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To address uncertainty challenges in highly renewable microgrids with large-scale electric
vehicle (EV) integration, in this study, we developed a multi-source data-driven cooperative
scheduling framework for wind—photovoltaic—storage—EV systems. The model integrates
heterogeneous real-time monitoring data (grid status, renewable generation, and EV charging)
through a Kalman-filter-based fusion architecture with dynamic anomaly detection. Renewable
output and load uncertainties are predicted using a long short-term memory network (LSTM)-
DLinear hybrid model combining DLinear’s decomposition efficiency with LSTM’s residual
correction. The scheduling optimization employs the Red-billed Blue Magpie Optimization
Algorithm to solve a four-dimensional economic objective (TEB = Cppeyre T RBE + Bigppop +
Rijifecyere) using gene-encoded 96-period decision variables. Key innovations include a price-
responsive EV charging mechanism with adjustable power boundaries (P (1) =a(¢)- Prated)
and temporal energy constraints. Implemented through a closed-loop predict-then-optimize
framework with day-ahead planning and real-time correction layers, the solution demonstrates
an 18.9% reduction in renewable curtailment and a 42% economic benefit improvement in high-
EV penetration scenarios. This research validates the critical role of multi-source sensor data
fusion in enhancing grid flexibility and schedulability, providing an effective real-time
optimization approach for highly renewable microgrids.

1. Introduction
Driven by global carbon neutrality goals and the emission reduction constraints of the 2016

Paris Agreement, low-carbon energy transition has become a core strategic task for nations
worldwide. Currently, more than 130 countries have pledged to achieve carbon neutrality before
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2050, with frameworks such as the EU’s “Fit for 55” policy package and China’s “dual-carbon”
strategy driving profound transformations in energy systems.()) International Energy Agency
data indicate that global renewable energy investment surpassed $1.8 trillion in 2023, yet the
power sector still contributes 38% of global carbon emissions. As a critical enabler for UN
Sustainable Development Goal 7 (SDG7), distributed energy systems, leveraging their proximity
to load centers and high compatibility with renewable energy, have been incorporated into
national energy transition roadmaps by major economies such as the US, Germany, and Japan.
Global distributed photovoltaic (PV) installed capacity has maintained a compound annual
growth rate of 21% over the past five years, historically exceeding 500 GW in 2023, signifying a
leap in energy supply architecture from centralized to hybrid centralized-distributed models.®)

The deep decarbonization and digitalization of global energy systems are reshaping power
system operational paradigms through the large-scale integration of distributed renewable
energy and electric vehicles (EVs). Clean energy sources such as wind and solar, benefiting from
wide distribution characteristics and continuously declining costs, are rapidly proliferating in
microgrid applications, but their inherent intermittency and uncertainty pose severe challenges
to dispatching systems. Under high-penetration scenarios, renewable energy output fluctuations
intensify pressure on energy storage systems, with frequent power imbalances threatening
power quality. Concurrently, EVs, acting as novel loads and potential distributed energy storage
resources, impose higher demands on microgrid flexibility and stability while advancing sensor
improvement.®

Scholars worldwide have conducted extensive research on microgrid dispatching
incorporating renewable energy. In addressing forecasting challenges, Zeng et al. questioned
Transformers’ efficacy in long-term time series forecasting (LTSF), proposing LTSF-Linear—a
simple linear direct multi-step (DMS) baseline.®) This study surpasses all Transformers across
nine real datasets (20-50% average gain), exposing critical flaws. Transformers’ permutation
invariance causes sequential information loss, while existing studies rely on error-accumulating
iterative prediction and unjustified complex architectures.) Abdelghany et al. proposed a model
predictive control (MPC)-based hybrid storage system using simplified mixed logical dynamical
(MLD) modeling, achieving 25% lower operating costs and 1500 fewer annual device switches.®)
However, it depends on commercial solvers and lacks uncertainty modeling or multi-objective
validation. Hu et al. developed a two-stage prediction framework [RF/maximal information
coefficient (MIC) feature reduction, gated recurrent units (GRU)/piecewise autoregressive with
extra inputs (PWARX) models], identifying four critical turbines and achieving <3.76%
normalized root mean square error (NRMSE) with > 95% interval coverage on North China
wind farms.©® Its computational intensity and terrain dependency limit broader applicability.©
Li et al. introduced hybrid improved multi-verse optimizer support vector machine (HIMVO-
SVM) (integrating chaotic mapping and differential evolution (DE) for SVM optimization),
reducing MSE by 0.0026—0.0030 and MAPE by 1.98-3.68% versus benchmarks across weather
conditions.(”) Accuracy declines during low-generation periods, and scalability is constrained by
basic meteorological inputs.(”) Hochreiter and Schmidhuber proposed long short-term memory
network (LSTM) with gating mechanisms to resolve recurrent neural network (RNN) vanishing
gradients, enabling the robust learning of long-term dependencies.®) Early scalability was
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constrained by computational inefficiency, parameter sensitivity, and limited empirical
validation under noise.® While Teixeira et al®) successfully synthesized hybrid forecasting
models that reduce errors, their work also revealed critical limitations. Specifically, their
approach, which integrated decomposition with LSTM networks and was optimized by genetic
algorithms, leveraged climatic data and preprocessing to lower the MAPE by 14.5%.
Nevertheless, the study concluded that major challenges remain in addressing ultrashort-term
intermittency, reducing computational demands for real-time operation, and enabling effective
transfer learning to data-scarce regions. Scalability and practical validation remained
insufficiently addressed.

On the other hand, regarding dispatching optimization methods, intelligent optimization
algorithms are gradually replacing traditional tools owing to their strong search capabilities,
with particle swarm optimization,(!?) genetic algorithms, and grey wolf optimization(!)
achieving favorable results in microgrid energy management. Particularly in complex scenarios
involving multiple objectives, constraints, and dynamic environments, emerging algorithms
such as whale optimization, firefly algorithm, and differential evolution exhibit promising
performance.(!? Notably, in recent years, the nature-inspired Red-billed Blue Magpie
Optimization (RBMO) Algorithm has attracted increasing attention in the dispatching
optimization field owing to its ability to balance global exploration and local exploitation.(!3)

Simultaneously, concerning EV integration scheduling, some research has modeled EVs as
flexible loads.(!¥ Several studies focus on scheduling strategies for the vehicle-to-grid (V2G)
mode, but are confronted with issues such as some EVs lacking discharge capability or limited
user participation.(!¥ As for models considering only charging-side control, their integration
within the multi-source coordination context of microgrids remains insufficient, particularly
regarding synchronization with the volatility of renewable energy output.(!4

Against this backdrop, constructing an advanced energy dispatching system leveraging
synergistic wind—solar—storage—EV multi-source data represents a critical breakthrough.
Traditional dispatching methods exhibit significant limitations in addressing renewable energy
output uncertainty and EV behavioral complexity, particularly lacking effective fusion
capabilities for multi-timescale heterogeneous data (e.g., second-level charging data and minute-
level renewable power data), thus struggling to meet the triple demands of modern microgrids
for precision, adaptability, and real-time performance.

Consequently, developing a synergistic dispatching model that integrates multi-source
monitoring sensors’ data—including grid operational status, renewable energy output, and EV
charging operations—and combines high-precision forecasting with intelligent decision-making,
holds substantial theoretical value and practical significance.)

2. System Model
2.1 LSTM-DLinear hybrid forecasting model

Conventional prediction approaches exhibit significant limitations in time-series forecasting,
as evidenced by the comparative analysis in Table 1. Traditional LSTM models suffer from
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Table 1

Comparative analysis of prediction model limitations.

Model Deficiencies Fundamental Cause
LST™M Degraded long-term accuracy Vanishing historical context
DLinear Limited nonlinear adaptation Fixed linear decomposition
Statistical Rigid pattern representation Prescribed mathematical forms

degraded long-term accuracy due to vanishing historical context, while DLinear architectures
demonstrate limited nonlinear adaptation stemming from fixed linear decomposition. Statistical
methods further exhibit rigid pattern representation constrained by prescribed mathematical
forms.

To overcome these limitations, the proposed LSTM-DLinear hybrid architecture integrates
three core capabilities: DLinear’s efficient trend-seasonal decomposition, LSTM’s nonlinear
residual learning, and attention-based temporal feature weighting. This synthesis enables robust
pattern capture while maintaining sensitivity to complex temporal dependencies.

2.1.1 DLinear decomposition module

The decomposition module first extracts trend components through moving average
filtering.(19)

1 t+k/2

§()=— 2 P(i) M

i=t—k/2

Seasonal patterns are subsequently isolated using Seasonal-trend decomposition using Loess
(STL) with diurnal periodicity:

G(t)zSTL(P(t),period =Tday), )

where 7, = 24 h for diurnal cycles.
Baseline prediction:

Pppinear (1+1)=F (1) +6(2). 3
2.1.2 LSTM-attention residual correction

The LSTM processes are as follows.
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residuals r(t)=P(t)—- ISDLl-nea, (t+1):
i =c(W[h_.n]+b)
f, =0(Wf[h,_1,rt]+bf)
o, = (W,[h_y.1,]+b,) *
Ci= tanh(WC [ht,l,rt]+bc)
C,=1,0C_+i 0O¢
h; =0, O tanh(C, )

An attention mechanism dynamically weights temporal features across hidden states.

a, = softrnax(uT tanh (W,h, +b, )) ®)

The final hybrid prediction combines decomposition and residual components.
phybrid (t + 1) = PDLinear (t + 1) + Zarhr (6)
T
2.2 RBMO Algorithm

2.2.1 Algorithm fundamentals

Inspired by avian foraging behaviors, RBMO balances exploration and exploitation through
distinct movement strategies.

1

X!+ a-(Xbm —X?) (exploration)

XjH—l — (7)

X! +,B-(and —Xi’) (exploitation)

2.2.2 High-dimensional constraint handling

Decision variables are encoded as composite gene structures representing power management

parameters.
l:gene = {}
2:gene = ["P_buy”] « [p1, P2, s P24)
3:gene = ["P_ev”’] « [evy, evy, ..., eVay] ®)

4:gene = ["P_ch”] «— [chy, chy, ..., chyy]
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Time-coupled constraints are enforced through penalty functions and dynamic repair
mechanisms. Energy deficit constraints incorporate quadratic penalties,

2
penalty = 1 - max(O,Eerfq - ZPevAt) , ©)

with the automated adjustment of 2" during constraint violations.

The algorithm implements a two-phase strategy with automatic transition: global exploration
dominates the first 40% of iterations, transitioning to local exploitation during the final 60%.
Phase switching occurs when population diversity falls below 15% as measured by genotypic
dispersion metrics.(13)

3. Objective Function and Constraints
3.1 Objective function design

Total economic benefit (TEB):

maxTEB = ACprocure + RBE + Bcarbon + Rlifecycle' (10)
Components:
Electricity procurement cost savings:
ACprocure = C‘;{d (Cgrid - Cev ) (1 1)
Renewable energy sales revenue:
Ry = Z Pl (1) S (2) - A, (12)
Carbon emission reduction benefits:
T
Bcarbon = ZPI?ISSE (t) : ecarbon At (13)

=1
Equipment life cycle return:

L Srev Ccom y SV,
Rlzfecycle ZZ ) ( )+ £

iyt (+r) (1+7)

1. (14)
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3.2 System constraints

Power balance:

Py () + Prina (1) + Pais (1) + Poug, () = Piaa (1) + Foy () + Py (£) + Py (2).

Energy storage operation:

min — max

E(t)=E(t=1)+ (O - Pop (1) = Ouis - Puie (1))- At Eppy SE(t)SE
Electric vehicle charging:

P (1)< Py (1) S B (1),
> P, (1) A= ENY

ev
teTplug

P, (1)=0.

ev

Grid interaction:

3.3 Electric vehicle flexibility mechanism

Adjustable power boundaries:
P (6)=a(t) Pyeq- ((r)€[0.2,1])

Temporal energy constraints:

[depart
> P, (t)-At=Epx?, P, (t)=0.(no-discharge constraint)
t=t

“tarr

4787

(15)

(16)

(17)

(18)

(19)

(20)

Table 2

Microgrid equipment configuration.

Component Capacity Parameters Quantity
Wind turbine 450 MW (90 x 5 MW) Cut-in speed: 3 ms ™! 90 units
PV system 5SMW, Tilt: 30°, Azimuth: 180° 12800 panels
BESS 1600 MW/6400 MWy, Nen/Mdis: 0.95 800 racks

EV fleet 1.4 MW Prated: 7 kW, Ereq: 40 kWh 200 vehicles
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4. Case Study
4.1 Experimental setup

The microgrid test system integrates wind turbines, PV arrays, battery storage, and electric
vehicle charging infrastructure, with detailed technical specifications provided in Table 2. Wind
turbine capacity totals 450 MW from 90 units (5 MW each, cut-in speed of 3 ms!),
complemented by 12800 PV panels (S MW, total, 30° tilt, 180° azimuth orientation). The battery
energy storage system (BESS) comprises 800 racks (2 MW/8 MW, per rack, charge/discharge
efficiency #,.,/n4s = 0.95), operating under state-of-charge constraints defined by Eq. (15). The
electric vehicle fleet includes 200 vehicles, each with a rated power of 7 kW and an energy
requirement of 40 kW/,.(1)

)’(\7]; = Ax;;_l + Buk_l
Pk_ = APk_lAT +Q
-1
Ky =R H (hFH +R) @1
Sy = + Ky (20— Ho |
P =(1-KH)F,
Multi-source data integration employs Kalman filtering with parameters Q = 0.01 and
R = 0.1, implemented through the recursive estimation process in Eq. (21). Renewable generation

data originate from the NREL Wind Toolkit (10 min resolution) and NSRD- B/PVWatts (1 min
irradiance), while load profiles are derived from the Pecan Street dataset with 35% residential

Iw Industrial

Jlf

Fig. 1.  (Color online) Structure diagram.

Wind and Solar
energy

Grid
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Table 3

Experimental scenario specifications.

Scenario EV Penetration (%) Charging Strategy Weather

Baseline 30 Fixed-power (o = 1.0) Clear sky (CF: 85%)
High flexibility 50 Price-responsive (o € [0.2,1])  Partly cloudy (CF: 65%)
Extreme 70 Price-responsive (a € [0.2,1]) Overcast/windless (CF: 40%)

and 65% commercial compositions. Electric vehicle behavior patterns are modeled using Caltech
ACN-Data, featuring the arrival time distribution f' (t;/l) = 2e M) for > u with g = 18:00 and
A=0.55.

The microgrid structure is shown in Fig. 1. Three operational scenarios were evaluated under
distinct conditions specified in Table 3. The baseline scenario features 30% EV penetration with
fixed-power charging (o = 1.0) under clear sky conditions (capacity factor of 85%). The high-
flexibility scenario increases EV penetration to 50% with price-responsive charging (a €[0.2,1])
under partly cloudy conditions (capacity factor of 65%). The a interval correctly reflects the
“price-responsive charging” mechanism while this study considers the a of 0.5. The extreme
scenario tests 70% EV penetration with identical price-responsive charging under overcast/
windless conditions (capacity factor 40%). Capacity factor (CF) is calculated as
CF = (Actual Generation) / (Rated Capacity x Period Hours).'")

To validate the forecasting performance of the LSTM-DLinear hybrid model, in Fig. 2, we
compare the measured power outputs of wind and PV systems against multi-model predictions.
For wind power forecasting, the model demonstrates significantly superior performance over
baseline models during steep ramp events (e.g., the wind speed drops at 1 = 18 h), achieving a
mean absolute error (MAE) of 3.2%. This represents an error reduction exceeding 24.1%

Wind Output Prediction Results Comparison
450 500
400
g s . 400
T 300 2 300
2 250 5
£ 500 £ 200
E 5
2 150 100
O 100
50 0
0 1234567 8 9101112131415161718192021222324
“HSFESFSH53SZSFSFSESESEZESEEZEEE Hours/h
S 3 gine| S
Time/min = LSTM-Dlinear == LSTM Dlinear ARIMA
Solar Output Prediction Results Comparison
350 350
300 300
g 250 2 250 \
T < 200
£ 200 =
3 2. 150
& 150 B
- =1
2 o 100
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(o]
50 0 NN
b 123456789101112131415161718192021222324
i S e i S s eitis e i pet St Hoursfh
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Fig. 2. (Color online) Prediction results comparison and real wind-solar output.
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compared with the LSTM (7.1%), DLinear (5.8%), and ARIMA (9.4%) models. By effectively
leveraging the synergy between temporal decomposition and residual learning, the model
successfully captures transient features neglected by models such as DLinear (e.g., the secondary
peak at =8 h).

For PV power forecasting, the LSTM-DLinear hybrid model exhibits excellent performance
during sunrise/sunset transition periods ( = 6 h/19 h), attaining a prediction interval coverage
probability of 96.3%. This constitutes an 8.7% improvement over the stand-alone LSTM model.
Furthermore, the hybrid model effectively mitigates the inherent phase shift artifacts associated
with ARIMA, which stem from its rigid mathematical formulation.(!®

4.2 Sensitivity analysis
4.2.1 Prediction horizon effect
The prediction horizon length has a decisive impact on system economics. As shown in Table

4, the forecast error and the increase in scheduling cost exhibit a quadratic growth relationship:
when the MAE of wind and PV forecasts is below 3%, the total energy benefit (TEB) fluctuates

Table 4

Scheduling cost increase vs forecast error.

Error Level Wind MAE (%) PV MAE (%) ATEB (%)
High accuracy (<3%) 2129 1.8-2.5 —0.8—+1.2
Medium (3-5%) 3.1-47 27-4.3 —3.5—1.2
High (5-10%) 5.2-9.8 4.6-9.1 —6.9——4.1

5.3

® o=0.4 Threshold

5.2

I
-

5.0

TEB Stability (%)

4.9

4.8

Dynamic compensation region when a>0.4 (max 22% error compensation)

Fig. 3. (Color online) Response surface of TEB vs a, C_storage, and prediction error.
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only between —0.8 and +1.2%. When the error increases to the 3—5% range, the TEB decreases
significantly by 1.2-3.5%, and when the error reaches 5-10%, the loss expands to 4.1-6.9%.
This relationship is precisely quantified by the mathematical model
ACost =0.73(MAE, ;) +0.81(MAE, )’ —1.2.

4.2.2 Cross-parameter interactions

The synergistic effects among parameters are systematically analyzed using the response
surface methodology, as shown in Fig. 3.

This study reveals strong coupling relationships between electric vehicle (EV) charging
flexibility, energy storage configuration, and forecasting accuracy, which collectively govern the
total economic benefit (TEB) of the system. The analysis identifies a synergistic operational
regime for achieving high TEB, characterized by the following set of concurrent threshold
conditions:

035<a<0.65,

Cstorage 20.8xP peak > (22)

H . 2 6 hours.

Key findings indicate that when o > 0.4, increasing storage capacity can effectively
compensate for forecast errors (with a maximum compensation rate of 22%), forming a dynamic
parameter compensation mechanism. This nonlinear interaction creates a robust operating
region, enabling the system to maintain over 90% TEB stability under £15% forecast error
fluctuations, providing a basis for anti-disturbance design in practical engineering
configurations.

Algorithm Comparison in TEB

120

100

TEB/ $
3

RBMO PSO GA

Fig. 4. (Color online) Comparison of algorithmic economic efficiencies.
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4.2.3 Economic advantage and performance comparison of the RBMO algorithm

To validate the economic superiority of the scheduling algorithm, in Fig. 3, we compare the
TEB performance characteristics of RBMO, Particle Swarm Optimization (PSO), and Genetic
Algorithm (GA) under identical test scenarios. The results are shown in Fig. 4, demonstrating
that RBMO achieves the highest TEB (120 USD), outperforming PSO by approximately 20% (p
< 0.05), and surpasses conventional GA by over 50% (ATEB = 63 USD, p < 0.01).

This significant economic advantage, coupled with RBMO’s 35.4% faster convergence than
PSO’s (as detailed in Sect. 5.1), establishes a comprehensive performance paradigm. The synergy
between high computational efficiency (solving the 24-period scheduling problem in 120 s) and
economic optimality confirms the robustness of the RBMO algorithm for real-time scheduling
scenarios characterized by high-dimensional decision spaces and dynamic constraints. These
findings align with recent studies highlighting enhancements in metaheuristic applications for
energy systems, while demonstrating a superior cost-benefit ratio over established benchmarks.

5. Conclusions

The proposed wind-PV-storage-EV scheduling framework establishes an integrated
methodological approach combining Kalman filter data fusion with LSTM-DLinear hybrid
forecasting and a large number of sensitive sensors.! This system employs the RBMO
algorithm to optimize a 24-period dynamic charging mechanism featuring adjustable power
boundaries. Key performance metrics demonstrate significant improvements: the hybrid
forecasting model achieves a 24.1% reduction in MAE for wind power prediction (maintaining
sub-5% error during transients) through multi-source data synergy. Economically, the framework
elevates system-wide TEB by 42% while reducing renewable curtailment by 18.9% and
decreases peak procurement costs by 38.7% via off-peak load shifting—generating $864 in daily
carbon benefits. Computationally, RBMO exhibits 35.4% faster convergence than PSO, solving
24-period scheduling in 2 min to meet real-time operational requirements through enhanced
scalability. Implementation validation under high-EV penetration scenarios (30—40% EV load
share) confirms 38.7% peak cost reduction and 42% TEB improvement via 24-period dynamic
scheduling simulations.
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