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	 Artificial olfactory systems have been applied in domains such as food quality assessment, 
environmental monitoring, and medical diagnostics. However, progress in enabling machines to 
perform high-level reasoning based on odor perception remains limited. To address this gap, we 
propose a novel hybrid system that integrates electronic nose (E-Nose) sensing with large 
language models (LLMs) and knowledge graphs, enabling human-like olfactory reasoning 
through the interaction of sensory and linguistic data. A case study on coffee aroma 
interpretation demonstrates the system’s ability to generate descriptive narratives, infer semantic 
relationships, and contextualize odor signals meaningfully. To simulate odor perception, we 
employed a TETCN model—combining a transformer encoder and a temporal convolutional 
network—to predict aroma types and generate structured labels. These labels guide the retrieval 
of relevant knowledge from a memory database, which is then processed by the LLM for 
advanced reasoning. By bridging signal-level perception and abstract cognition, this work 
presents a significant advancement toward cognitively intelligent olfactory systems.

1.	 Introduction

	 Artificial olfactory reasoning, as a core branch of perceptual AI, is progressively overcoming 
the technical limitations of traditional odor analysis. Similar to the human olfactory system, 
artificial olfactory perception plays an important role in many areas, including food quality 
assessment, environmental monitoring, and medical diagnosis. However, progress in artificial 
olfactory reasoning from detected odors has been surprisingly slow. This can be attributed to the 
complexity of recognizing olfactory information and various technical limitations. Nevertheless, 
interest in the study of olfactory recognition mechanisms has been steadily increasing. In 
particular, electronic nose (E-Nose) technology(1–10) has recently emerged as an important 
method for digitizing odor data to address the challenge of objectively capturing and interpreting 
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complex olfactory information. Despite advances in sensor precision and pattern recognition, 
most systems remain limited to low-level signal classification and lack the cognitive capacity to 
reason over complex inputs or infer contextual meaning. Real-world interpretation often 
demands the integration of background knowledge, domain expertise, and historical patterns—
capabilities that traditional machine learning methods struggle to support. To address these 
limitations, recent advancements in AI offer promising solutions; in particular, the emergence of 
large language models (LLMs) introduces the ability to interpret odor-related descriptors and 
generate human-like inferences, whereas knowledge graphs(11,12) provide a structured backbone 
for linking sensory data to domain-specific concepts. However, a systematic integration of these 
components for olfactory reasoning remains underexplored in the literature. Therefore, in this 
study, we propose a hybrid system that combines E-Nose sensing with the reasoning capabilities 
of LLMs and knowledge graphs to explore deep interactions between olfactory and linguistic 
data, where human-like reasoning functions can be performed. To verify the feasibility of the 
proposed system, we conducted a case study on coffee aroma interpretation, demonstrating how 
the proposed system can enhance the understanding of odors by generating descriptive 
narratives, inferring underlying relationships, and contextualizing sensory inputs in a 
semantically meaningful way. To simulate odor perception, we employed a hybrid model, the 
TETCN algorithm, which combines a transformational encoder (TE) and a temporal 
convolutional network (TCN), to predict aroma types and generate structured labels. These 
labels guide the retrieval of relevant knowledge from a memory database, which is then 
processed by the LLM for advanced reasoning. The main contribution of this work is that our 
hybrid system approach overcomes the current limitations of artificial olfactory reasoning, 
bridges the gap between complex odor information and contextual reasoning models, and allows 
the machine to simulate the cognitive mechanism of human abstract thinking and reasoning 
about odor, which in turn provides a new path for AI-based olfactory research.
	 The structure of this paper is as follows. In Sect. 2, we review related work on artificial 
olfactory systems. In Sect. 3, we outline the system framework and methods. In Sect. 4, we 
present benchmarking experiments of various LLMs and evaluate system performance, 
including the quality of generated odor descriptions. In Sect. 5, we conclude the study and 
discuss future research directions.

2.	 Related Work

	 The artificial olfactory system developed in this study is inspired by the human olfactory 
system.(13) During inhalation, volatile molecules reach the interior of the nasal cavity. The 
olfactory epithelium in the nasal cavity interacts with these odor molecules. The olfactory 
neurons, which act as receptors, transmit the molecular binding process to the brain via 
electronic signals. Thus, the essence of odor perception is the conversion of chemical interactions 
between olfactory receptors and volatile molecules into electronic signals that transmit external 
information to the brain.(13,14) Information about odors is encoded in the olfactory bulbs in the 
form of patterns. In other words, olfactory judgment is determined by the pattern formed by 
different combinations of receptors that recognize the specific molecular characteristics of each 
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odor molecule. Therefore, to mimic the above olfactory sensing process, machine learning and 
artificial neural network techniques are used to categorize pattern data from the sensor array 
(i.e., E-Nose) in the developed artificial olfactory system.(1,2,15) In our system, the E-Nose 
component is used to perform sensing and odor pattern recognition, whereas the LLM 
component is used to perform more advanced inference tasks, such as olfactory-based 
interpretation. To the best of our knowledge, there is no similar research work that integrates 
E-Nose, LLM, and knowledge graph approaches to explore olfactory reasoning functionality in 
the development of an artificial olfactory system. This is an interdisciplinary research effort. 
Several issues and studies related to this research are discussed below. Odor analysis is widely 
applied across diverse domains and can be implemented using an E-Nose. A conventional 
E-Nose comprises a multichannel gas-sensor array; each sensor exhibits a distinct sensitivity 
toward volatile organic compounds (VOCs), allowing the system to characterize gaseous 
constituents.(3–5) Odor analysis is most frequently deployed in the food sector—for instance, Ren 
et al.(6) identified food types by classifying gaseous components and measuring their 
concentrations—but it also extends to other areas, such as discriminating alcoholic beverages(7) 
and identifying coffee cultivars.(8,9) Contemporary E-Nose systems are typically trained with 
deep-learning algorithms whose stacked hidden layers yield more granular and accurate analyses 
of odor data. Wang et al.,(10) for example, combined a convolutional neural network with a 
wavelet-scattering network to gauge freshness by exploiting odor differences that arise at 
various spoilage levels. Despite this progress, E-Nose research has largely remained limited to 
gas identification; in-depth studies on the relationships among different odor datasets are 
lacking, leaving current solutions short of meeting the full range of human olfactory needs.
	 Reasoning ability is highly correlated with human memory;(16–18) consequently, effective 
reasoning applications must integrate human sensory modalities such as olfaction. LLMs 
designed for reasoning emulate human cognitive mechanisms, and as new reasoning-oriented 
models continue to emerge, researchers have begun to explore diverse approaches for reasoning 
tasks.(19–21) Earlier work on olfactory reasoning in AI has concentrated on several fronts, one of 
which is a model’s capacity to describe and comprehend olfactory information.(22) For example, 
Shaari et al.(23) examined the accuracy of LLMs (e.g., GPT-4o and Google Gemini) when 
answering odor-related questions, whereas Esteban-Romero et al.(24) investigated cross-modal 
information integration to enhance model understanding in the olfactory domain. Schwarz and 
Hamburger(25) confirmed the strong link between odors and memory, thereby motivating 
research on reasoning driven by olfactory cues. Although these studies have achieved 
incremental advances, they mainly assess a model’s ability to handle odor-centric questions. 
Mahmud et al.(26) combined odor signals with machine-learning techniques to localize scent 
sources within physical spaces, thereby tying olfaction to real-world environments; however, the 
model’s odor cognition still relies heavily on prior knowledge, and research on reasoning across 
different odors and their interrelations remains limited. To date, no comprehensive framework 
has succeeded in instilling a human-like olfactory reasoning mechanism within an AI system.
	 Since E-Nose systems primarily generate low-level digital signals (e.g., changes in resistance 
and VOC concentrations) but lack the ability to reason about “what the odor is” or “what it 
means,” the use of knowledge graphs allows for the mapping of these signals into semantic 
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entities and relationships. In addition, knowledge graphs define relationships between entities 
(such as aroma, compound, origin, and roast level), enabling cross-level logical inference. 

3.	 Methods

	 The developed system uses the E-Nose, which is based on a multisensor array device, to 
mimic human olfactory function as the basic unit of olfactory sensing. The neural mechanism of 
olfactory odor recognition starts from the differential interaction between different types of 
receptors and odor molecules, similar to the interaction between neurotransmitters and receptors 
in the nervous system. The system framework and configuration of the artificial olfactory 
system we developed are consistent with the basic principles of the human olfactory system, 
which are described in detail below. In this study, we used the interpretation and reasoning of 
coffee aroma as a case study to explain how the integration of E-Nose with LLMs and knowledge 
graphs can achieve the above functions.
	 In Fig. 1, the proposed system framework is illustrated. As shown in Fig. 1, coffee aromas are 
first collected by an E-Nose system; the resulting signals then undergo wavelet denoising to 
suppress noise and Z-score normalization to place all channels on a common scale. 
Dimensionality reduction techniques then compress the high-dim tensional odor data into low-
dimensional vectors while retaining both local and global structural features. These reduced 
vectors are encoded by a TE to reinforce temporal-context awareness and are subsequently fed 
into a TCN that classifies tested coffee samples. This study made full use of our previously 
established coffee-aroma dataset, which was created using an E-Nose based on a multisensor 

Fig. 1.	 (Color online) Proposed system framework.
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array device and covers the data related to aromas of various specialty coffees from around the 
world. This dataset proved indispensable when applying the TETCN method to coffee 
identification. During the preparation phase, digital data and metadata on the key aromatic 
characteristics of each specialty coffee tested were preserved and edited into this dataset, 
providing a basic reference for sample identification during training. TCN’s output is linked to a 
Retrieval-Augmented Generation (RAG) database containing fields such as variety name, 
origin, odor descriptors, and application suggestions, so the system can fetch the pertinent 
information. Enhanced reasoning is achieved via two complementary components: a knowledge 
graph built from enthusiasts’ reviews—including roast level, processing method, brewing 
technique, and aroma—and a distilled model that restricts the language model’s focus to the 
coffee domain while curbing computational cost. By fusing these two reasoning resources with 
RAG retrieval, the system delivers coherent, context-rich responses, thereby creating an end-to-
end user interaction pipeline that spans from coffee odor acquisition to LLM output. This 
reasoning mechanism primarily utilizes the reasoning capabilities of LLM and knowledge 
graphs representing the relationships between diverse semantic concepts in the field of coffee, 
enabling the model to think more deeply and connect relevant information. In the following 
sections, the system modules are described in detail.

3.1	 E-Nose data collection and preprocessing

	 To ensure that high-quality odor data are collected and better train the coffee recognition 
model, ambient air is first recorded to establish a baseline, then signal peaks are captured to 
reflect dynamic odor characteristics, and finally, measurements are collected at a steady state to 
minimize variability. The resulting time-series data (high-dimensional responses of multiple 
sensors to volatile organic compounds) are denoised by wavelet transformations to preserve low-
frequency odor characteristics while suppressing high-frequency noise, further smoothed using 
a moving average window to remove random fluctuations, and finally standardized by Z-score 
(mean = 0, standard deviation = 1) transformations to remove sensor-specific biases, which 
accelerates model convergence and compensates for sensor-specific biases and  baseline drift 
(see Fig. 2). The sample in the figure is Honey Hears Geisha coffee produced in Colombia.
	 In the feature extraction stage, we collect each coffee’s aroma in two parts: an initial phase, 
during which the E-Nose system draws ambient air and, over the next 500 s, records sensor data 
to capture baseline fluctuations so that later baseline drift can be corrected, and a response 
phase, in which the coffee aroma is detected. From the system response, we obtain both the 
sensors’ peak and steady-state signals, which serve as the main cues for identifying the coffee 
aroma. After standard preprocessing, we apply principal component analysis to derive the 
feature set P, composed of initial phase characteristics and response phase features; taken 
together, these form the key odor signatures that feed into model training.
	 In this study, the hardware component of the E-Nose system we developed primarily consists 
of sensor-array-related circuits, which are composed of specially selected sensors suitable for 
coffee aroma detection. Table 1 shows the sensors and their target gases used for constructing 
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the sensor array. All of the sensors used in the experiment are metal-oxide–semiconductor 
devices manufactured by Figaro and are designed chiefly for detecting VOCs in coffee aromas.

3.1.1	 Experimental protocol and feature extraction

	 A standardized experimental protocol was followed to ensure reproducibility and minimize 
external variability. For each coffee variety, beans were roasted on two separate days to evaluate 
cross-batch consistency. During each session, 15 replicate measurements were performed per 
variety. The sensing experiments were conducted under controlled environmental conditions of 
27 ± 2 ℃ and 55 ± 5% relative humidity. Ambient air was first recorded to establish a baseline. 
Subsequently, odor responses were collected for 1000–1500 s per trial, and the stable 500 s 
segment covering both the transient peak and the steady state was retained for analysis.  
	 Raw time-series signals were then segmented using a sliding window approach, resulting in 
approximately 20000 data segments derived from all measurements. This segmentation strategy 
increased the effective sample size for training while preserving the temporal dynamics of 
sensor responses.  

Fig. 2.	 (Color online) Comparison chart after denoising and smoothing.

(a) (b)

Table 1
Sensor and specific target gases.
Sensor type Target gas
TGS2600 Methane, carbon monoxide, butane, ethanol, hydrogen
TGS2602 Toluene, ammonia, ethanol, hydrogen
TGS2603 Amine series, sulfurous odors 
TGS2610 Ethanol, hydrogen, methane, butane, propane
TGS2611 Ethanol, hydrogen, methane, butane
TGS2620 Methane, carbon monoxide, butane, hydrogen, ethanol
TGS813 Methane, propane, butane
TGS822 Ethanol, organic solvent
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	 Preprocessing steps included baseline correction, wavelet-based denoising, moving-average 
smoothing, and Z-score normalization. From the preprocessed signals, both transient and steady-
state features were extracted. The transient features included rise time, decay time, peak 
derivative values, and the area under the transient curve, reflecting the adsorption–desorption 
dynamics of the sensors. The steady-state features captured plateau responses at equilibrium. 
	 Together, these features provided a comprehensive representation of odor dynamics. This 
enriched time-series data input was then processed by the TETCN model, enabling the system to 
leverage both the static and dynamic aspects of the sensor signals for robust coffee 
discrimination.  

3.2	 Identification of sensor data

	 To utilize the odor data collected by the E-Nose to predict the type of coffee sample and 
generate appropriate labels for subsequent retrieval, a TETCN model integrating a TE and a 
TCN was trained in this study(5), as shown in Fig. 3. Each measurement lasted 1000–1500 s, and 
500 s of data covering both peak and stable signals was retained. The raw time-series signals 
were further segmented into multiple overlapping windows, resulting in approximately 20000 
data segments derived from all coffee measurements. These segments served as the effective 
training samples for the TETCN model. The input is a time series cut into different time 
windows as queries, and the key is the index of its time point. The output is an ID representing 
the predicted coffee type, which is used as the basis for subsequent retrieval.
	 The TE specializes in sequence processing, allowing the model to capture the contextual 
information inherent in E-Nose measurements, while the TCN can accept variable-length inputs 
and model long-range temporal dependencies, properties that are well suited for time-series 

Fig. 3.	 (Color online) Mechanism of TE and TCN.(5)
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data. The odor signal is weighted by the TE and then fed into the TCN, which efficiently extracts 
salient features from the odor data.
	 For model evaluation, the dataset was first split into training and test data subsets at a ratio of 
8:2. To ensure robust assessment, a stratified 5-fold cross-validation was applied within the 
training dataset, preventing data leakage and maintaining the balanced representation of coffee 
varieties across folds. Final performance was reported on the held-out 20% test dataset, and 
additional chance-level baselines together with Cohen’s κ statistics were calculated to confirm 
reliability.
	 The TE leverages a self-attention mechanism to capture inter-temporal relationships within 
the sequence—an aspect that is especially critical for tracking odor fluctuations across different 
time points in sensor data. Equation (1) specifies how the corresponding attention weights are 
computed. Q, K, and V denote Query, Key, and Value, respectively.(5)

	 ( ), , softmax
T

k

QKAttention Q K V V
d

 
=   

 
	 (1)

Here, dk acts as a scaling factor that stabilizes the gradients. Once the data have been processed 
by the TE, the context-enriched time-series data inputs are fed into the TCN for training. The 
TCN applies causal convolutions together with dilated convolutions to regulate the spacing of 
the inputs (see Fig. 4). 
	 To mitigate the vanishing-gradient issue that can arise during training, the TCN adopts 
residual connections, as illustrated in Eq. (2). In this formulation, TCN_Block(x) denotes the 
output produced after several layers of dilated convolution and nonlinear transformations.

	 ( )( )_Output Activation x TCN Block x= + 	 (2)

	 The TETCN algorithm (see Algorithm 1) outlines the workflow for applying the model to 
coffee-aroma recognition. First, the E-Nose-sensed time-series data are normalized and 

Fig. 4.	 (Color online) Convolution layer and block of TCN.(5)
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segmented into consecutive slices with a sliding window. A TE module then extracts global 
dependency patterns: after positional encoding, the sequence passes through multiple layers of 
self-attention and feed-forward networks, preserving rich contextual information. The resulting 
representation enters a TCN, where multilayer dilated and causal convolutions capture local 
features. Global average pooling followed by a fully connected layer produces recognition logits, 
which are converted to aroma-class probabilities via a softmax function. By jointly modeling 
global and local characteristics, this architecture markedly improves the accuracy of odor 
recognition.
	 After normalizing the time series, we apply a sliding window to slice the sequence into 
overlapping segments, thereby enlarging the training dataset and preserving local dynamic 
features. Position encoding is then added so that the model can capture relationships among 
different time points. During the Multi-Head Attention stage, correlations across temporal 
segments are detected, while the subsequent Feed-Forward and LayerNorm layers integrate the 
data through linear transformations and facilitate convergence. The sequence then enters a TCN: 
dilated causal convolutions maintain the causal direction of the series, expand the receptive 
field, and enable the model to learn long-term dependencies with relatively few layers. In the 
decision layer, Global Average Pooling aggregates the sequence over the time dimension, 
compressing variable-length inputs into a fixed-length vector that passes through a fully 
connected layer to produce logits, which are finally converted into a probability distribution by a 
softmax to yield the predicted label.

Algorithm 1
TETCN-based odor recognition.

1: Input: TimeSeries // from sensor output
2: Output: OdorLabel // predicted class
3: Normalize (TimeSeries)
4: Segment ← SlidingWindow(TimeSeries, windowSize, stride)
5: PosEncoded ← AddPositionalEncoding(Segment)
6: if useTransformer then
7: 	 for each layer in TransformerLayers do
8: 		  PosEncoded ← MultiHeadAttention(PosEncoded)
9: 		  PosEncoded ← FeedForward(PosEncoded)

10: 		  PosEncoded ← LayerNorm(PosEncoded)
11: 	 end for
12: else
13: 	 PosEncoded ← PosEncoded // skip Transformer block
14: end if
15: TCNinput ← PosEncoded
16: for each layer in TCNLayers do
17: 	 TCNinput ← DilatedCausalConv(TCNinput)
18: 	 TCNinput ← ReLU(TCNinput)
19: 	 TCNinput ← Dropout(TCNinput)
20: end for
21: Output ← GlobalAveragePooling(TCNinput)
22: Logits ← FullyConnected(Output)
23: OdorLabel ← Softmax(Logits)
24: return OdorLabel
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	 The experimental environment and hyperparameter settings are summarized in Table 2. 
Because hyperparameters greatly affect model performance, choosing suitable values is crucial. 
In this study, Bayesian optimization was used to determine key hyperparameters such as key 
dimension, the number of attention heads, and dropout rate, whereas the remaining 
hyperparameters were obtained through manual fine-tuning during experimentation.

3.3	 Knowledge distillation

	 To enhance the accuracy and professionalism of olfactory description of coffee flavors while 
reducing the computational resource requirements, in this study, we incorporated the technique 
of knowledge distillation as shown in Fig. 5.
	 By compressing the model and transferring the knowledge from the large “teacher” model to 
the smaller “student” model, the student model can maintain high performance with significantly 
reduced computational requirements. In this study, the loss function for knowledge distillation 

Table 2
Hyperparameter settings of TETCN.
Hyperparameter Value
Key dimension 18
Number of attention heads 2
Learning rate 0.001
Dropout rate 0.5
Filter size 2

Fig. 5.	 (Color online) Knowledge distillation process: Coffee reviews as an example of training texts.
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consists of two components. The first is the cross-entropy loss between the student model’s 
output and the ground truth labels, which measures the student model’s predictive accuracy on 
actual data. The second is the Kullback–Leibler (KL) divergence loss between the student 
model’s output and the soft labels produced by the teacher model after temperature scaling, 
which quantifies the extent to which the student model mimics the knowledge of the teacher 
model.
	 ( ) ( ) ( )2, 1 ,CE s KL t sL L y p T L q qα α= ⋅ + − ⋅ ⋅ 	 (3)

As shown in Eq. (3), the loss function incorporates a weighting factor α, which controls the 
balance between the cross-entropy loss (based on ground truth labels) and the distillation loss 
(based on the teacher model’s soft labels). LKL represents the Kullback–Leibler (KL) divergence, 
which measures how closely the student model’s predictions align with the teacher model’s soft 
labels. This loss function is designed to achieve the goal of compressing the model size while 
maintaining high prediction accuracy.

3.4	 Knowledge graph

	 In addition, in performing more advanced reasoning functions, we integrated knowledge 
graphs into the system to enhance the reasoning capability of the developed system, that is, to 
allow the model to help us better understand the relationship between different coffee varieties 
and the similarity between their aroma characteristics, as shown in Fig. 6. The knowledge graph 
systematically represents the relationships among coffee varieties, aromas, and roast levels, thus 

Fig. 6.	 (Color online) Example of a process for building a knowledge graph using LLMs.
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enhancing the inference capability of the model. Although inference-based LLMs have strong 
general knowledge processing capabilities, they are limited in their ability to infer subtle 
relationships among coffee aromas. To address this limitation, knowledge maps provide a 
structured, predefined mapping of coffee-related information that effectively complements 
LLMs. The knowledge graph constructed for this case study consists of four main components: 
coffee varieties, origins, roasting levels, and corresponding aroma profiles.
	 The entire process is divided into two primary stages: indexing and querying. In the indexing 
stage, the dataset is segmented on the basis of its content to generate element instances, relations, 
and statement descriptions. These extracted elements are then transformed into a graph-based 
structure. During the querying stage, the knowledge graph generated in the indexing phase is 
utilized to perform community-based segmentation, where the graph is partitioned into several 
regions on the basis of the similarity between nodes. From these partitions, community 
summaries are constructed. The summaries are ranked according to the significance of each 
node and incorporated into the language model’s context in a prioritized manner. 
	 In Fig. 7, an example of part of a knowledge graph that reveals a subset of its underlying 
relationships is illustrated. The knowledge graph attaches relevance and interpretability to each 
node: most nodes inherit new relationships from their respective sources and generate 

Fig. 7.	 (Color online) Sample knowledge graph of coffee, roast, and aromas.
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corresponding descriptions to ensure that the paired links remain interpretable. As shown in Fig. 
7, coffee acts as the source for many other nodes whose connections are highly coherent—
largely additives or odor notes found in coffee beverages. Different colors indicate that, when the 
graph is constructed, the nodes originate from different source paragraphs yet remain related in 
some way. The more similar the colors, the higher the degree of relatedness. For example, 
grapefruit zest is a flavoring agent sometimes infused into coffee drinks, while cocoa nibs are 
often added to various coffees to enrich flavor. Maple syrup serves not only as a sweetener in 
coffee but also as an additive in certain teas, and tea shares some acidity characteristics with 
coffee. By explicitly linking such ingredients and flavor attributes, the model can reason more 
effectively about coffee aroma and its related information, thus enhancing the reasoning ability 
of the system.

4.	 Experimental Results

	 As stated previously, to ensure that the selected LLMs remain focused on coffee-flavor-
related tasks, we employed a knowledge distillation strategy into the system development. We 
first collected a large corpus of coffee-related data, such as coffee reviews. After data cleaning 
and annotation to ensure quality and relevance, the refined dataset was used to fine-tune selected 
LLMs, enabling them to generate more accurate and nuanced descriptions of coffee flavors. 
During distillation with temperature T = 20, each model undergoes 100 training iterations on a 
coffee flavor dataset supervised by the teacher model; during training, the student model learns 
to increase its coffee knowledge by mimicking the teacher model’s responses to each sensory 
description. This distillation pattern allows the student model to learn only about the coffee 
domain, thereby reducing the excess computational overhead while maintaining its expertise in 
coffee-oriented queries. The results showed that the student model retains more than 80% of the 
original performance of the teacher model in this configuration. Afterwards, we conducted 
benchmarking experiments using the trained student models.

4.1	 Benchmarking the performance of various LLMs for this study

	 To select the most suitable LLM for ensuring experimental stability and high performance—
and because our study must reason about odors under various scenarios while drawing on 
extensive historical data, which demands robust long-context handling—we assessed several 
models across five evaluation axes: multitask competence, multiturn dialogue, logical reasoning, 
situational reasoning, and long-text comprehension. Specifically, MMLU-pro gauges multitask 
ability through 12k challenging questions spanning diverse disciplines; MT-Bench tests 
multiround conversational skill with 80 context-dependent prompts from multiple fields; BBH 
offers 23 tasks explicitly designed to push the logical-reasoning limits of current LLMs; 
HellaSwag probes contextual understanding via ~70000 multiple-choice questions, each pairing 
a passage with four candidate endings; and MuSR evaluates situational reasoning and long-
context grasp across three domains, each containing several hundred items. In all experiments, 
the temperature was set to 0 so that each model deterministically selected the highest-probability 
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token, guaranteeing consistent outputs for identical inputs. Evaluations were run on the FastChat 
platform, and every reasoning task employed a chain-of-thought prompting strategy.
	 As shown in Table 3, we evaluated various LLMs across multiple datasets and tasks to 
compare their contextual understanding and reasoning capabilities. The results revealed that 
Grok-3 exhibits the most outstanding overall performance in logical and contextual reasoning 
tasks, while also achieving high scores in the remaining tasks. In particular, Grok-3’s training 
corpus incorporates social-media reviews, giving the model a richer aroma-related vocabulary 
that strengthens its ability to reason about coffee questions and to express aromatic descriptions 
in text. As a result, Grok-3 was selected as the best model in this application-specific study to 
maintain stable system performance and ensure a high degree of robustness.

4.2	 Evaluation on knowledge-graph-enhanced LLMs 

	 In this study, we adopted knowledge graph technology as the core mechanism for enhancing 
an LLM’s reasoning capability. By building a graph-structured space within the odor database 
and performing graph-based searches, the knowledge graph furnishes explicit explanations of 
the relationships among diverse aromas, enabling the model to reason across a broader spectrum 
of odor sources—an approach we term “Knowledge-graph-enhanced LLMˮ technique. In this 
case study, to quantify how the coffee‐flavor descriptions of the system differ from those of 
human experts, we validated its outputs with two standard text metrics: BLEU and ROUGE. 
BLEU is a metric for evaluating machine translation that compares the similarities of two text 
segments and assesses both fluency and lexical accuracy. As shown in Eq. (5), BLEU is 
computed by measuring n-gram precision to gauge the similarity between a generated text and 
its reference description, while incorporating a brevity penalty (BP) to penalize overly short 
outputs, as defined in Eq. (6).

	 ( )1exp logN
n nnBLEU BP w p

=
= ⋅ ⋅∑ 	 (5)

	 ( )1 /

if 1

if r c

c r
B

ce
P

r−

>= 
≤

	 (6)

Table 3
Performance evaluation of different LLMs within the proposed system.
Model MMLU-PRO MT-Bench BBH HellaSwag MuSR
Deepseek-r1-14b 84.82 78.41 40.69 18.34 28.71
Grok 3 79.91 82.84 68.74 84.62 73.33
o1-preview 89.33 67.92 67.92 75.74 69.81
OpenAI o3 73.43 80.61 73.21 87.79 68.89
Claude 3.7 sonnet 84.71 86.93 65.82 84.86 71.14
Llama-3.3-70b 65.92 56.56 56.56 10.51 15.57
Gemma-2-27b 56.54 49.27 49.27 16.67 9.11
Qwen-2.5-72b 64.38 54.62 54.62 20.69 19.64
Phi-4-14b 70.40 55.24 55.24 11.63 10.13
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	 When calculating n-gram precision, we set n = 4 to assess the fluency of the generated text 
and ran 1000 iterations for each model to compute its BLEU score. Figure 8 shows the 
comparison of the BLEU scores achieved by the various LLMs, revealing that reasoning 
augmentation yields a marked performance gain across all models. The gray and green bars 
respectively indicate the performance scores of the baseline and knowledge-graph-enhanced 
LLMs in describing coffee flavors. Grok-3 records the highest score overall, while among open-
source models, Llama 3.3 exhibits the most stable performance and enjoys a clear advantage 
over its counterparts.
	 To measure the effectiveness of the reasoning component—specifically, the model’s ability to 
retrieve and summarize information from the database and to compare its coverage and 
completeness with expert reviews—we employed the ROUGE evaluation metric. ROUGE is 
computed here using the longest common subsequence approach, as shown in Eqs. (7)–(9). In 
these equations, PL and RL represent precision and recall, respectively, whereas the F-score is 
derived from these two measures.
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	 Using the ROUGE-L metric to assess performance on the flavor-description task offers two 
principal advantages: (i) it requires no fixed n-gram length, allowing richer semantic 

Fig. 8.	 (Color online) Comparison of BLEU scores achieved by baseline and knowledge-graph-enhanced LLMs.
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relationships to be captured in longer texts, and (ii) its tolerance for non-contiguous word order 
gives the model greater flexibility in phrasing. This method therefore lets us verify divergences 
between the coffee aroma descriptions of the model and those of human experts. The ROUGE-L 
evaluation results for the model before and after reasoning enhancement are presented in Table 
4. The best performing model, Grok-3, improves by more than 10%, indicating that it covers the 
greatest amount of key information and achieves the highest similarity to expert flavor 
descriptions.
	 The experimental results demonstrated that integrating knowledge graph techniques 
effectively and accurately enhances the reasoning capabilities of LLMs in the olfactory domain. 
When benchmarked against human experts’ coffee flavor descriptions, reasoning through 
knowledge graph entities and relations yields clear gains in the textual fluency, precision, and 
coverage of key information.

4.3	 Overall performance of E-Nose and LLM-integrated system

	 To assess the overall performance of the system that combines an E-Nose with an LLM, we 
adopted a classification consistency protocol that examines the correlation and agreement 
between the model’s coffee predictions and its descriptive outputs. We began by constructing a 
test set composed of samples bearing ground-truth flavor labels. Each sample underwent the full 
processing pipeline, after which the olfactory-reasoning system generated a flavor description; 
from that description, the coffee category was reverse-inferred. These inferred categories were 
then compared with the E-Nose classifications over multiple trials on the labeled aroma samples. 
Finally, Cohen’s κ coefficient was calculated to quantify the system’s consistency in coffee 
flavor categorization, thereby verifying that the reasoning module reliably captured both the 
label information and the E-Nose results when formulating its responses. 
	 First, we assessed the system’s practical improvement. Using Kilimanjaro coffee as an 
example, Fig. 9 shows that the knowledge-graph-enhanced LLM supplies fuller and clearer 
information than the baseline LLM when answering flavor-related questions. This comparison 
reveals that the knowledge-graph-enhanced model can draw on more factors such as the region’s 
terrain, soil, and climate, and reason about how these elements give rise to Kilimanjaro’s 
distinctive taste.

Table 4
ROUGE-L evaluation results of LLMs.

Model Original LLM Knowledge-graph-enhanced LLM
Precision Recall F-score Precision Recall F-score

Deepseek-r1 0.5337 0.5196 0.5266 0.6457 0.6328 0.6392
o1-preview 0.7048 0.6932 0.6990 0.7563 0.7492 0.7529
OpenAI o3 0.7561 0.7353 0.7456 0.8229 0.8081 0.8157
Grok-3 0.8122 0.7825 0.7971 0.9065 0.8933 0.8998
Claude-3.7-sonnet 0.7897 0.7802 0.7849 0.8382 0.8464 0.8419
Llama 3.3 0.6339 0.6121 0.6228 0.6977 0.7056 0.7014
Phi-4 0.5528 0.5203 0.5361 0.6561 0.6312 0.6431
Gemma 2 0.4824 0.4774 0.4799 0.5334 0.5117 0.5227
Qwen 2.5 0.4108 0.4926 0.4480 0.5106 0.5496 0.5294
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	 After the E-nose system classifies the sample, it outputs an ID such as Mandheling. This ID 
is then used to query a RAG database, which returns the corresponding coffee category together 
with information such as origin and flavor descriptors (e.g., citrus notes and jasmine aroma). A 
model that has been distilled and enhanced with a knowledge graph uses the retrieved 
information to produce a detailed flavor description for that coffee. In the reverse-inferred stage, 
the model’s task is inverted: with the RAG component disabled, the system must infer the coffee 
category solely from the flavor description generated in the previous step. This reverse reasoning 
serves to verify that, when responding to coffee-related questions, the model relies on the E-nose 
recognition and retrieval outputs rather than on its own pre-training alone; if it can accurately 
deduce the coffee category from the flavor description, it demonstrates that the entire system 
operates coherently and consistently.
	 Table 5 shows the classification accuracies achieved for various coffee varieties using the 
TETCN algorithm approach. Ten distinct coffees—representing diverse origins and processing 
methods that introduce subtle flavor differences—served as the experimental samples. The 
results indicated that the training procedure performed well: for most varieties, the classification 
accuracy exceeded 90 percent.
	 To validate the system’s classification consistency, we also evaluated the reverse-reasoning 
capability of the LLM-based, reasoning-enhanced module. In this test, odor samples were first 
classified by the E-Nose; the system then received the same samples without labels and had to 
infer each coffee category solely from the flavor descriptions it generated. The goal was to 

Fig. 9.	 (Color online) Qualitative comparison example of text generated by baseline LLM (green) and knowledge-
graph-enhanced LLM (orange).



4836	 Sensors and Materials, Vol. 37, No. 11 (2025)

determine whether the model’s descriptions followed the classifications and retrieved labels. 
Figure 10 shows the coffee classification performance with E-Nose and LLM experiments. 
Because the LLM has not been trained on large volumes of labeled data, its accuracy is naturally 
lower than that of the E-Nose system; nevertheless, reasoning backward from flavor descriptions 
still achieved a high level of identification, indicating that the overall system performance in this 
study is highly consistent. Figure 11 illustrates the actual sample counts classified by both the 
E-Nose system and the LLM. With ten samples provided for each coffee variety, the results 
showed that the two classifiers generally produce consistent categorizations. Misclassifications 
occur only in a few cases where certain varieties share very similar flavor profiles, leading the 
LLM to make incorrect predictions on the basis of its flavor descriptions.
	 Equation (10) illustrates how Cohen’s κ is calculated. p₀ is the observed proportion of 
agreement between the two raters, while pe is the expected proportion of agreement by chance—
that is, the probability that both raters either classify the sample correctly or misclassify it into 
the same coffee category. Because a small sample size can bias these probability estimates and 
make κ  lower than expected, we tested 100 aroma samples from different coffees and tracked 
how κ changed. The experimental findings indicated that a small sample size affects 
classification consistency. Thus, we examined how various sample sizes affect Cohen’s κ, as 
illustrated in Fig. 12. When the number of samples falls below ten, κ drops considerably. In 
addition, because chance agreement (pe) depresses the κ statistic, this index can also reveal bias 
in a dataset: when bias is present, the probability of chance agreement rises and κ falls sharply. 
In our experiment, however, most κ values remained above 0.7, underscoring the dataset’s 
stability and reliability. Even across two roasting batches, the classification accuracy remained 
above 90% and Cohen’s κ values exceeded 0.7, confirming robustness across batches. Even so, 
for our reasoning-enhanced system, overall κ values remained above 0.6, signifying strong 
agreement between coffee classification and flavor description performance. This outcome 
confirms that the E-Nose system and the reasoning model integrate and link their outputs 
effectively.

	 1
o e

e

p pK
p
−

=
−

	 (10)

Table 5
Evaluation results of E-Nose system for odor prediction of sampled coffee beans.

Coffee Name Country Type Processing 
Method

Accuracy
CNN LSTM TE + TCN

Mandheling Indonesia Arabica Wet 0.91 0.90 0.93
Kilimanjaro Tanzania Kent/Bourbon Wet 0.90 0.91 0.92

Guji Adola Ethiopia Heirloom Wet 0.86 0.88 0.90
Heirloom Dry 0.90 0.85 0.91

Yirgacheffe Ethiopia Arabica Wet 0.87 0.88 0.94
Arabica Dry 0.86 0.88 0.96

Kenya AA Kenya Wet Wet 0.95 0.92 0.93
Sigri Estate Paoua New Guinea Typica Dry 0.91 0.93 0.91
Mocha Matari Yaman Mocha Java Dry 0.90 0.91 0.94
Hartmann Estate Panama Pacamara Wet 0.94 0.89 0.88
Finca El General Guatemala Maragogype Dry 0.91 0.87 0.89
Brazil Santos Guatemala Bourbon Wet 0.88 0.92 0.92
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Fig. 10.	 (Color online) Coffee classification performance with E-Nose and LLM experiments.

Fig. 11.	 (Color online) Visualization of classification consistency for coffee samples.
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4.4	 Discussion

	 In this study, we proposed a hybrid artificial olfactory system that utilizes an E-Nose for 
sensing odor data and combines LLMs with knowledge graph models to overcome the bottleneck 
of traditional odor recognition, which can only classify, but seldom explains, interprets, and 
reasons; a few findings from our experimental results are discussed below.
(1)	Owing to the rapid advancement of AI language models, the LLM selected through our 

benchmarking experiments may not consistently represent the best available option. For 
instance, the best performing model in our experiment (i.e., Grok-3) cannot always maintain 
the highest score. Therefore, the system will continuously add newer evaluations and updated 
models to maintain the best performance. We have evaluated the ability of each model to 
interpret coffee aroma after enhancing reasoning capability and compared the results with 
those of human experts, as shown in Table 4 and Fig. 8. On the BLEU scale, our system 
reached almost the same level as a human expert, showing that its ability to reason about 
aroma descriptions is close to that of an expert.

(2)	The knowledge distillation technique used in this study can make the LLMs more focused, 
which effectively improves the accuracy and expertise of the olfactory description of coffee 
flavor while reducing the computational resource requirements. In our experiments, we 
found that the LLMs generated after rounds of conversations and reasoning retained the 
knowledge of the coffee domain while producing a more streamlined model that serves as the 
core question-and-answer engine of the system. It would be very helpful to apply this 
approach to the future development of next-generation E-Nose systems based on smaller 
Edge-AI devices.

(3)	The vector retrieval results are mapped onto a knowledge graph whose multidimensional 
nodes represent variety, origin, processing, roasting methods, flavor attributes, and more; 

Fig. 12.	 (Color online) Variation of Cohen's κ with different sample sizes.
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reasoning is then performed along graph paths, enabling the LLM to generate evidence-
backed descriptions. Under the ROUGE-L evaluation metric, this architecture outperforms 
conventional retrieval schemes by 6–10% and significantly reduces hallucinations.

(4)	In real-world deployment, the proposed system supports a high degree of personalization. 
Because olfactory perception is inherently subjective and users may experience the same 
odor quite differently, the model draws on selected portions of each user’s interaction history 
as contextual evidence. By continually learning from these exchanges, it infers individual 
scent preferences: after every instance in which the user provides feedback on an odor 
description, the system updates the preference profile and re-weights subsequent odor 
descriptors accordingly, yielding responses tailored to that user’s unique olfactory taste.

(5)	Despite recent progress, AI-based olfactory reasoning remains technically constrained. 
Although this study simulates the interplay between odor and memory using a knowledge 
graph, the system still lacks a holistic, memory-oriented representation of smell, which limits 
its flexibility. Future research should aim to align computational models more closely with 
the associative and dynamic nature of human olfactory memory.

5.	 Conclusion

	 For the evolution of AI, if perception is “seeing,” “hearing,” and “smelling,” then cognition is 
“understanding” and “thinking.” Nowadays, perception and cognition are promoting the 
comprehensive upgrade of AI in a synergistic way. From the olfactory perception of food to the 
autonomous optimization of industrial robots, behind every AI application scene is the deep 
integration of perception and cognition. In this study, we proposed a novel artificial olfactory 
system architecture that combines E-Nose technology and LLM to simulate human odor 
perception and reasoning mechanisms, thus addressing the long-standing limitation that 
previous studies can only identify odors without elucidating their potential correlations. To 
verify the feasibility of the proposed system, we conducted a case study on coffee aroma 
interpretation. Therefore, discrete olfactory data were structured for similarity retrieval, and the 
descriptive capabilities of knowledge graphs and LLM were utilized to generate detailed coffee 
flavor profiles. Experimental results show that our hybrid system approach overcomes the 
current limitations of artificial olfactory reasoning and allows the machine to simulate the 
cognitive mechanism of human abstract thinking and reasoning about odor, which in turn 
provides a new path for AI-based olfactory research. 
	 For future work, the knowledge-graph-based reasoning enhancement approach demonstrated 
in this study can be extended to other food-related domains for quality grading and inspection 
through olfactory analysis. Furthermore, the technique can be similarly deployed in industrial 
and other odor-critical settings for the real-time detection of hazardous gas leaks and air quality 
monitoring, where the LLM can convert sensor data into easily interpretable linguistic 
descriptions. In addition, the novel architecture of combining the E-Nose system with a 
multimodal LLM provides a fundamental reference for subsequent E-Nose research and 
facilitates applications in a wider range of fields.
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