnO:Ti thin films sputtered at 60 W and annealed at different temperatures.

FOM, @ (A7)

Annealing temperature (°C) ZnO:Ti (60 W)
As-deposited 131 x 1077
200 4.09x 1071
300 426 x 10710
400 7.87 x 107"
500 446 x 1070
Table 5

FOMs of ZnO:Ti thin films sputtered at 80 W and annealed at different temperatures.
FOM, @rc Q)

Annealing temperature (°C) ZnO:Ti (80 W)
As-deposited 5.57x1071°
200 110 x 107°
300 1.51 x 1077
400 1.66 x 1077
500 1.91 x 107°
Table 6

FOMs of ZnO:Ti thin films sputtered at 100 W and annealed at different temperatures.
FOM, @rc Q)

Annealing temperature (°C) ZnO:Ti (100 W)
As-deposited 249 x 10710
200 4.60 x 107°
300 3.09x 107°
400 277 %x107°

500 931 x10°%
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3.5 Surface morphology

The SEM results of the surface morphology of the ZnO:Ti thin films (Figs. 9-11) revealed
that the grain growth increased with annealing temperature at a constant sputtering power.
Similarly, the grain growth increased slightly with sputtering power at a constant annealing
temperature. Therefore, annealing temperature and sputtering power both promoted the film
grain growth.

©
Fig. 9. Surface morphology of ZnO:Ti thin films sputtered at 60 W and annealed at different temperatures: (a) as-
deposited, (b) 200 °C, and (c) 500 °C.

©

Fig. 10. Surface morphology of ZnO:Ti thin films sputtered at 80 W and annealed at different temperatures: (a) as-
deposited, (b) 200 °C, and (c) 500 °C.
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Fig. 11. Surface morphology of ZnO:Ti thin films sputtered at 100 W and annealed at different temperatures: (a) as-
deposited, (b) 200 °C, and (c) 500 °C.

4. Conclusions

The ZnO:Ti thin films exhibited the lowest resistivities of 3.38 x 1073, 2.85 x 1073, and
1.60 x 1073 Q-cm at the sputtering powers of 60, 80, and 100 W, respectively, when the films
were annealed at 500 °C. The optical transmittance of the films decreased as the sputtering
power increased, with no significant improvement in transmittance when the annealing
temperature increased owing to changes in carrier concentration. The films achieved optimal
FOMs of 1.46 x 1072 and 1.91 x 1072 Q at the sputtering powers of 60 and 80 W, respectively,
when annealed at 500 °C. The optimal FOM of 9.31 x 1078 Q! was achieved after annealing at
500 °C at the sputtering power of 100 W, resulting in the lowest resistivity and high
transmittance. The higher sputtering power and annealing temperature promoted grain growth.
The results presented in this paper can be applied to optical sensors and materials.
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