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combinatorial model

With the growing energy demand and climate change, wind power is considered a promising
renewable energy solution. However, the inherent fluctuations and intermittency of wind
generation affect grid integration. Therefore, wind power forecasting and related data
decomposition methods need to be reviewed to categorize them by factors, including model
architecture. Precise wind power prediction requires a systematic review of the complex
interplay between high-fidelity sensor data, appropriate decomposition methods, and advanced
model architectures. By exploring the evolution of wind power prediction and categorizing it
into statistical, physical, and combined techniques, we compared deep learning models (e.g.,
convolutional neural networks, long short-term memory, and transformers) to enhance the
accuracy of sensor-data-derived power generation prediction. The results of this study serve as a
guide for engineers and researchers in developing the next-generation sensors and supervisory
control and data acquisition systems to collect the specific, high-resolution data streams required
by modern combinatorial forecasting models.

1. Introduction

Clean and renewable energy sources have become inevitable as technology advances and
environmental awareness increases. Wind energy, as a clean energy source, provides a solution
to meet the increasing energy demand. The scale of installed wind power has grown markedly
recently, with the total amount of installed wind energy farms worldwide having increased
almost tenfold in a decade.’) However, the variations and unpredictability of wind energy pose a
challenge to the stable generation of power. Therefore, precise wind power prediction is essential
to minimize forecasting uncertainty.

Wind power prediction relies on historical generation data, wind speed, topography,
numerical weather predictions (NWPs), and unit operating conditions. The methods are
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categorized by forecast time or model structure,® with forecast time being the most frequently
used criterion. On the basis of the criteria, forecasting models are divided into ultrashort, short,
and long-term types.)) Ultrashort-term forecasts provide a prediction several minutes to hours
ahead using minute-level data; short-term forecasts are made 48 to 72 h in advance mainly using
the NWP model and hourly data; medium-term forecasts are made one week to a year in advance
using daily data; and long-term forecasts based on yearly data are used in the feasibility study of
wind farms to predict power generation using turbine power curves.Y) Forecasting results are
used for power grid maintenance, dispatch, and planning wind optimal selection (Fig. 1).

When classified by structure, the models fall into physical, statistical, and combined types. In
these models, appropriate data must be collected and analyzed. We investigated wind power
prediction techniques to categorize them by forecast time and structure, and discussed the
necessary data. Different methods require optimized data collection and processes for enhancing
forecasting accuracy performance. Therefore, sensors and sensor technology must be developed
to collect and process tailored data for each combined model by referring to the results of this
study.

2. Sensor Data

Wind power prediction models require sensor data to accurately predict generated power. The
data are related to atmospheric conditions and the operational status of wind turbines. The data
collected by sensors used in wind power prediction models include meteorological data, (wind
speed and direction, temperature, air pressure, and humidity), mechanical data, remote sensing
data [light detection and ranging (LiDAR), sound detection and ranging (SODAR), and satellite
imagery/weather radar|, and wind turbine operational data (rotor speed and blade pitch angle,
power output, vibrations, and component temperatures).

Meteorological data are the most crucial input, as wind speed and direction are the primary
determinants of power output. Wind speed and direction are measured by anemometers (speed)
and wind vanes (direction) at the turbine nacelle and often on nearby meteorological stations.>-)
Since air temperature and barometric pressure affect air density, which in turn influences
aerodynamic power conversion efficiency, they are important inputs of the models. Temperature
and air pressure are measured using thermometers or thermocouples and barometers. Humidity
data are collected by hygrometers to predict atmospheric conditions that form ice on the blades
of the wind power generator.

Remote sensing data are gathered remotely to provide broader or higher-resolution
atmospheric profiles.®) LiDAR is used to measure wind speed and turbulence at various
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Fig. 1.

Wind power forecasting methods based on forecast time.
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distances and heights, offering a three-dimensional view of the wind field before it reaches the
turbine.(’) SODAR is similar to LiDAR, but uses sound waves to measure wind speed and
turbulence at different altitudes. To reflect regional weather patterns, cloud movement, and
storm trajectories, satellite imagery data are also necessary from weather radars for short-term
and medium-term forecasting. Wind turbine operational data are collected from the turbine’s
supervisory control and data acquisition (SCADA) system to monitor the generator’s state and
performance.() The SCADA system collects data on rotor speed and blade pitch angle using
encoders and potentiometers to assess and control how the turbine reacts to the wind. The
collected data are essential for modeling the power curve.®) The power generated by the wind
power generator is monitored using current and voltage transducers.© For condition monitoring,
vibrations and component temperatures are important data in predicting and preventing a
potential shutdown, which would also affect the prediction models.

To collect the data for wind power prediction models, robust, reliable, and high-frequency
data logging is vital, especially for short-term predictions.

3. Data Decomposition

Data decomposition is conducted to process the collected raw data to increase the accuracy of
wind power prediction.®) Feature extraction is performed to eliminate redundant information.
Through data decomposition and feature extraction, the complexity of forecasting is significantly
reduced while the performance is enhanced.

3.1 Data decomposition
3.1.1 Wavelet transform (WT)

WT is applied to time series decomposition.”) The traditional Fourier transform (FT), fast
FT, and short-time FT are commonly used but cannot solve nonstationary time series problems
as they maintain constant solutions at all frequencies. Therefore, WT is applied since it utilizes
orthogonal wavelets in place of the sine and cosine functions of FT, thereby addressing the
problem efficiently.!) The diagram of WT is shown in Fig. 2. In the figure, 4, D, L, and H
denote approximation, detail, low-pass filter, and high-pass filter, respectively. The
decomposition process is carried out at three levels. The approximation and detail coefficients at
each level are derived using the scaling and wavelet functions defined by the selected wavelet-
based Eq. (1).

1 —k-2/
w,,k(z)=ﬁw[’ S J (M)

Here, ¥ denotes the mother wavelet, and j and k£ denote scale and shift parameters, respectively.
Owing to continuous research, effective WT-based forecasting models have emerged. The
combination of WT and the least-squares support vector machine (LS-SVM) with genetic
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Fig. 2. Schematic diagram of WT.

algorithm (GA) optimization effectively improves the accuracy and reliability of wind power
prediction approaches.!) The combination of WT with a convolutional neural network (CNN)
was proposed to decompose data to improve the forecasting accuracy.!?) Subsequently,
enhanced wavelet transform (EWT) and discrete wavelet transform (DWT), variants of WT,
were derived for application to the wind power field.(!3 DWT is integrated with AI methods to
approximate nonlinear functions to reduce the error.!¥)

3.1.2 Empirical modal decomposition (EMD)

While WT excels at decomposing unorganized data, it also has limitations. For example, its
nonadaptive nature necessitates the careful selection of an appropriate basis function and the
number of decomposition layers to ensure its appropriateness for processing specific time
series.(1%) As a flexible time series decomposition method, EMD decomposes a time series into
intrinsic mode functions (IMFs) and a residue using a recursive screening process.®) Unlike WT,
EMD does not require a preset basis function. Because of its finite sub-filtering nature, EMD
provides benefits in managing nonstationary and nonlinear data, making it highly effective and
widely applied in processing nonstationary wind power series.(!®) The main features of the raw
data are mined by removing the noise from the wind power signal by EMD. Therefore,
combining EMD with transformers enables a better feature extraction of the EMD-transformer
model due to its codec structure that is connected between the two using the attention
mechanism.(!”) In EMD, the convolutional attention mechanism is applied to enhance the
forecasting accuracy.

The ensemble empirical modal decomposition method (EEMD) was developed by adding
white noise to EMD to mitigate amplitude fluctuations in the signal. The mean of the IMF and
residual components after multiple decompositions is taken as the final result, although the
original data is changed by EEMD. However, the proposed EEMD-GA-backpropagation method
(BP) performs better in wind speed forecasting than EMD-GA-BP since EEMD is more stable
than EMD. Since EEMD decomposes and reconstructs the original data, the addition of white
noise introduces errors. Therefore, complete ensemble empirical mode decomposition (CEEMD)
is used to minimize noise effects and extract more meaningful components by adding paired
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white noise with opposite polarities into the data. 131 CEEMD improves the EEMD-processed
time noise in the sequence, but EEMD still has computational problems. Thus, the decomposition
method, named complete ensemble empirical mode decomposition with adaptive noise
(CEEMADN), was developed, on the basis of EEMD.?9 The difference between CEEMADN
and EEMD lies in how white noise is added. CEEMADN injects noise into the residuals from
the preceding iteration rather than the raw data, enabling efficient and precise decomposition.

3.1.3 Variational modal decomposition (VMD)

The recursive nature of EMD and the lack of a clear mathematical theory make EMD
effective in solving sampling sensitivity problems. VMD is developed as a complete nonrecursive
decomposition method, and in decomposition, variational problems are created and solved by
combining the Wiener filtering method to solve the denoising problem.?!) The Hilbert transform
uses fringe spectra, and the alternating direction method is applied to solve the variational
problem with constraints.??) The principle of VMD is to convert the original data into a
constrained variational problem before solving, which is expressed as?

K
st.yu =f, Q)

where u; denotes the kth IMF, 0(f) the partial derivative of the function with respect to time ¢, 4(¢)
the unit impulse response, and j imaginary units.

VMD is used in solving nonsmooth wind power series problems, and thus, various
combinatorial models based on VMD are generated. For example, the combined attention
convolutional and capsule network (ACCNet)-VMD is proposed for use in a decomposition
method to separate the original data into decoupled sub-power-series cascade data.>¥) Then, the
input of ACCNet is used to make this combined model have high forecasting performance. It is
also applied to separate the original data, while convolutional long short-term memory
(ConvLSTM) is employed for error forecasting.?> The results show excellent forecasting
performance. Since VMD is prone to mode aliasing, the selection of hyperparameters is
necessary. Wang et al. used the butterfly optimization algorithm (BOA) to optimize the penalty
factor with a mode count in VMD so that VMD could form a comprehensive input feature vector
in decomposing the unsteady wind turbine historical data. They input this vector into LSTM for
forecasting, thus obtaining an enhanced forecasting effect.(26)

3.2 Feature extraction
Feature extraction is important in uncovering the relationship between input variables for

dimensionality reduction. It also reduces the effect of redundant data on model training, thereby
enhancing prediction efficiency.
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3.2.1 Classical methods

Adaptive Kriging-subset simulation optimization (AK-SSO) is used to optimize the LSTM
hyperparameters by dividing the raw wind power data into three classes through feature
extraction and then predicting the mean square error of each sample based on LSTM.?”) Given
the uncertainty across wind energy reserves, Cai et al. extracted the error characteristics of
energy resources by establishing a Gaussian mix clustering model (GMCM) to improve the
medium- and long-term forecasting accuracies.?®) The maximum relevance and minimum
redundancy (MRMR) is a commonly used decomposition algorithm in feature extraction.
MRMR combines relevance and redundancy in information theory,??) effectively identifying
both linear and nonlinear dependences between variables in the forecasting process, and thus is
widely used in practice. Using MRMR, the relationships between different constituents and
decomposition components are mined, and the subset with strong correlation and low
redundancy is filtered, which makes the model have a good forecasting effect.3?)

3.2.2 Principal component analysis (PCA)

PCA reduces the dimensionality of the data, producing a simplified form.G" For ultrashort-
term wind speed forecasting, PCA is combined with persistence forecasting to overcome its
limitation by prioritizing the coarse sampling.3? PCA outperforms dimensionality reduction
methods that rely on original and statistical features such as mean, max, min, and standard
deviation.®3 Hu et al. reduced the dimensionality of the input information, maintaining high
dimensionality, and input the processed data into an improved deep confidence network.G4 In
addition to the conventional processing of redundant information in the original data, the time—
frequency domain is employed to analyze and remove the redundant information. PCA combined
with VMD and EMD is also used to process numerical weather forecasting (NWF).(3%)

4. Forecasting Models
4.1 Physical model

The physical model represents the wind energy distribution in wind farms and converts it
into output power.*®) Using a common NWF method, wind speed—power curves are drawn to
investigate the correlation between historically measured power and wind speed data. As NWF
has a low reliance on historical data and relationships, a large dataset is required, and the
complexity of the actual data is not considered in the process. Therefore, the results of NWF
deviate significantly from the actual data, so the NWF model is appropriate for long-term
forecasting.
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4.2 Statistical model

Statistical models process a large amount of historical data and select an appropriate
forecasting method by comparing historical data with wind power outputs obtained by each
method. Al algorithms are integrated to improve the performance. Statistical models are
classified into classical and time series models.

4.2.1 Classical models

The most commonly used classical model is the continuum method, which is the simplest
forecasting method. Its principle is to use the wind power at the current moment for forcasting.
When X t(f A), is the wind power in the next moment, ¢ + At is the forecasting range in time, and X,
is regarded as the wind power at the current moment. Then, the following is established:?”)

D _x. ®

The operation of the method lacks the knowledge of the relevant data trends and rates of
change, and the accuracy of forecasting decreases over a longer period. Therefore, the model is
only applicable to forecasting ultrashort-term wind power.

4.2.2 Time series model

The time series model is commonly used in wind power prediction. Statistical models differ
from physical models as they require historical data for analysis, while the time series model is
established on the basis of the relationships between the historical data, the random error, and
the forecast data. Time series models include the autoregressive (AR) model, the moving average
(MA) model, and the autoregressive integrated moving average model (ARMA), which is a
combination of the AR and MA models.

The AR model combines the historical data with the current data and creates a weighted
combination of historical data for forecasting future wind power. The AR model simulates the
instantaneous structure of wind power values, which is beneficial for short-term power
prediction.®® The AR model is mathematically expressed as

Xl‘ =C+ Zi]HiX{t—i} +‘q ) (4)

where X, is the value at time ¢, C a constant, 8, the model coefficient for each of the first p terms,
and ¢, noise.

In the model, autocorrelation (the degree of dependence between wind speed data at different
time points) is calculated using Eq. (4).3” This provides accurate and reliable information for
short-term forecasting.
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The ARMA model has been used for forecasting wind power since the 1980s. Erdem and Shi
decomposed wind speed into horizontal and vertical components in accordance with the wind
direction and used an ARMA model to improve the accuracy of forecasting.?) Its typical model
is

p q
Y =5+Z¢i><y{t7i} +Z¢9j><et,j+et. ®)
i=1 Jj=1

Although the method is simple, its adaptability is poor and unexpected problems are difficult
to solve. For example, for gusts or sudden changes in wind conditions, its forecasting accuracy
decreases with an increase in forecasting time. Therefore, the ARMA model is only appropriate
for short-term or ultrashort-term power forecasting.

4.3 Al model

With the emergence of big data algorithms, AI models are widely used owing to their
advantages in extracting features. The artificial neural network (ANN) and support vector
machine (SVM) are mainly used. They uncover the latent connection between input data and
target outcomes, establishing a functional model to predict wind power.D

4.3.1 SVM

SVM is a classification and regression method derived from statistical learning theory and
follows the principle of structural risk reduction. The algorithm exhibits a robust generalization
capacity with a limited amount of data, which is suited for wind power forecasting.*?) The SVM
model has been developed into the proposed piecewise SVM (PSVM) and least-squares SVM
(LSSVM), with a notable improvement in wind power prediction performance. The combination
with SVM, PSVM, LSSVM, and other models significantly enhances the precision of wind
power prediction. However, the parameters of SVM-based models are selected empirically and
stochastically. Therefore, the parameters are difficult to determine. Such drawbacks necessitate
GAs,™ honey badger algorithms,*¥ and fruit fly algorithms. The behavioral characteristics of
animals are applied in models for the determination of parameters for wind power forecasting.

4.3.2 ANN

ANN is developed by mimicking neurons of the human brain but has a simple structure
(Fig. 3).49 Ali and Aly proposed different scenarios to train ANNs using raw time series data to
ensure an ANN forecasting performance higher than those of existing models in short-term
wind speed prediction.*9) Commonly used approaches include generative adversarial, radial
basis function, and general regression networks.“”)
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Fig. 3. (Color online) ANN structure.

4.4 Neural network model

A neural network model extracts key features and captures nonlinear relationships between
data, making it appropriate for handling large-scale, high-dimensional time series. Because of its
powerful parallel computing and adaptive learning capabilities, its pattern recognition and trend
forecasting ability exceeds that of traditional linear models, greatly enhancing prediction
performance. In wind power forecasting, traditional machine learning methods are being
replaced by deep learning models.*®) Deep learning models process the spatial and structural
information of the input data, especially global dependences. CNN, transformer, and
autoencoder (AE) models are deep learning models.(44%59) Time-based deep learning models
process sequence data to capture the temporal information by transmitting hidden states. LSTM

and gated recycling unit (GRU) models are widely used as time-based deep learning models.
(51,52)

4.4.1 CNN model

CNN models have a powerful feature extraction capability and efficiently process two-
dimensional (2D) data, which makes them appropriate for wind power forecasting.* Figure 4
illustrates the architecture of the CNN model.

Zhang et al. applied CNN to wind power forecasting by building a regression model.*¥ CNN
demonstrates an outstanding ability in wind power forecasting, similar to its success in image
processing.®® VMD is used with CNN to decompose and extract features of meteorological
data.% A residual neural network is integrated with CNN to extract features of wind energy to
enhance forecasting accuracy.®7)

To achieve better prediction results with CNN, data enhancement, feature engineering,
parameter optimization, and model integration are used. For example, VMD is used to mitigate
the wind speed fluctuation series to enhance the correlation between the data and the extract
complex spatial and temporal features from historical data using CNN and GRU. The combined
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VMD-CNN-GRU model outperforms the other deep learning models.®”) A random forest (RF)
algorithm is used to evaluate the features.®® The RF algorithm evaluates the importance of
features for more effective feature extraction. An integrated GA and PSO algorithm
synergistically optimizes the network’s hyperparameters and weights while effectively
optimizing tuning parameters and model structure parameters.®® After optimizing the
algorithm processing the parameters and weights are used to effectively alleviate the local
optimum problem, which, in turn, improves the CNN predictive power.

4.4.2 Transformer

A transformer is developed on the basis of the self-attention mechanism. Owing to its
multiple attention mechanisms, the transformer is widely used in natural language processing.®”)
The transformer model comprises an encoder—decoder structure, where both parts include
multiple attention and normalization layers.©©” Because of its own mechanism, the transformer
can effectively capture the relationship between variables and performs well in tasks such as
wind power forecasting.

The transformer’s self-attention mechanism enables global associations in sequences,
allowing the model to focus on all locations simultaneously in processing sequence data without
step-by-step processing as in RNNs and LSTMs. Its own mechanism supports the parallel
processing of information and enhances the processing capability of the model.®) The
transformer’s mechanism expands the receptive field and enhances generalization, leading to
more accurate forecasts. With its powerful modeling capability, the transformer sequentially
processes data such as wind speed and power on different time scales through parallel
computing.? With the tree-structured Parzen estimator (TPE) and time fusion transformer
(TFT) framework, wind power forecasting can be automated, which is efficient for multiscale
wind power prediction.(¢)

In wind power prediction, future values are predicted without converting the input to the
output sequence format. In this case, the decoder of the transformer model is not used, and only
the output of the encoder is used to extract and transmit features to the fully connected layer to
retrieve the final output.®® To strengthen the transformer’s prediction performance, the
comparative learning method is used in the self-supervised learning of the feature representation
of wind power sequences and a wind power forecasting framework, including prestage
regression.(®-00) The framework is applied to various network architectures to significantly
increase the reliability and accuracy of the prediction. In contrast, the improved complete
ensemble empirical mode decomposition with adaptive noise approach (ICEEMDAN) is applied
to break down the raw wind speed series, send the decomposed components into the transformer
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for forecasting, and combine the results. The transformer combined with ICEEMDAN has
significantly improved forecasting performance.

4.4.3 AE

AE consists of an encoder and a decoder, which learn the high-dimensional features of wind
power data, map them onto a compact representation, and reconstruct them so as to reflect the
intrinsic laws of wind power for wind power prediction. Figure 5 illustrates the architecture of
AE.

Tasnim et al. proposed a structured sparse AE (SAE) model.¢”) In training, the model
optimizes the initial connection weights of the deep network using a specific loss function.
Then, an output layer is added to the structure of the stacked AE, and the weights of the whole
network are fine-tuned using the BP algorithm. In addition, PSO is integrated to optimize the
learning rate of the encoder. The approach shows a forecasting accuracy higher than those of
traditional BP neural networks and SVMs. Stacked denoising autoencoders (SDAEs) are used to
simulate the spatial correlation and interdependence between wind fields, thus improving the
accuracy of numerical weather forecasting.®®)

444 LSTM

LSTM is an improved RNN whose core structure incorporates the forgetting, input, and
output gates based on the traditional RNN (Fig. 6). Cheng et al. significantly enhanced the long-
term forecasting performance of wind farms by LSTM.% For short-term power prediction,
methods built on LSTM and recurrent neural networks are extensively adopted owing to their
excellent performance in time-series forecasting. Since the forecasting accuracy is significantly
improved, PSO and PSO-BP hybrid models present excellent 4, 24, and 72 h wind forecasting.(79)
In addition to improving the LSTM model, different models are combined to boost prediction
performance.

Lu et al. proposed a forecasting approach combining CNN and LSTM based on historical
data."") They combined forecasting models using screened meteorological key factors through

Fig. 5. (Color online) AE structure.
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Fig. 6. (Color online) LSTM structure.

data decomposition, model integration, and optimization strategy. The CNN-LSTM forecasting
forecasts wind power on the following day with high accuracy and reliability.(’? An improved
Bayesian neural network model, which incorporates a Bayesian network into LSTM, captures
long-term dependences. The model processes historical wind power data and combines a
temporal convolutional network (TCN) through dimensionality reduction, enabling high
accuracy in wind power forecasting with high volatility.

4.4.5 GRU

GRU is an improved variant of RNN.(73) In the unit structure of GRU, reset and update gates
replace the three-gate unit structure in LSTM (Fig. 7). In GRU, the update gate controls the
extent to which past information is retained in the present state, while the reset gate regulates the
relevance of the current information to the past information. GRU effectively retains key input
information by using the update and reset gates to gradually discard irrelevant time. The
isolation forest (IF) algorithm removes the anomalous data after detection, and on the basis of
that, GRU performs better than LSTM.(’® Niu et al. used GRU to incorporate the attention
mechanism, which embedded the associated tasks in different forecasting processes to enhance
prediction effectiveness.(’”® Chi and Yang used the bi-directional GRU (BiGRU) to improve
forecasting performance.(”® BiGRU captures potential relationships between features to extract
time series contextual features. The predictive performance of the BiGRU model outperforms
traditional LSTM and GRU. GRU has a more concise structure and requires fewer training
parameters than LSTM, which makes it efficient in forecasting. However, since the forecasting
output of GRU relies on the information at the current moment, the model tends to ignore the
previous important information. (2

4.5. Combined models
Because wind power is inherently random and volatile, a single model cannot achieve

satisfactory predictions. Hybrid approaches leverage the strengths of different models to greatly
enhance predictive performance. Four combined forecasting approaches are widely used,
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including the multimodel weighting, data preprocessing, error correction, and optimization
algorithm models.

4.5.1 Multimodel weighting model

The multimodel weighting model combines the weights of different forecasting models and
the results of each model. The architecture is depicted in Fig. 8. In the multimodel weighting
model, the SVM and radial basis function neural network (RBFNN),(7® SVM, LSTM,
ARMA,7?D BPNN, and Elman neural network (ENN) are usually combined to simulate
environmental changes and wind speed characteristics in different periods. To further improve
forecasting performance, the internal structure of the model is optimized using a multifeature
approach.

For example, wind power prediction is forecasted using a nonparametric lower-bound
estimation framework with LSTM.(7879 The proposed method achieves results superior to those
of standard RNNs. The multimodel weighting scheme markedly improves forecasting robustness
and accuracy by leveraging raw features as inputs to the prediction framework. The deep belief
network (DBN) is used for short-term wind speed forecasting based on the values forecasted by
the RF algorithm. The model dynamically updates the weights using the weight voting approach
(WVA) to improve forecasting accuracy.

The multimodel weighting model relies on a weight updating mechanism to adjust the
weights of submodels. Therefore, high degrees of flexibility and adaptability are ensured, and
excellent performance in forecasting accuracy is obtained. However, the computational
efficiency of the method is low and the scope of application is limited, which restricts its
application in a wider range of scenarios.

4.5.2 Data preprocessing

Data preprocessing is important for modeling and data mining. Data preprocessing is also
conducted to process missing or noisy data. Through data preprocessing, the raw data is
decomposed into multiple subsequences so that a model can predict the subsequences. Figure 9
shows the implementation process of the combined forecasting method.(3%-31
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Fig. 9. (Color online) Schematic diagram of data preprocessing method.

For signal decomposition, EMD, VMD, or WT is used to decompose the raw data.8? A
combined model makes forecasts on the basis of the decomposed data. For example, Moreno et
al. combined VMD with singular spectral analysis (SSA) and LSTM to build a VMD-SSA-
LSTM data preprocessing model for short-term wind prediction.®® The model reduced the
forecasting error, especially in multistep forecasting. A novel hybrid model combining WT,
feature selection (FS), crow search algorithm (CSA), and LSTM is used for short-term wind
speed prediction.®¥) By comparing different forecasting methods, the model with data
preprocessing can enhance forecasting accuracy and performance. However, the seasonal
variation in wind speed, which requires the error correction method and optimization algorithm,
has not been considered.

4.5.3 Optimizing models

In the combined forecasting method based on the optimization method, parameters need to
be determined for forecasting. Figure 10 illustrates the optimization process of a model. Wind
power forecasting models require numerous parameters. Therefore, it is important to adjust the
parameters. Although traditional optimization algorithms are widely used for wind power
prediction, they lack the capability of determining and optimizing parameters effectively. The
CNN-LSTM model adjusts network parameters through training to optimize the parameters.(8)
Traditional optimization algorithms easily fall into local extreme values. To solve this problem,
CSA and the extreme learning machine (ELM) are integrated, leveraging CSA’s optimization
capability and ELM’s output layer weights to enhance the precision of interval forecasting and
wind power prediction.
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Fig. 10. (Color online) Optimization process.

To solve complex problems, intelligent optimization algorithms are used. The intelligent
optimization algorithms are divided into single-solution and multiple-solution algorithms in
accordance with the number of solutions in each iteration.®) Multisolution algorithms are
extensively applied in wind power prediction. The South American Coati optimization algorithm
(COA) is constructed on the basis of a COA-CNN-LSTM model. The model determines the
initial parameters of COA and iteratively optimizes them, enabling accurate wind power
forecasting.®%87) An improved seagull optimization algorithm (ISOA) optimizes the parameters
of LSTM, with the ISOA algorithm showing a higher forecasting performance than the LSTM
model.®®) Although the intelligent optimization algorithm has fewer generalization errors and a
higher convergence speed than the traditional algorithm, it cannot guarantee the optimal
solution.

4.5.4 Error correction methods

The combined forecasting error-correction—driven approach mitigates the effect of
forecasting errors by post-processing the data. In this method, combined forecasting methods
are used to reduce forecasting errors and improve forecasting accuracy on the basis of the results
of different models. The error correction process is depicted in Fig. 11.

The decomposition model can accumulate errors, which necessitate error correction methods.
Reconstructed forecasting results are compared with original results to reduce errors and
improve forecasting accuracy.®?) By applying an error correction approach, relevant error
metrics are identified.®” The gradient boosting decision tree (GBDT) is usually used to
determine error indicators, while extreme gradient boosting (XGBoost) is used for error
correction. In their processes, the initial forecasted values are summed and compared and
validated using real wind farm data to correct errors. XGBoost shows the best error reduction.
Sometimes, the VMD method is used to decompose errors and erratic sequences into stochastic
and trend components, and group them to analyze the volatility of the components. Different
error correction approaches are utilized to enhance short-term wind power prediction accuracy.
The error correction method has a lower computational efficiency than combined methods,
although the model with the method shows enhanced forecasting accuracy.®V
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Fig. 11. (Color online) Error correction process.
5. Conclusions

In wind power prediction, deep learning is widely used. Because of the continuous
development of deep learning methods, wind power forecasting accuracy and speed have been
significantly improved. Recently, innovative models based on time series data and various
methods, such as the transformer, have been introduced to wind power prediction. Using data
and various methods, combined models are developed for a more accurate wind power
forecasting than a single model. Despite the advancement of technology, challenges remain in
accurate forecasting. At the same time, it is necessary to consider the operating conditions and
the needs of individual wind farms in wind power forecasting. Diverse forecasting models
should be developed to strengthen the efficiency and effectiveness of wind energy production.

By reviewing and comparing the current state of wind power forecasting and focusing on
advanced data decomposition, deep learning algorithms, and combinatorial models, the results
underscore that the maximization of prediction accuracy depends on the quality and type of
sensor data. We highlighted that data inputs originate from diverse physical sensors, including
anemometers, LiDAR, thermocouples, and the turbine’s SCADA system, which collect critical
meteorological, remote sensing, and operational parameters. The sophisticated deep learning
and signal processing techniques reviewed are advanced methods for extracting meaningful
features from sensor data.

Further research is necessary to focus on model refinement and the development of
specialized sensors and data acquisition for multidimensional data streams, high-frequency
temporal data, ultrashort-term forecasts, or specific atmospheric profiles for anti-icing
prediction. Ultimately, the performance of advanced forecasting models is determined by the
sensor technology. The results of this study serve as a reference, linking the demands of wind
power analytics to the development of robust and precise sensing and materials.
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