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	 With the growing energy demand and climate change, wind power is considered a promising 
renewable energy solution. However, the inherent fluctuations and intermittency of wind 
generation affect grid integration. Therefore, wind power forecasting and related data 
decomposition methods need to be reviewed to categorize them by factors, including model 
architecture. Precise wind power prediction requires a systematic review of the complex 
interplay between high-fidelity sensor data, appropriate decomposition methods, and advanced 
model architectures. By exploring the evolution of wind power prediction and categorizing it 
into statistical, physical, and combined techniques, we compared deep learning models (e.g., 
convolutional neural networks, long short-term memory, and transformers) to enhance the 
accuracy of sensor-data-derived power generation prediction. The results of this study serve as a 
guide for engineers and researchers in developing the next-generation sensors and supervisory 
control and data acquisition systems to collect the specific, high-resolution data streams required 
by modern combinatorial forecasting models. 

1.	 Introduction

	 Clean and renewable energy sources have become inevitable as technology advances and 
environmental awareness increases. Wind energy, as a clean energy source, provides a solution 
to meet the increasing energy demand. The scale of installed wind power has grown markedly 
recently, with the total amount of installed wind energy farms worldwide having increased 
almost tenfold in a decade.(1) However, the variations and unpredictability of wind energy pose a 
challenge to the stable generation of power. Therefore, precise wind power prediction is essential 
to minimize forecasting uncertainty. 
	 Wind power prediction relies on historical generation data, wind speed, topography, 
numerical weather predictions (NWPs), and unit operating conditions. The methods are 
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categorized by forecast time or model structure,(2) with forecast time being the most frequently 
used criterion. On the basis of the criteria, forecasting models are divided into ultrashort, short, 
and long-term types.(3) Ultrashort-term forecasts provide a prediction several minutes to hours 
ahead using minute-level data; short-term forecasts are made 48 to 72 h in advance mainly using 
the NWP model and hourly data; medium-term forecasts are made one week to a year in advance 
using daily data; and long-term forecasts based on yearly data are used in the feasibility study of 
wind farms to predict power generation using turbine power curves.(4) Forecasting results are 
used for power grid maintenance, dispatch, and planning wind optimal selection (Fig. 1).
	 When classified by structure, the models fall into physical, statistical, and combined types. In 
these models, appropriate data must be collected and analyzed. We investigated wind power 
prediction techniques to categorize them by forecast time and structure, and discussed the 
necessary data. Different methods require optimized data collection and processes for enhancing 
forecasting accuracy performance. Therefore, sensors and sensor technology must be developed 
to collect and process tailored data for each combined model by referring to the results of this 
study.

2.	 Sensor Data

	 Wind power prediction models require sensor data to accurately predict generated power. The 
data are related to atmospheric conditions and the operational status of wind turbines. The data 
collected by sensors used in wind power prediction models include meteorological data, (wind 
speed and direction, temperature, air pressure, and humidity), mechanical data, remote sensing 
data [light detection and ranging (LiDAR), sound detection and ranging (SODAR), and satellite 
imagery/weather radar], and wind turbine operational data (rotor speed and blade pitch angle, 
power output, vibrations, and component temperatures).
	 Meteorological data are the most crucial input, as wind speed and direction are the primary 
determinants of power output. Wind speed and direction are measured by anemometers (speed) 
and wind vanes (direction) at the turbine nacelle and often on nearby meteorological stations.(5,6) 
Since air temperature and barometric pressure affect air density, which in turn influences 
aerodynamic power conversion efficiency, they are important inputs of the models. Temperature 
and air pressure are measured using thermometers or thermocouples and barometers. Humidity 
data are collected by hygrometers to predict atmospheric conditions that form ice on the blades 
of the wind power generator. 
	 Remote sensing data are gathered remotely to provide broader or higher-resolution 
atmospheric profiles.(6) LiDAR is used to measure wind speed and turbulence at various 

Fig. 1.	 Wind power forecasting methods based on forecast time.
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distances and heights, offering a three-dimensional view of the wind field before it reaches the 
turbine.(7) SODAR is similar to LiDAR, but uses sound waves to measure wind speed and 
turbulence at different altitudes. To reflect regional weather patterns, cloud movement, and 
storm trajectories, satellite imagery data are also necessary from weather radars for short-term 
and medium-term forecasting. Wind turbine operational data are collected from the turbine’s 
supervisory control and data acquisition (SCADA) system to monitor the generator’s state and 
performance.(1) The SCADA system collects data on rotor speed and blade pitch angle using 
encoders and potentiometers to assess and control how the turbine reacts to the wind. The 
collected data are essential for modeling the power curve.(6) The power generated by the wind 
power generator is monitored using current and voltage transducers.(6) For condition monitoring, 
vibrations and component temperatures are important data in predicting and preventing a 
potential shutdown, which would also affect the prediction models.
	 To collect the data for wind power prediction models, robust, reliable, and high-frequency 
data logging is vital, especially for short-term predictions.

3.	 Data Decomposition

	 Data decomposition is conducted to process the collected raw data to increase the accuracy of 
wind power prediction.(8) Feature extraction is performed to eliminate redundant information. 
Through data decomposition and feature extraction, the complexity of forecasting is significantly 
reduced while the performance is enhanced. 

3.1	 Data decomposition 

3.1.1	 Wavelet transform (WT)

	 WT is applied to time series decomposition.(9) The traditional Fourier transform (FT), fast 
FT, and short-time FT are commonly used but cannot solve nonstationary time series problems 
as they maintain constant solutions at all frequencies. Therefore, WT is applied since it utilizes 
orthogonal wavelets in place of the sine and cosine functions of FT, thereby addressing the 
problem efficiently.(10) The diagram of WT is shown in Fig. 2. In the figure, A, D, L, and H 
denote approximation, detail, low-pass filter, and high-pass filter, respectively. The 
decomposition process is carried out at three levels. The approximation and detail coefficients at 
each level are derived using the scaling and wavelet functions defined by the selected wavelet-
based Eq. (1).
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Here, Ψ denotes the mother wavelet, and j and k denote scale and shift parameters, respectively.
	 Owing to continuous research, effective WT-based forecasting models have emerged. The 
combination of WT and the least-squares support vector machine (LS-SVM) with genetic 
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algorithm (GA) optimization effectively improves the accuracy and reliability of wind power 
prediction approaches.(11) The combination of WT with a convolutional neural network (CNN) 
was proposed to decompose data to improve the forecasting accuracy.(12) Subsequently, 
enhanced wavelet transform (EWT) and discrete wavelet transform (DWT), variants of WT, 
were derived for application to the wind power field.(13) DWT is integrated with AI methods to 
approximate nonlinear functions to reduce the error.(14)

3.1.2	 Empirical modal decomposition (EMD)

	 While WT excels at decomposing unorganized data, it also has limitations. For example, its 
nonadaptive nature necessitates the careful selection of an appropriate basis function and the 
number of decomposition layers to ensure its appropriateness for processing specific time 
series.(15) As a flexible time series decomposition method, EMD decomposes a time series into 
intrinsic mode functions (IMFs) and a residue using a recursive screening process.(9) Unlike WT, 
EMD does not require a preset basis function. Because of its finite sub-filtering nature, EMD 
provides benefits in managing nonstationary and nonlinear data, making it highly effective and 
widely applied in processing nonstationary wind power series.(16) The main features of the raw 
data are mined by removing the noise from the wind power signal by EMD. Therefore, 
combining EMD with transformers enables a better feature extraction of the EMD-transformer 
model due to its codec structure that is connected between the two using the attention 
mechanism.(17) In EMD, the convolutional attention mechanism is applied to enhance the 
forecasting accuracy.
	 The ensemble empirical modal decomposition method (EEMD) was developed by adding 
white noise to EMD to mitigate amplitude fluctuations in the signal. The mean of the IMF and 
residual components after multiple decompositions is taken as the final result, although the 
original data is changed by EEMD. However, the proposed EEMD-GA-backpropagation method 
(BP) performs better in wind speed forecasting than EMD-GA-BP since EEMD is more stable 
than EMD. Since EEMD decomposes and reconstructs the original data, the addition of white 
noise introduces errors. Therefore, complete ensemble empirical mode decomposition (CEEMD) 
is used to minimize noise effects and extract more meaningful components by adding paired 

Fig. 2.	 Schematic diagram of WT.
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white noise with opposite polarities into the data. (18,19) CEEMD improves the EEMD-processed 
time noise in the sequence, but EEMD still has computational problems. Thus, the decomposition 
method, named complete ensemble empirical mode decomposition with adaptive noise 
(CEEMADN), was developed, on the basis of EEMD.(20) The difference between CEEMADN 
and EEMD lies in how white noise is added. CEEMADN injects noise into the residuals from 
the preceding iteration rather than the raw data, enabling efficient and precise decomposition.

3.1.3	 Variational modal decomposition (VMD)

	 The recursive nature of EMD and the lack of a clear mathematical theory make EMD 
effective in solving sampling sensitivity problems. VMD is developed as a complete nonrecursive 
decomposition method, and in decomposition, variational problems are created and solved by 
combining the Wiener filtering method to solve the denoising problem.(21) The Hilbert transform 
uses fringe spectra, and the alternating direction method is applied to solve the variational 
problem with constraints.(22) The principle of VMD is to convert the original data into a 
constrained variational problem before solving, which is expressed as(23) 
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where uk denotes the kth IMF, ∂(t) the partial derivative of the function with respect to time t, δ(t) 
the unit impulse response, and j imaginary units. 
	 VMD is used in solving nonsmooth wind power series problems, and thus, various 
combinatorial models based on VMD are generated. For example, the combined attention 
convolutional and capsule network (ACCNet)-VMD is proposed for use in a decomposition 
method to separate the original data into decoupled sub-power-series cascade data.(24) Then, the 
input of ACCNet is used to make this combined model have high forecasting performance. It is 
also applied to separate the original data, while convolutional long short-term memory 
(ConvLSTM) is employed for error forecasting.(25) The results show excellent forecasting 
performance. Since VMD is prone to mode aliasing, the selection of hyperparameters is 
necessary. Wang et al. used the butterfly optimization algorithm (BOA) to optimize the penalty 
factor with a mode count in VMD so that VMD could form a comprehensive input feature vector 
in decomposing the unsteady wind turbine historical data. They input this vector into LSTM for 
forecasting, thus obtaining an enhanced forecasting effect.(26)

3.2	 Feature extraction

	 Feature extraction is important in uncovering the relationship between input variables for 
dimensionality reduction. It also reduces the effect of redundant data on model training, thereby 
enhancing prediction efficiency.
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3.2.1	 Classical methods

	 Adaptive Kriging-subset simulation optimization (AK-SSO) is used to optimize the LSTM 
hyperparameters by dividing the raw wind power data into three classes through feature 
extraction and then predicting the mean square error of each sample based on LSTM.(27) Given 
the uncertainty across wind energy reserves, Cai et al. extracted the error characteristics of 
energy resources by establishing a Gaussian mix clustering model (GMCM) to improve the 
medium- and long-term forecasting accuracies.(28) The maximum relevance and minimum 
redundancy (MRMR) is a commonly used decomposition algorithm in feature extraction. 
MRMR combines relevance and redundancy in information theory,(29) effectively identifying 
both linear and nonlinear dependences between variables in the forecasting process, and thus is 
widely used in practice. Using MRMR, the relationships between different constituents and 
decomposition components are mined, and the subset with strong correlation and low 
redundancy is filtered, which makes the model have a good forecasting effect.(30)

3.2.2	 Principal component analysis (PCA)

	 PCA reduces the dimensionality of the data, producing a simplified form.(31) For ultrashort-
term wind speed forecasting, PCA is combined with persistence forecasting to overcome its 
limitation by prioritizing the coarse sampling.(32) PCA outperforms dimensionality reduction 
methods that rely on original and statistical features such as mean, max, min, and standard 
deviation.(33) Hu et al. reduced the dimensionality of the input information, maintaining high 
dimensionality, and input the processed data into an improved deep confidence network.(34) In 
addition to the conventional processing of redundant information in the original data, the time–
frequency domain is employed to analyze and remove the redundant information. PCA combined 
with VMD and EMD is also used to process numerical weather forecasting (NWF).(35)

4.	 Forecasting Models

4.1	 Physical model

	 The physical model represents the wind energy distribution in wind farms and converts it 
into output power.(36) Using a common NWF method, wind speed–power curves are drawn to 
investigate the correlation between historically measured power and wind speed data. As NWF 
has a low reliance on historical data and relationships, a large dataset is required, and the 
complexity of the actual data is not considered in the process. Therefore, the results of NWF 
deviate significantly from the actual data, so the NWF model is appropriate for long-term 
forecasting.
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4.2	 Statistical model

	 Statistical models process a large amount of historical data and select an appropriate 
forecasting method by comparing historical data with wind power outputs obtained by each 
method. AI algorithms are integrated to improve the performance. Statistical models are 
classified into classical and time series models.

4.2.1	 Classical models

	 The most commonly used classical model is the continuum method, which is the simplest 
forecasting method. Its principle is to use the wind power at the current moment for forcasting. 
When ( )P

t tX +∆  is the wind power in the next moment, t + Δt is the forecasting range in time, and Xt 
is regarded as the wind power at the current moment. Then, the following is established:(37)

	 ( )
  
p

t t tX X+ = .	 (3)

	 The operation of the method lacks the knowledge of the relevant data trends and rates of 
change, and the accuracy of forecasting decreases over a longer period. Therefore, the model is 
only applicable to forecasting ultrashort-term wind power. 

4.2.2	 Time series model

	 The time series model is commonly used in wind power prediction. Statistical models differ 
from physical models as they require historical data for analysis, while the time series model is 
established on the basis of the relationships between the historical data, the random error, and 
the forecast data. Time series models include the autoregressive (AR) model, the moving average 
(MA) model, and the autoregressive integrated moving average model (ARMA), which is a 
combination of the AR and MA models. 
	 The AR model combines the historical data with the current data and creates a weighted 
combination of historical data for forecasting future wind power. The AR model simulates the 
instantaneous structure of wind power values, which is beneficial for short-term power 
prediction.(38) The AR model is mathematically expressed as

	 { }1
P

t i tt iiX C Xθ −=
= + +∑ ò  ,	 (4)

where Xt is the value at time t, C a constant, θi the model coefficient for each of the first p terms, 
and ϵt noise.
	 In the model, autocorrelation (the degree of dependence between wind speed data at different 
time points) is calculated using Eq. (4).(39) This provides accurate and reliable information for 
short-term forecasting.
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	 The ARMA model has been used for forecasting wind power since the 1980s. Erdem and Shi 
decomposed wind speed into horizontal and vertical components in accordance with the wind 
direction and used an ARMA model to improve the accuracy of forecasting.(40) Its typical model 
is 
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	 Although the method is simple, its adaptability is poor and unexpected problems are difficult 
to solve. For example, for gusts or sudden changes in wind conditions, its forecasting accuracy 
decreases with an increase in forecasting time. Therefore, the ARMA model is only appropriate 
for short-term or ultrashort-term power forecasting.

4.3	 AI model

	 With the emergence of big data algorithms, AI models are widely used owing to their 
advantages in extracting features. The artificial neural network (ANN) and support vector 
machine (SVM) are mainly used. They uncover the latent connection between input data and 
target outcomes, establishing a functional model to predict wind power.(41)

4.3.1	 SVM

	 SVM is a classification and regression method derived from statistical learning theory and 
follows the principle of structural risk reduction. The algorithm exhibits a robust generalization 
capacity with a limited amount of data, which is suited for wind power forecasting.(42) The SVM 
model has been developed into the proposed piecewise SVM (PSVM) and least-squares SVM 
(LSSVM), with a notable improvement in wind power prediction performance. The combination 
with SVM, PSVM, LSSVM, and other models significantly enhances the precision of wind 
power prediction. However, the parameters of SVM-based models are selected empirically and 
stochastically. Therefore, the parameters are difficult to determine. Such drawbacks necessitate 
GAs,(43) honey badger algorithms,(44) and fruit fly algorithms. The behavioral characteristics of 
animals are applied in models for the determination of parameters for wind power forecasting.

4.3.2	 ANN

	 ANN is developed by mimicking neurons of the human brain but has a simple structure 
(Fig. 3).(45) Ali and Aly proposed different scenarios to train ANNs using raw time series data to 
ensure an ANN forecasting performance higher than those of existing models in short-term 
wind speed prediction.(46) Commonly used approaches include generative adversarial, radial 
basis function, and general regression networks.(47)
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4.4	 Neural network model 

	 A neural network model extracts key features and captures nonlinear relationships between 
data, making it appropriate for handling large-scale, high-dimensional time series. Because of its 
powerful parallel computing and adaptive learning capabilities, its pattern recognition and trend 
forecasting ability exceeds that of traditional linear models, greatly enhancing prediction 
performance. In wind power forecasting, traditional machine learning methods are being 
replaced by deep learning models.(48) Deep learning models process the spatial and structural 
information of the input data, especially global dependences. CNN, transformer, and 
autoencoder (AE) models are deep learning models.(34,49,50) Time-based deep learning models 
process sequence data to capture the temporal information by transmitting hidden states. LSTM 
and gated recycling unit (GRU) models are widely used as time-based deep learning models.
(51,52)

4.4.1	 CNN model

	 CNN models have a powerful feature extraction capability and efficiently process two-
dimensional (2D) data, which makes them appropriate for wind power forecasting.(53) Figure 4 
illustrates the architecture of the CNN model.
	 Zhang et al. applied CNN to wind power forecasting by building a regression model.(54) CNN 
demonstrates an outstanding ability in wind power forecasting, similar to its success in image 
processing.(55) VMD is used with CNN to decompose and extract features of meteorological 
data.(56) A residual neural network is integrated with CNN to extract features of wind energy to 
enhance forecasting accuracy.(57)

	 To achieve better prediction results with CNN, data enhancement, feature engineering, 
parameter optimization, and model integration are used. For example, VMD is used to mitigate 
the wind speed fluctuation series to enhance the correlation between the data and the extract 
complex spatial and temporal features from historical data using CNN and GRU. The combined 

Fig. 3.	 (Color online) ANN structure.
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VMD-CNN-GRU model outperforms the other deep learning models.(57) A random forest (RF) 
algorithm is used to evaluate the features.(58) The RF algorithm evaluates the importance of 
features for more effective feature extraction. An integrated GA and PSO algorithm 
synergistically optimizes the network’s hyperparameters and weights while effectively 
optimizing tuning parameters and model structure parameters.(59) After optimizing the 
algorithm processing the parameters and weights are used to effectively alleviate the local 
optimum problem, which, in turn, improves the CNN predictive power.

4.4.2	 Transformer

	 A transformer is developed on the basis of the self-attention mechanism. Owing to its 
multiple attention mechanisms, the transformer is widely used in natural language processing.(57) 
The transformer model comprises an encoder–decoder structure, where both parts include 
multiple attention and normalization layers.(60) Because of its own mechanism, the transformer 
can effectively capture the relationship between variables and performs well in tasks such as 
wind power forecasting.
	 The transformer’s self-attention mechanism enables global associations in sequences, 
allowing the model to focus on all locations simultaneously in processing sequence data without 
step-by-step processing as in RNNs and LSTMs. Its own mechanism supports the parallel 
processing of information and enhances the processing capability of the model.(61) The 
transformer’s mechanism expands the receptive field and enhances generalization, leading to 
more accurate forecasts. With its powerful modeling capability, the transformer sequentially 
processes data such as wind speed and power on different time scales through parallel 
computing.(62) With the tree-structured Parzen estimator (TPE) and time fusion transformer 
(TFT) framework, wind power forecasting can be automated, which is efficient for multiscale 
wind power prediction.(63)

	 In wind power prediction, future values are predicted without converting the input to the 
output sequence format. In this case, the decoder of the transformer model is not used, and only 
the output of the encoder is used to extract and transmit features to the fully connected layer to 
retrieve the final output.(64) To strengthen the transformer’s prediction performance, the 
comparative learning method is used in the self-supervised learning of the feature representation 
of wind power sequences and a wind power forecasting framework, including prestage 
regression.(65,66) The framework is applied to various network architectures to significantly 
increase the reliability and accuracy of the prediction. In contrast, the improved complete 
ensemble empirical mode decomposition with adaptive noise approach (ICEEMDAN) is applied 
to break down the raw wind speed series, send the decomposed components into the transformer 

Fig. 4.	 CNN structure.
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for forecasting, and combine the results. The transformer combined with ICEEMDAN has 
significantly improved forecasting performance.

4.4.3	 AE

	 AE consists of an encoder and a decoder, which learn the high-dimensional features of wind 
power data, map them onto a compact representation, and reconstruct them so as to reflect the 
intrinsic laws of wind power for wind power prediction. Figure 5 illustrates the architecture of 
AE.
	 Tasnim et al. proposed a structured sparse AE (SAE) model.(67) In training, the model 
optimizes the initial connection weights of the deep network using a specific loss function. 
Then, an output layer is added to the structure of the stacked AE, and the weights of the whole 
network are fine-tuned using the BP algorithm. In addition, PSO is integrated to optimize the 
learning rate of the encoder. The approach shows a forecasting accuracy higher than those of 
traditional BP neural networks and SVMs. Stacked denoising autoencoders (SDAEs) are used to 
simulate the spatial correlation and interdependence between wind fields, thus improving the 
accuracy of numerical weather forecasting.(68)

4.4.4	 LSTM

	 LSTM is an improved RNN whose core structure incorporates the forgetting, input, and 
output gates based on the traditional RNN (Fig. 6). Cheng et al. significantly enhanced the long-
term forecasting performance of wind farms by LSTM.(69) For short-term power prediction, 
methods built on LSTM and recurrent neural networks are extensively adopted owing to their 
excellent performance in time-series forecasting. Since the forecasting accuracy is significantly 
improved, PSO and PSO-BP hybrid models present excellent 4, 24, and 72 h wind forecasting.(70) 
In addition to improving the LSTM model, different models are combined to boost prediction 
performance.
	 Lu et al. proposed a forecasting approach combining CNN and LSTM based on historical 
data.(71) They combined forecasting models using screened meteorological key factors through 

Fig. 5.	 (Color online) AE structure.
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data decomposition, model integration, and optimization strategy. The CNN-LSTM forecasting 
forecasts wind power on the following day with high accuracy and reliability.(72) An improved 
Bayesian neural network model, which incorporates a Bayesian network into LSTM, captures 
long-term dependences. The model processes historical wind power data and combines a 
temporal convolutional network (TCN) through dimensionality reduction, enabling high 
accuracy in wind power forecasting with high volatility.

4.4.5	 GRU

	 GRU is an improved variant of RNN.(73) In the unit structure of GRU, reset and update gates 
replace the three-gate unit structure in LSTM (Fig. 7). In GRU, the update gate controls the 
extent to which past information is retained in the present state, while the reset gate regulates the 
relevance of the current information to the past information. GRU effectively retains key input 
information by using the update and reset gates to gradually discard irrelevant time. The 
isolation forest (IF) algorithm removes the anomalous data after detection, and on the basis of 
that, GRU performs better than LSTM.(73) Niu et al. used GRU to incorporate the attention 
mechanism, which embedded the associated tasks in different forecasting processes to enhance 
prediction effectiveness.(74) Chi and Yang used the bi-directional GRU (BiGRU) to improve 
forecasting performance.(75) BiGRU captures potential relationships between features to extract 
time series contextual features. The predictive performance of the BiGRU model outperforms 
traditional LSTM and GRU. GRU has a more concise structure and requires fewer training 
parameters than LSTM, which makes it efficient in forecasting. However, since the forecasting 
output of GRU relies on the information at the current moment, the model tends to ignore the 
previous important information.(22)

4.5.	 Combined models

	 Because wind power is inherently random and volatile, a single model cannot achieve 
satisfactory predictions. Hybrid approaches leverage the strengths of different models to greatly 
enhance predictive performance. Four combined forecasting approaches are widely used, 

Fig. 6.	 (Color online) LSTM structure.
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including the multimodel weighting, data preprocessing, error correction, and optimization 
algorithm models.

4.5.1	 Multimodel weighting model

	 The multimodel weighting model combines the weights of different forecasting models and 
the results of each model. The architecture is depicted in Fig. 8. In the multimodel weighting 
model, the SVM and radial basis function neural network (RBFNN),(76) SVM, LSTM, 
ARMA,(77) BPNN, and Elman neural network (ENN) are usually combined to simulate 
environmental changes and wind speed characteristics in different periods. To further improve 
forecasting performance, the internal structure of the model is optimized using a multifeature 
approach.
	 For example, wind power prediction is forecasted using a nonparametric lower-bound 
estimation framework with LSTM.(78,79) The proposed method achieves results superior to those 
of standard RNNs. The multimodel weighting scheme markedly improves forecasting robustness 
and accuracy by leveraging raw features as inputs to the prediction framework. The deep belief 
network (DBN) is used for short-term wind speed forecasting based on the values forecasted by 
the RF algorithm. The model dynamically updates the weights using the weight voting approach 
(WVA) to improve forecasting accuracy. 
	 The multimodel weighting model relies on a weight updating mechanism to adjust the 
weights of submodels. Therefore, high degrees of flexibility and adaptability are ensured, and 
excellent performance in forecasting accuracy is obtained. However, the computational 
efficiency of the method is low and the scope of application is limited, which restricts its 
application in a wider range of scenarios.

4.5.2	 Data preprocessing 

	 Data preprocessing is important for modeling and data mining. Data preprocessing is also 
conducted to process missing or noisy data. Through data preprocessing, the raw data is 
decomposed into multiple subsequences so that a model can predict the subsequences. Figure 9 
shows the implementation process of the combined forecasting method.(80,81)

Fig. 7.	 (Color online) GRU structure.
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	 For signal decomposition, EMD, VMD, or WT is used to decompose the raw data.(82) A 
combined model makes forecasts on the basis of the decomposed data. For example, Moreno et 
al. combined VMD with singular spectral analysis (SSA) and LSTM to build a VMD-SSA-
LSTM data preprocessing model for short-term wind prediction.(83) The model reduced the 
forecasting error, especially in multistep forecasting. A novel hybrid model combining WT, 
feature selection (FS), crow search algorithm (CSA), and LSTM is used for short-term wind 
speed prediction.(84) By comparing different forecasting methods, the model with data 
preprocessing can enhance forecasting accuracy and performance. However, the seasonal 
variation in wind speed, which requires the error correction method and optimization algorithm, 
has not been considered.

4.5.3	 Optimizing models

	 In the combined forecasting method based on the optimization method, parameters need to 
be determined for forecasting. Figure 10 illustrates the optimization process of a model. Wind 
power forecasting models require numerous parameters. Therefore, it is important to adjust the 
parameters. Although traditional optimization algorithms are widely used for wind power 
prediction, they lack the capability of determining and optimizing parameters effectively. The 
CNN-LSTM model adjusts network parameters through training to optimize the parameters.(85) 
Traditional optimization algorithms easily fall into local extreme values. To solve this problem, 
CSA and the extreme learning machine (ELM) are integrated, leveraging CSA’s optimization 
capability and ELM’s output layer weights to enhance the precision of interval forecasting and 
wind power prediction.

Fig. 8.	 Schematic diagram of multimodel weighting model.

Fig. 9.	 (Color online) Schematic diagram of data preprocessing method.
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	 To solve complex problems, intelligent optimization algorithms are used. The intelligent 
optimization algorithms are divided into single-solution and multiple-solution algorithms in 
accordance with the number of solutions in each iteration.(81) Multisolution algorithms are 
extensively applied in wind power prediction. The South American Coati optimization algorithm 
(COA) is constructed on the basis of a COA-CNN-LSTM model. The model determines the 
initial parameters of COA and iteratively optimizes them, enabling accurate wind power 
forecasting.(86,87) An improved seagull optimization algorithm (ISOA) optimizes the parameters 
of LSTM, with the ISOA algorithm showing a higher forecasting performance than the LSTM 
model.(88) Although the intelligent optimization algorithm has fewer generalization errors and a 
higher convergence speed than the traditional algorithm, it cannot guarantee the optimal 
solution.

4.5.4	 Error correction methods

	 The combined forecasting error-correction–driven approach mitigates the effect of 
forecasting errors by post-processing the data. In this method, combined forecasting methods 
are used to reduce forecasting errors and improve forecasting accuracy on the basis of the results 
of different models. The error correction process is depicted in Fig. 11.
	 The decomposition model can accumulate errors, which necessitate error correction methods. 
Reconstructed forecasting results are compared with original results to reduce errors and 
improve forecasting accuracy.(89) By applying an error correction approach, relevant error 
metrics are identified.(90) The gradient boosting decision tree (GBDT) is usually used to 
determine error indicators, while extreme gradient boosting (XGBoost) is used for error 
correction. In their processes, the initial forecasted values are summed and compared and 
validated using real wind farm data to correct errors. XGBoost shows the best error reduction. 
Sometimes, the VMD method is used to decompose errors and erratic sequences into stochastic 
and trend components, and group them to analyze the volatility of the components. Different 
error correction approaches are utilized to enhance short-term wind power prediction accuracy. 
The error correction method has a lower computational efficiency than combined methods, 
although the model with the method shows enhanced forecasting accuracy.(91)

Fig. 10.	 (Color online) Optimization process.
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5.	 Conclusions

	 In wind power prediction, deep learning is widely used. Because of the continuous 
development of deep learning methods, wind power forecasting accuracy and speed have been 
significantly improved. Recently, innovative models based on time series data and various 
methods, such as the transformer, have been introduced to wind power prediction. Using data 
and various methods, combined models are developed for a more accurate wind power 
forecasting than a single model. Despite the advancement of technology, challenges remain in 
accurate forecasting. At the same time, it is necessary to consider the operating conditions and 
the needs of individual wind farms in wind power forecasting. Diverse forecasting models 
should be developed to strengthen the efficiency and effectiveness of wind energy production.
	 By reviewing and comparing the current state of wind power forecasting and focusing on 
advanced data decomposition, deep learning algorithms, and combinatorial models, the results 
underscore that the maximization of prediction accuracy depends on the quality and type of 
sensor data. We highlighted that data inputs originate from diverse physical sensors, including 
anemometers, LiDAR, thermocouples, and the turbine’s SCADA system, which collect critical 
meteorological, remote sensing, and operational parameters. The sophisticated deep learning 
and signal processing techniques reviewed are advanced methods for extracting meaningful 
features from sensor data. 
	 Further research is necessary to focus on model refinement and the development of 
specialized sensors and data acquisition for multidimensional data streams, high-frequency 
temporal data, ultrashort-term forecasts, or specific atmospheric profiles for anti-icing 
prediction. Ultimately, the performance of advanced forecasting models is determined by the 
sensor technology. The results of this study serve as a reference, linking the demands of wind 
power analytics to the development of robust and precise sensing and materials.
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