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The cracking and spalling of wet joint concrete are common forms of wet joint damage in
prefabricated beam bridge structures; however, existing diagnosis methods are often insensitive
to damage and are overly susceptible to environmental effects and random vehicle loads. To
address this, we propose a diagnostic method for wet joint damage in such clusters on the basis
of data obtained from distributed optical sensing fibers. Distributed optical sensing fibers are
deployed along the top and bottom of the main girder webs, and a Brillouin optical time domain
analysis (BOTDA) analyzer is used to collect strain at the corresponding locations, from which
the sectional curvature is computed. By exploiting the cluster’s spatiotemporal correlation, a
bidirectional long short-term memory (Bi-LSTM) network is constructed to predict the sectional
curvature of bridges with identical configurations within the cluster. On this basis, a cluster-level
wet joint damage diagnosis index is formulated, and a cross-validation strategy is employed to
identify wet joint damage across the cluster. Under random vehicle loads, a numerical case study
of wet joint damage in a prefabricated beam bridge cluster is conducted to compare the proposed
approach with conventional methods, thereby verifying its effectiveness. In addition, monitoring
data from three adjacent bridges in an actual cluster are used for further validation. The results
indicate that the proposed method satisfies the requirements for cluster-level wet joint damage
diagnosis and can be applied to the real-time monitoring and assessment of prefabricated beam
bridge clusters.

1. Introduction

According to the 2024 Industry Development Bulletin released by the Ministry of Transport
of China,(V as of the end of 2023, there were approximately 1.0793 million highway bridges in
China, among which 890000 were small- and medium-span bridges, making them the dominant
structural form in highway bridge construction. Prefabricated beam bridges have become a
common type for small- and medium-span bridges due to their short construction periods and
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ease of quality control.®) For prefabricated beam bridges, a reliable transverse connection
system is essential to ensure integrated structural performance. However, during actual
operation, increased traffic loads, environmental erosion, and other external factors often lead to
longitudinal cracking, water seepage, and beam misalignment in transverse connection areas.
These issues result in uneven load distributions among the beams, causing single-beam load-
bearing conditions,®*) which severely impact the load-bearing capacity of the superstructure in
prefabricated beam bridges.

To investigate the damage patterns of transverse connection systems in prefabricated beam
bridges, Xia et al.®) derived the relationships between joint conditions and transverse load
distribution coefficients, transforming the quantitative analysis of transverse cooperative
performance into the identification of transverse load distribution influence lines. Yang et al.(®)
established a spring-jointed plate model based on the traditional articulated plate method and
analyzed the relationship between shear forces and transverse connection system damage. Li et
alD proposed a new method using model updating and an orthogonal matching pursuit
algorithm to accurately identify the degree and location of joint damage on the basis of the
vertical displacement of a single measurement point. By solving the characteristic equation of a
multiple-girder system, Shang et al.® proposed a method of determining baseline joint stiffness
via design data and finite element models, and developed a comprehensive evaluation framework
for joints. Han et al.®) introduced a monitoring and evaluation method for transverse connection
stiffness, which is based on multiple-girder theory and enables the diagnosis and localization of
joint damage.

With the continuous advancement of bridge health monitoring technology, the number of
studies on the diagnosis of transverse connection system damage through structural response
monitoring has increased. Dan et al.(19) validated the strain correlation coefficient index via real
bridge monitoring data and proposed a joint damage monitoring index on the basis of
displacement spectrum similarity. Hu et al(!V) utilized computer vision technology to measure
structural displacement and assess joint damage conditions using relative displacement as a
diagnostic indicator. However, the sensitivity of the proposed indicator varies with the degree of
damage. Gong et al.('? employed the recursive least squares method to evaluate joint stiffness in
real time and studied the effects of joint damage on the bridge frequency, damping ratio, and
modal shape. Zhan et al.®) diagnosed joint damage by calculating vehicle—bridge interaction
responses and updating the finite element model (FEM) on the basis of monitoring data. Abedin
et al." updated FEM through static and dynamic load tests, and established a damage index for
joint damage assessment. Han et al.1>) proposed the transverse modal shape damage index to
locate and assess the degree of joint damage. Reiff er al.(19) utilized strain monitoring data to
construct a live load distribution factor for bridge damage assessment. The aforementioned
studies achieved real-time diagnoses of transverse connection system damage to some extent
through FEM updating(>-'*17) and operational monitoring.(1%-11:15.16) However, these methods
have several limitations, such as the requirement for onsite testing®!34) and stable traffic
loads,'% which lead to insufficient sensitivity in actual applications and fail to meet the demands
of long-term bridge monitoring. In this context, distributed optical fiber sensing technology
presents an effective solution to these challenges. It enables the collection of high-density strain
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response and structural temperature field data, making it suitable for structural damage
diagnosis.(!’22) Currently, distributed optical fiber monitoring technology has been widely
applied in various fields, including tunnel settlement,?!) bridge deformation,?? and landslide
monitoring.(3)

To effectively monitor wet joint damage in bridges with identical structural configurations
within a cluster of prefabricated beam bridges, we propose a diagnostic method for wet joint
damage in such a cluster on the basis of data obtained from distributed optical sensing fibers.
Distributed optical sensing fibers are deployed along the top and bottom of the main girder
webs, and a BOTDA analyzer is used to collect strain at the corresponding locations, from which
the sectional curvature of the girders is computed. Drawing on the structural and loading
similarity of the cluster, we derive the spatiotemporal correlation of the sectional curvature
among bridges; on this basis, we construct a Bi-LSTM network to predict the sectional curvature
of bridges with identical configurations, formulate a cluster-level wet joint damage diagnosis
index, and employ a cross-validation strategy to identify wet joint damage across the cluster.
Under random vehicle loads, a numerical case study of wet joint damage in a prefabricated beam
bridge cluster is conducted to compare the proposed method with conventional approaches,
thereby verifying its effectiveness. In addition, monitoring data from three adjacent bridges in
an actual cluster are used for further validation. The results indicate that the proposed method
satisfies the requirements for cluster-level wet joint damage diagnosis and can be applied to the
real-time monitoring and assessment of prefabricated beam bridge clusters. Compared with
commonly used wet joint damage diagnosis methods for prefabricated beam bridges, our
approach avoids reliance on a single-bridge absolute baseline or bridge-by-bridge model
updating. Instead, it employs relative comparisons among bridges of identical configurations
within a cluster together with a cross-validation strategy to offset environmental and loading
disturbances, thereby improving the detectability of slight wet-joint damage and enhancing
practical applicability.

The contents of this study are organized as follows. In Sect. 2, we elaborate on the proposed
method in detail. In Sect. 3, we validate the effectiveness of the proposed method using
numerical examples and real-world measured data. In Sect. 4, we summarize the conclusions of
this study.

2. Algorithm Theory

2.1 Curvature calculation using the strain measured by the distributed optical sensing
fiber

Prefabricated beam bridges monitored within one cluster refer to a group of medium- and
small-span bridges within urban elevated roads or highway routes, as illustrated in Fig. 1. Owing
to their location on the same traffic route, these bridges are subjected to highly similar external
loads, such as comparable overall temperature and vehicle loads. Furthermore, since
prefabricated beam bridges monitored within one cluster are typically constructed
simultaneously, the degrees of shrinkage and creep in the structural materials of each bridge are
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Fig. 1. (Color online) Clusters of prefabricated beam bridges. (a) Urban elevated viaduct cluster and (b) cluster of
highway girder bridges.

also similar. These similarities in structure and loading conditions result in a high degree of
correlation in the monitoring data across the bridges monitored within one cluster.

Distributed optical fiber sensing technology employs distributed optical sensing fibers as
sensing elements to detect the deformation and temperature changes of a bridge, correlating
these measurements with the positions along the distributed optical sensing fiber, thereby
enabling long-distance distributed monitoring. As illustrated in Fig. 2, when the bridge structure
deforms, it induces a change in Brillouin center frequency at the corresponding position of the
optical fiber, resulting in a Brillouin frequency shift. By leveraging the relationship between the
Brillouin frequency shift and strain, strain monitoring data for the bridge structure can be
obtained. Assuming that the temperature remains constant during the strain acquisition process,
the strain response can be expressed as

g:gO+Ag=£0+vBC_VO, )

&

where ¢ represents the measured strain, ¢, the initial strain, vz the measured central spectral
frequency, v, the initial central spectral frequency, and C, the strain influence coefficient.

For this purpose, a distributed optical sensing fiber monitoring loop is installed at both the
top and bottom of the web of the main beam of the prefabricated beam bridge. In this setup,
strain monitoring data are collected at different heights of the main beam of the bridge, and the
sectional curvature of the main beam is subsequently calculated using Eq. (2). The layout of the
monitoring loop is illustrated in Fig. 2.

b t b t

Y & —&;

K. = L L1 L i=12,--,n (2)
i b t ) Pt )

Here, «; represents the average curvature of the i-th cross section; &/ and 8;7 the strain values at
the top and bottom measurement points of the i-th cross section of the main beam of the bridge,
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Fig. 2. (Color online) Schematic of the principle of distributed optical fiber monitoring technology.

and /! and A the distances from the top and bottom measurement points of the i-th cross section
of the main beam of the bridge to the neutral axis, respectively.

2.2 Bi-LSTM-based wet joint damage diagnosis of prefabricated beam bridges monitored
within one cluster

K/ ={Krjl,xrjz, : ,Krj,l-,---,KrJ;N}T, i=1,2,--,N ©)
KJ:[K{KfKrJK%] F=12-.T @)
K:[KI’KZ’”_’KJ’,_,,KW} j=12, W 5)

K = Savitzky — Golay(x) 6)
In Egs. (2) to (6), k; represents the curvature measurement at the i-th sensor of the j-th bridge at

time step 7, K’ the curvature vector of the j-th bridge at time step 7, k/ the curvature matrix of
the j-th bridge, x the combined curvature matrix of prefabricated beam bridges monitored within
one cluster, Savitzky—Golay(’) the Savitzky—Golay filter operator, and x the denoised curvature
matrix of prefabricated beam bridges monitored within one cluster, obtained by applying S—G to
K.

Under load, when the wet joints are intact, the superstructure exhibits good transverse force
transmission, and the curvatures of each beam demonstrate a relatively stable strong correlation.
However, when the wet joints are damaged, as the damage severity increases, the force
transmission between adjacent beams at the damaged wet joint locations significantly
deteriorates. Consequently, the correlation among the curvatures of each beam gradually
weakens, deviating from the original stable trend. The deformation behavior of the superstructure
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before and after damage is illustrated in Fig. 3. On the basis of this characteristic, the curvature
vector angle between adjacent beams at the same moment is calculated using Eq. (7), and the
angle vector is constructed using Eq. (8).

6/ =Subspace(Erj ,Erj“) (7
%:{gfjg/’,...’grf’...’g%} (8)

Here, 6’f represents the angle between the j-th curvature vectors at time 7 in prefabricated beam
bridges monitored within one cluster, subspace() the vector-angle computation function, and 05
the angle between the j-th curvature vectors of prefabricated beam bridges monitored within one
cluster.

In accordance with the distribution of measurement points on beam bridges monitored within
one cluster, the main beam of the bridges is discretized. Consequently, the dynamic equilibrium
equation of the structure can be formulated as

M(x,0)é! +C(x,0)@] + K(x,H)@] = F" (x,1), )

where, M(x,?) represents the mass matrix of the prefabricated beam bridges, C(x,?) the damping
matrix of the prefabricated beam bridges, K(x,?) the stiffness matrix of the prefabricated beam
bridges, F' (x,t) the external load vector at time step 7, a),f the velocity vector of the j-th main
beam at time step 7, and a),J the acceleration vector of the j-th main beam at time step 7.

By applying the Laplace transform to both sides of Eq. (9), we can derive the following result:

Z(x,)\w! =F". (10)
Here, Z(x,?) represents the displacement impedance matrix.

Since the beam bridges monitored within one cluster are situated on the same traffic route,
they experience highly similar external loads. Consequently, for two bridges, p and v, monitored

In a healthy state Ina hgalﬂ:x state Ina hEanhy state Ima d.mmged\ state
\. \ 5. .

Displacement

E Displacement
of Beam 1# VL

| T Dispt
ﬁ of Beam 3% of Beam 1&

i [
______ \t ~ ;g:f]_rm,i of Beam 3#
@ (b)

Fig. 3. (Color online) Schematic diagrams of superstructure deformation (a) before and (b) after wet joint damage.
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within one cluster that shares identical structural designs, the following relationships can be
established concerning their deformations:

ZP (x,ne?’ = 2" (x,t)®"’ (11)
o’ =(Z2" (x,0)" 2" (x, 0@, (12)
ol =¥(x,n)o)" . (13)

Here, Z7”(x,t) represents the displacement impedance matrix of bridge p, Z"(x,t) the
displacement impedance matrix of bridge v, and W(x,#) the deformation mapping matrix from
bridge v to bridge p.

Furthermore, drawing on the principles of material mechanics, the relationship between the
sectional curvature of the main beam and the vertical deflection can be formulated as

(x) = . (14)

By combining Eqgs. (13) and (14), the sectional curvature of the main beam of prefabricated
beam bridges p and v, which have identical structures within the cluster, can be formulated as

kP =W (x, 0K +¥'(x, N0} . (15)

In this equation, & J represents the curvature vector of the j-th beam of bridge p at time step r
and k. "/ the curvature vector of the Jj-th beam of bridge v at time step .

For prefabricated beam bridges, given that the cross section of the main beam exhibits
minimal variation along the longitudinal direction of the bridges, the change along the
x-direction can be neglected. Under these conditions, Eq. (15) can therefore be simplified as

kP =P ()K" (16)

Equation (16) clearly shows that a time-varying mapping relationship exists among the curvature
vectors of identical prefabricated beam bridges monitored within one cluster. On this basis, a Bi-
LSTM network is constructed by taking bridge p as the reference bridge and bridge v as the
target bridge for diagnosis. The structure of the network is presented in Fig. 4.

To increase the stability of the Bi-LSTM network, the Z-score method is employed to
preprocess the network input data. The z-score method standardizes data by subtracting the
mean from each value and dividing by the standard deviation. The loss function of the Bi-LSTM
network is quantified using the root mean square error (RMSE). The model parameters are
updated through the minimization of the loss function, as presented in Eq. (17).
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Fig. 4.  (Color online) Schematic diagram of the Bi-LSTM network.

£(©)=min( &7 -], ) (17)

Here, &7 Ve represents the predicted value of k, "/, @ the model training parameters, min(’) the
minimization operator, and L(°) the loss function.

On the basis of the constructed Bi-LSTM network, the residual vector between the calculated
and predicted V-bridge curvature vectors is derived using Egs. (7) and (8).

EPVT = 9P — gl = {flp’v’],fzp’v’j,”',frp’v’],"'a ]e,v,J} (18)

In Eq. (18), &7 W represents the j-th residual value of bridge v at time step 7, éDp’V’j the predicted
value of 8/, and Er ¥/ the residual vector for the Jj-th girder of bridge v.
A wet joint damage diagnosis index is formulated on the basis of the residual vector obtained
from Eq. (18).
0.5

o - M (19

J

In Eq. (19), u; represents the mean of the elements in 4 Ve S; represents the covariance of the
elements in £°"/, and "™/ represents the wet joint damage diagnosis index of the j-th wet joint
at the 7-th moment of bridge v.
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On the basis of the constructed wet joint damage diagnosis index, the wet joint damage
threshold is determined as

yP = aGyos (wF), (20)

where 7}“ represents the threshold for the j-th damage diagnosis index, Ggq5(") the
95th-percentile (quantile) function at the 95% confidence level, and o the safety factor, which is
recommended to be no less than 1.5.

To prevent the misjudgment of the condition of the wet joints in the main beams of
prefabricated beam bridges monitored within one cluster, a cross-validation strategy is employed
to assess the damage status of these wet joints. The procedure is as follows: First, one bridge is
randomly selected from the cluster as the reference bridge, and the proposed algorithm is applied
to determine whether damage to the wet joints between the reference bridge and any other bridge
in the cluster occurs. The role of the reference bridge is then cyclically reassigned until all the
bridges in the cluster have served as the reference bridge. Finally, a damage discrimination
matrix is constructed on the basis of the diagnostic results of all the bridges in the cluster,
enabling the final determination of the damage conditions of the wet joints in the main beams of
the beam bridges within the cluster.

Assuming that there are N structurally identical bridges in prefabricated beam bridges
monitored within one cluster, the damage discrimination matrix for the j-th wet joint in the
cluster is expressed as

DVsJ v DVsJ v
4 A (l//r >7/] )

Uf’v’f = ‘ 21
0, (w2 <y
T .
J AN
yoi - 2 Ur (22)
S
U2,1,j U3,LJ . UP,I,J . UN,LJ
U1,2,j U3’2’f .. UP>2,J ... UN,Z,]
U’ = . o . . (23)
Ul,v,J UZ,v,J U 200V A UN Vs
ybNg N NG L gN-LNG

In Egs. (21) to (23), /7 ¥/ denotes the wet joint damage diagnosis index for the j-th wet joint at
the r-th moment, with p serving as the reference bridge and v being the bridge under diagnosis;
UP"/ denotes the threshold of the j-th damage diagnosis index for the bridge under diagnosis v,
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referenced against the bridge p; U? ¥/ denotes the damage discrimination index for the j-th wet
joint when p serves as the reference bridge and v is the bridge under diagnosis; and U / denotes
the damage discrimination matrix for the j-th wet joint within the clusters.

If the j-th wet joint of both the reference bridge p and the bridge under diagnosis v is in an
undamaged state, then UP"/ =0; if at least one of the two bridges sustains damage, then
UP" >0, By leveraging this cross-validation strategy, it is possible to diagnose wet joint
damage for all the beam bridges monitored within one cluster, thereby avoiding potential
misjudgments due to randomness and enhancing the accuracy of the algorithm. The specific
procedure for damage diagnosis for wet joints of prefabricated beam bridges monitored within
one cluster using the data obtained from distributed optical sensing fibers is illustrated in Fig. 5.

Damage diagnosis for wet joints of the prefabricated beam bridges monitored with in
one cluster using the data obtained from distributed optical sensing fibers

.

Choose reference and target bridges for diagnosis

Substitute the reference or target

diagnostic bridge ¢
A
Calculate ¥ using Egs. (2) to (6)
L Matrix k in the pre diagnosed state
Matrix K in the healthy state
Validation Training
group group
A 4
Calculate & using Egs. (7), (8), and
(18)
Establishment of Bi-LSTM network No

)

Calculate &”" using Egs. (7), (8), and
(18)
i Calculate /" using (19)

A 4

Calculate y/"/ using (19)

) :

Calculate /" using (20) » Calculate y#* using Egs. (21) to (22)

Complete the identification

Calculate U’ using (23) <+ Yes of all bridges

\

Comprehensive diagnosis of all wet joint damages for all beam bridges within the cluster

Fig. 5. Flowchart of damage diagnosis for wet joints of the prefabricated beam bridges monitored within one
cluster using the data obtained from distributed optical sensing fibers.
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3. Case Study Validation
3.1 Brief introduction

An actual prefabricated beam bridge monitored within one cluster was selected to validate
the effectiveness of the proposed method. The total length of the line of the prefabricated beam
bridge cluster was approximately 44 km, comprising 35113 m/33 bridges, of which the total
length of the continuous viaduct of the main line was approximately 15.79 km and the total
length of the continuous viaduct of the connecting line was approximately 11.46 km. The
prefabricated beam bridges monitored within one cluster are shown in Fig. 6.

In the bridge cluster, three distributed optical-fiber monitoring loops are installed on the top
and bottom of the main-girder webs, each measuring 950 m in length. Using a BOTDA analyzer,
we acquire curvature data at structural measurement points of the bridge together with the
ambient-temperature time history at the bridge site, thereby enabling the real-time monitoring of
the structural state of prefabricated beam bridges. The detailed parameters of the BOTDA
analyzer are listed in Table 1; the distributed optical-fiber layout for a single bridge within the
cluster is shown in Fig. 7, and the fiber deployment process is shown in Fig. 8.

Fig. 6. (Color online) Photograph of the assembly beam bridge cluster.

Table 1
Parameters of the BOTDA analyzer.
Model type Sensing range Sampling resolution  Sensing optical fiber Measurement metrics
RP2050 50 km (loop) 0.2m SMF Temperature, strain
Laser wavelength Frequency sweeping Frequency sweeping Operating Measuring accuracy
range step temperature

~1550 nm 10-13 GHz 1-20 MHz 0-40 °C 0.2 °C/4 ue
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Fig. 7. (Color online) Schematic diagram of the distributed optical sensing fiber layout scheme.

Fig. 8.  (Color online) On-site photograph of the distributed optical sensing fiber installation.

3.2 Validation of the performance of the proposed method

Three m-shaped steel—concrete composite simply supported beam bridges with identical
structural configurations were selected from the cluster finite element models for these bridges,
which were developed using ANSYS finite element software. The three bridges were designated
Bridges A, B, and C. All three bridges had identical cross-sectional dimensions, with a span
length of 20 m. Both the bridge deck and wet joints were constructed with C50 concrete, and the
elastic modulus of the concrete exhibited a linear relationship with the ambient temperature. The
steel beams were fabricated from Q255D material. The bridge structures were simulated using
SOLID65 solid elements. Connections between the bridge deck and steel beams, as well as
between the steel and cross beams, were established via shared nodes. Three monitoring circuits
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were placed at the web locations of the model. Key points were defined at critical locations such
as the bearings and mid-span, and the mesh between key points was uniformly partitioned with
an element size of 10 cm. Three monitoring circuits were placed at the web locations of the
model. The cross-sectional dimensions of the bridge are presented in Fig. 9, the linear
relationship between the elastic modulus and temperature is illustrated in Fig. 10, and the
placement of the monitoring circuits is shown in Fig. 11.

To simulate the random vehicle loading conditions during the operational period, a two-axle
vehicle model was employed for loading, and the Monte Carlo method was utilized to acquire
arbitrary random vehicle weight information. The probability density function of the vehicle
load distribution is presented in Egs. (24) and (25), while the probability distribution of the
random vehicle load is illustrated in Fig. 12.

,f_?d 1650 ‘r‘ ‘
J_s\i 310 | |_4_0_125i sio Li |"@'125i 310 —,jsoi
A P— il -
1 Y 3# 2 -5
2| ‘
%0 | 210 | 210 | 210 | 210 | 210 | 210 | 210 %0 |
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Fig. 9. Schematic diagram of the cross-sectional dimensions of the n-shaped composite.
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Fig. 10. Relationship between the ambient temperature and the elastic modulus of C50 concrete.
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Fig. 11.  (Color online) Schematic diagram of the monitoring loop locations.
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Fig. 12. (Color online) Histogram of simulated vehicle weight frequencies.
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Here, the distribution parameters are u = 2.150068, o = 0.4345666, b, = 3.5, and b, = 28.62; the

expression for a is

[u—

a=

1[1n(x)u]2d ' 25)
X

b 1 -
I, e’
b 2nox

The damage process of a wet joint initiates with localized longitudinal cracking at the lower
end. As the damage progresses, the damage length propagates in both the vertical and
longitudinal directions of the bridge, ultimately reaching a fully damaged state of the wet joint.
Accordingly, we define four damage levels for wet-joint elements—healthy, mild damage,
moderate damage, and severe damage—Dby adopting a stiffness reduction (element birth—death)
scheme.(?*#23) The element deactivation patterns corresponding to the four levels are shown in
Fig. 13. In practice, wet joint damage most frequently occurs near the interface between the
heavy vehicle lane and the regular traffic lane, i.e., at the wet joint between the edge girder and
the neighboring girder. To evaluate the diagnostic performance of the proposed method for wet
joint damage, the damage location is set at wet joint 1* on Bridge B. The case configurations for
the different damage levels are summarized in Table 2.

To validate the effectiveness of the proposed method, the daily maximum and minimum
average temperatures in the region where the bridge is located were simulated over a 28 month
period. On the basis of this simulation, a temperature variation—time—history curve was
generated, as illustrated in Fig. 14.
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Fig. 13. Schematic diagram of wet joint damage levels. (a) Healthy, (b) mild damage, (c) moderate damage, and (d)
severe damage.

Table 2
Bridge wet joint damage conditions.
Damage condition Damage location Damage severity Damage length (cm) Noise level
Case 1 Bridge B Wet Joint 1* Mild damage 5 5
Case 2 Bridge B Wet Joint 1*  Moderate damage 9 5
Case 3 Bridge B Wet Joint 1* Severe damage 13 5
Case 4 Bridge B Wet Joint 1* Mild damage 5 10
Case 5 Bridge B Wet Joint 1* Mild damage 5 20

40 r T T . T

30
20

Temperature (°C)
=

1
<o O

1 L 1 1 1 1

4 8 12 16 20 24 28
Monitoring time (months)

Fig. 14. (Color online) Time history of ambient temperature.

On the basis of the damage conditions specified in Table 1, the strain values at the
measurement points and the values of the sectional curvature of the main beam were simulated
over a period of 28 months. The first 24 months corresponded to the healthy state, whereas the
last 4 months represented the state requiring diagnosis. The sectional curvature of the main
beam was subsequently calculated using Eq. (2) and compared with the simulated sectional
curvature values of the main beam. Owing to space constraints, only the daily maximum
curvature information at the mid-span position of the right-side beam of Bridge B under the
healthy state and working conditions 1, 2, and 3 within the 28-month period is presented here.
The results are illustrated in Fig. 15.

Among these results, the maximum relative error between the curvature simulation data and
the curvature data calculated using Egs. (2)—(6) is 2.2%. Additionally, a comparison of the
simulation results in Figs. 15(b)—15(d) clearly reveals that the changes in curvature data before
and after wet joint damage do not intuitively reflect the conditions of wet joint damage.
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Fig. 15. (Color online) Daily peak curvature at the mid-span location of the right-side beam. Daily peak curvature
values of Bridge B in (a) the healthy state, (b) case 1, (c) case 2, and (d) in case 3.

On the basis of the simulation results of the healthy state over the preceding 24 months,
Bridges A, B, and C were used as reference and prediction bridges to construct a Bi-LSTM
network. In this network, the Adam solver was employed, with the model undergoing 600
iterations, a data time window of 3, and an initial learning rate of 0.005. After 125 epochs, the
learning rate was updated using a reduction factor of 0.2. Eighty percent of the data in the
curvature matrix were allocated to the training set, whereas 20% were assigned to the validation
set to evaluate the predictive effectiveness of the constructed network. On the basis of the
simulation results of the diagnostic state over the subsequent four months, the procedure
illustrated in Fig. 5 was utilized to determine the wet joint damage state of Bridge B under
working conditions 1-5, with the results presented in Figs. 16—20.

From Fig. 16, when Bridge B is subjected to the simulated damage in Case 1, the wet joint
damage diagnosis index at wet joint 1* of Bridge B becomes markedly greater than zero when
Bridges A and C are used in turn as the reference bridge; conversely, when Bridge B serves as
the reference bridge, the indices at wet joints 1* of Bridges A and C are markedly greater than
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Fig. 16. (Color online) Damage diagnosis results for wet joints in case 1. (a) Bridge C served as the reference bridge,
(b) Bridge A served as the reference bridge, and (c) Bridge B served as the reference bridge.
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Fig. 17. (Color online) Damage diagnosis results for wet joints in case 2. (a) Bridge C served as the reference bridge,
(b) Bridge A served as the reference bridge, and (c) Bridge B served as the reference bridge.
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Fig. 18. (Color online) Damage diagnosis results for wet joints in case 3. (a) Bridge C served as the reference bridge,
(b) Bridge A served as the reference bridge, and (c) Bridge B served as the reference bridge.
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Fig. 19. (Color online) Damage diagnosis results for wet joints in case 4. (a) Bridge C served as the reference bridge,
(b) Bridge A served as the reference bridge, and (c) Bridge B served as the reference bridge.
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Fig. 20. (Color online) Damage diagnosis results for wet joints in case 5. (a) Bridge C served as the reference bridge,
(b) Bridge A served as the reference bridge, and (c) Bridge B served as the reference bridge.

zero. These results indicate a clear discrepancy between the state of wet joint 1* on Bridge B and
those on Bridges A and C, suggesting that wet joint 1* of Bridge B is likely damaged. The data
in Fig. 16 therefore demonstrate that the proposed wet joint damage diagnosis index effectively
reveals differences between the reference bridge and the bridge under diagnosis. However, using
a single reference bridge is susceptible to the wet-joint condition of that reference itself and may
lead to the misdiagnosis of the bridge under diagnosis; hence, a cross-validation strategy is
needed to avoid such errors.

A comparison of the data in Figs. 16—18 reveals that when Bridge B is subjected to the
simulated damage in Cases 1-3, the increasing severity at wet joint 1* is accompanied by
pronounced deviations from the healthy state at wet joints 2* and 3*. This finding indicates that
at the onset of wet joint damage at a specific location, the mechanical performance does not
decrease sharply; instead, load redistribution occurs locally near the damage, whereas locations
far from the damage remain essentially unaffected. Once the damage exceeds a certain
threshold, the mechanical performance degrades significantly, and a global load redistribution
emerges across the bridge, causing all wet joints to exhibit abnormal responses.

A comparison of Figs. 16, 19, and 20 clearly reveals that the diagnostic results of the proposed
algorithm at a noise level of 10% are largely consistent with those at a noise level of 5%.
However, at a noise level of 20%, a reduction in wet joint damage discrimination index was
observed, suggesting that noise can affect the diagnostic accuracy of the algorithm to some
extent. Nevertheless, the results indicate that the proposed algorithm remains capable of
effectively identifying wet joint damage across noise levels ranging from 5 to 20%.

To further validate the diagnostic performance of the proposed method, the damage scenarios
listed in Table 1 were analyzed using the lateral deformation influence line method.?®) In this
experiment, a standard two-axle vehicle with an axle spacing of 3.8 m, an axle width of 1.8 m,
and a total weight of 20 t was employed. After each loading cycle, the vehicle was laterally
shifted by 0.55 m, and the process was repeated for a total of 30 cycles. Displacement
measurement points were established at the bottom of the quarter-span, mid-span, and three-
quarter-span positions along the centerline of each girder. A schematic diagram of the load test is
shown in Fig. 21, and the diagnostic outcomes are depicted in Fig. 22.

As shown in Fig. 22, the diagnostic index of the transverse deformation influence line
method was approximately zero under mild wet joint damage conditions, indicating its limited
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Fig. 21. (Color online) Schematic diagram of test vehicle loading.
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Fig. 22. (Color online) Schematic diagram of wet joint damage diagnosis results. (a) Diagnostic results for cases 1,
2, and 3. (b) Diagnostic results for cases 1, 4, and 5.

effectiveness in diagnosing early-stage wet joint damage. As shown in Fig. 22(a), as the damage
to the 1* wet joint increased, both the 2* and 3* wet joints exhibited damaged states, and the
bridge experienced load redistribution. These observations align with the conclusions drawn
from Figs. 16 to 18, thereby validating the effectiveness of the proposed method in this study.

3.3 Data analysis of real bridge monitoring

In addition, strain monitoring data were collected for the fifth, sixth, and seventh span
bridges within the prefabricated beam bridges monitored within one cluster during the initial
four months after construction and one month of operation. The wet joint conditions of these
three bridges were subsequently evaluated. Owing to space constraints, in this paper, we present
only the daily maximum curvature calculation results at the 1/4 span, mid-span, and 3/4 span
positions of the side beam of the fifth span bridge, as well as the wet joint damage diagnosis
results for all three bridges. An actual bridge is shown in Fig. 23, the daily maximum curvature
calculation results are shown in Fig. 24, and the diagnosis results are shown in Fig. 25.

As shown in Fig. 24, when each of the three bridges was used as both the reference bridge
and the target bridge for diagnosis, the wet joint damage discrimination index remained
consistently below 0.07 and approached zero. These findings demonstrate that while the
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Fig.

23. (Color online) Photograph of an actual bridge.
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Fig. 24. (Color online) Results of daily maximum curvature calculations. Maximum daily curvature values
measured at the (a) one-quarter span, (b) mid-span, and (c) three-quarter span positions.
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Fig. 25. (Color online) Wet joint damage diagnosis results. (a) The seventh link bridge served as the reference
bridge, (b) the fifth link bridge served as the reference bridge, and (c) the sixth link bridge served as the reference
bridge.

proposed algorithm cannot fully eliminate the effects of environmental noise and other factors
on the diagnostic results, such effects are negligible and will not result in the misjudgment of the
wet joint condition.

4. Conclusions

To achieve an effective diagnosis of wet joint damage in prefabricated beam bridges
monitored within one cluster, we proposed a diagnostic method for wet joint damage in such
clusters on the basis of data obtained from distributed optical sensing fibers. The main
conclusions are as follows:

1. The proposed algorithm uses the spatiotemporal correlation of prefabricated beam bridges
monitored within one cluster to construct a Bi-LSTM network, enabling the mutual prediction
of the sectional curvature of the main beam among identical bridges within the cluster. On
this basis, a discriminant index for wet joint damage is developed, allowing for the effective
diagnosis of wet joint damage within such clusters.

2. The results of the numerical examples indicate that in the early stage of wet joint damage in
prefabricated beam bridges, load redistribution occurs only near the damaged location,
whereas the load distribution at healthy locations remains largely unchanged. As the damage
at the wet joint location worsens, the overall load-bearing capacity of the bridge decreases,
and the wet joints at healthy locations begin to experience abnormal stress conditions.

3. The proposed algorithm is specifically designed for monitoring wet joint damage in identical
prefabricated beam bridges monitored within one cluster. Additionally, since the algorithm
employs a cross-validation strategy, it is applicable only when there are more than three
identical prefabricated beam bridges in the cluster.

4. The analysis of the monitoring data from the actual bridge reveals that, while the proposed
method cannot fully eliminate the effects of environmental noise and other factors on the
diagnostic outcomes, these effects are negligible and will not result in the misjudgment of the
wet joint condition.



4642 Sensors and Materials, Vol. 37, No. 10 (2025)

Acknowledgments

This work was supported by the Engineering Construction Research Project of Zhejiang

Provincial Department of Transportation (No. 2022-GCKY-03).

AW N —

10
11

12
13

14
15
16
17
18
19
20
21
22
23
24
25

26

References

Statistical Bulletin on the Development of the Transportation Industry in 2024. https:/xxgk.mot.gov.cn

W. Wu, H. Zhang, Z. Liu, and Y. Wang: Mater. 15 (2022) 6805. https://doi.org/10.3390/mal5196805

Y. Liu and M. Gao: Comput.-Aided Civ. Infrastruct. Eng. 37 (2022) 1891. https:/doi.org/10.1111/mice.12874

D. Ji, C. Li, C. Zhai, and Z. Cao: IEEE Trans. Geosci. Remote Sens. 62 (2024) 1. https:/doi.org/10.1109/
TGRS.2024.3409620

Q. Xia, Y. Zhou, Y. Cheng, and J. Zhang: Struct. Control Health Monit. 2023 (2023) 1. https:/doi.
org/10.1155/2023/1834669

D. Yang, H. Zhou, T. Yi, H. Li, and H. Bai: Struct. Control Health Monit. 29 (2022) 3053. https:/doi.
org/10.1002/stc.3053

S. Li, H. Yang, P. Guo, D. Ren, B. Xu, and Z. Liang: Measurement. 224 (2024) 113867. https://doi.org/10.1016/j.
measurement.2023.113867

Z. Shang, F. Gong, Z. Shao, J. Matos, G. Xin, and Y. Xia: Sensors 24 (2024) 4255. https://doi.org/10.3390/
$24134255

F. Han, D. Dan, Z. Xu, and Z. Deng: Struct. Control Health Monit. 21 (2022) 2010. https://doi.
org/10.1177/14759217211047899

D. Dan, W. Zheng, and Z. Xu: Structures 48 (2023) 1322. https:/doi.org/10.1016/j.istruc.2023.01.023

H. Hu, J. Wang, C.-Z. Dong, J. Chen, and T. Wang: Mech. Syst. Signal Process. 183 (2023) 109631. https:/doi.
org/10.1016/j.ymssp.2022.109631

F. Gong, X. Lei, and Y. Xia: Eng. Struct. 300 (2024) 117147. https://doi.org/10.1016/j.engstruct.2023.117147

J. Zhan, F. Zhang, M. Siahkouhi, X. Kong, and H. Xia: Eng. Struct. 228 (2021) 111551. https://doi.org/10.1016/].
engstruct.2020.111551

M. Abedin, F. J. De Caso y Basalo, N. Kiani, A. B. Mehrabi, and A. Nanni: Eng. Struct. 252 (2022) 113648.
https://doi.org/10.1016/j.engstruct.2021.113648

F. Han, D. Dan, Z. Xu, and Z. Deng: Struct. Health Monit. 21 (2022) 2010. https://doi.
org/10.1177/14759217211047899

A. J. Reiff, M. Sanayei, and R. M. Vogel: Eng. Struct. 109 (2016) 139. https://doi.org/10.1016/].
engstruct.2015.11.006

Z. Zhou, K. Dong, Z. Fang, and Y. Liu: Sustainability 14 (2022) 10019. https://doi.org/10.3390/su141610019
Z.Zhou, Y. Liu,and H. Dai: Measurement 208 (2023) 112448. https://doi.org/10.1016/].measurement.2023.112448
Z.Zhou, Y. Liu, and H. Li: Measurement 211 (2023) 112611. https:/doi.org/10.1016/].measurement.2023.112611
Q. Xu, Z. Zhou, and Y. Liu: Struct. Control Health Monit. 2023 (2023) 1. https://doi.org/10.1155/2023/8234927
Z.Zhou, X.Ma, Y. Liu, and H. Li: Struct. Health Monit. 24 (2025) 351. https://doi.org/10.1177/14759217241236368
Z. Zhou, Q. Xu, Q. Gao, and Y. Liu: Eng. Syst. Part B: Mech. Eng. 10 (2024) 4065268. https:/doi.
org/10.1115/1.4065268

M. Zhao, X. Yi, J. Zhang, and C. Lin: Front. Earth Sci. (Lausanne). 9 (2021) 660918. https://doi.org/10.3389/
feart.2021.660918

C. S. N. Pathirage, J. Li, L. Li, H. Hao. W. Liu, P. Ni: Eng. Struct. 172 (2018) 13. https://doi.org/10.1016/].
engstruct.2018.05.109

F. I. Sakiyama, G. S. Verissimo, F. Lehmann, H. Garrecht: Struct. Health Monit. 22 (2023) 496. https:/doi.
org/10.1177/14759217221079295

D. Yang, H. Zhou, T. Yi, H. Li, and H. Bai: Struct. Control Health Monit. 29 (2022) 3053. https:/doi.
org/10.1002/stc.3053




