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	 In this study, we conducted a low-carbon-oriented performance comparison of three 
mainstream path planning algorithms, A-star (A*), Rapidly exploring random tree (RRT), and 
Rapidly exploring random tree-star (RRT*), under a unified platform. Through image-based 
map simulation and obstacle inflation processing, a consistent experimental environment is 
established with fixed start and goal points set to ensure comparability. The experimental 
evaluation metrics include total path length, algorithm computation time, node expansion 
behavior, and path smoothness. The results show that A* performs best in structured 
environments, producing the shortest path. Although RRT has fast exploration capabilities, it 
tends to generate irregular trajectories. RRT* improves path quality through a node rewiring 
mechanism, making it suitable for carbon-sensitive scenarios, but with higher computational 
cost. Overall, the results of this study fill the gap in previous carbon-sensitive navigation 
research by providing a cross-algorithm comparison. It offers an empirical foundation and visual 
reference for selecting appropriate strategies in future low-carbon autonomous mobility systems.

1.	 Introduction

	 With the rapid development of fields such as smart manufacturing, urban logistics, 
autonomous mobile robots (AMRs), and smart agriculture, robotic autonomous navigation 
technology is attrracting increasing attention.(1) Recent advances in smart manufacturing have 
shown that deep learning can significantly enhance defect detection. Lai proposed a welding 
defect identification system using AI, demonstrating the effectiveness of intelligent sensing in 
industrial environments.(2) Traditionally, the goal of path planning has focused on the shortest 
distance or minimum time, with representative algorithms primarily oriented toward geometric 
shortest paths and minimal turning costs. However, in response to global climate change and 
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increasing carbon emission regulations, the carbon sensitivity and energy efficiency of robotic 
paths are gradually being incorporated into the core of planning and optimization design.(3)

	 In practical applications, mobile robots consume electrical energy during operation 
and indirectly generate carbon emissions. Particularly in enclosed environments such as 
warehouses, factories, or campuses, their travel distances and frequencies are often 
considerable. Without proper navigation strategies, this can lead to cumulative energy 
consumption and environmental burden.(4) Therefore, beyond traditional geometric costs, 
researchers have begun incorporating energy models, carbon estimation, and spatial 
awareness models to design navigation strategies that balance operational efficiency and 
sustainability.(5) Among these, carbon-aware path planning is regarded as a key 
breakthrough for robotic carbon reduction applications.
	 In recent years, numerous studies have indicated that systems capable of integrating 
carbon costs into planning algorithms often outperform traditional models in energy 
consumption control and sustainability performance. For example, Natarajan et al.(6) 
proposed a modified A-star (A*) model with carbon emissions as the objective function, 
significantly reducing total carbon consumption in both simulations and real-world 
settings.(6) The integration of real-time visual sensing technologies, as demonstrated by Nasir et 
al.,(7) offers promising directions for improving path planning reliability and contextual 
awareness in urban or semi-structured environments.
	 However, although the incorporation of carbon cost considerations into navigation 
strategies has been attempted in various methods, performance comparisons of 
mainstream algorithms such as A*, Rapidly exploring random tree (RRT), and Rapidly 
exploring random tree-star (RRT*) in the same environment remain rare. Previous studies 
mostly involved individual designs and lacked a unified map and visual feedback 
platform, which hindered cross-comparison and the establishment of a basis for selection.
(8) Therefore, in this study, we aim to build a consistent image-based simulation platform. 
Through image preprocessing and algorithm modularization, low-carbon-oriented 
experimental design and performance analysis are conducted for three common 
algorithms. Through this study, more empirical and visual evidence can be provided for 
the development of robot carbon-sensitive navigation systems, filling the research lack of 
comparative perspectives in existing literature.

2.	 Theoretical Framework

2.1	 Demands and challenges of low-carbon-oriented robot path planning 

	 Against the backdrop of rapid development in smart manufacturing, warehouse logistics, and 
agricultural automation, the deployment of AMRs has emerged as a vital strategy to enhance 
productivity and reduce human labor demands. The integration of lightweight structural 
components,(9) the application of energy-efficient propulsion systems,(10) and the advancement of 
materials science for agricultural and environmental sensors(11) have collectively accelerated the 
need for precise and adaptive path planning. Consequently, research on trajectory optimization 
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for such robots in structured and semi-structured environments has gained momentum. Against 
the backdrop of rapid growth in smart factories, warehouse logistics, and agricultural 
automation, the introduction of autonomous navigation robots has become an important means 
to improve operational efficiency and reduce labor costs. However, traditional navigation 
systems mostly focus only on minimizing the geometric shortest distance and operation time, 
neglecting their cumulative impact on energy consumption and carbon emissions over long-term 
operation.(12) With the promotion of sustainable development and carbon neutrality policies, low-
carbon-oriented navigation strategies are receiving increasing attention from the research 
community and industry, especially in application scenarios involving high-frequency 
operations within fixed environments, where balancing navigation efficiency and carbon 
emission costs becomes a key design challenge.(13)

	 However, these algorithms are mostly designed for specific application scenarios or 
individual optimized models and lack a horizontally integrated and fair comparative 
experimental platform, making it difficult for users to choose the most suitable algorithm 
framework based on task requirements. Particularly in carbon cost-sensitive applications, the 
lack of standardized visual feedback and quantitative comparison mechanisms limits the 
promotion and adoption of this technology in broader environments.(14) Therefore, constructing 
a unified and open-source simulation testing platform that integrates mainstream methods, such 
as A*, RRT, and RRT*, and evaluates them on the basis of carbon-sensitive metrics, will help fill 
the gaps in existing research and provide a basis for selection in practical deployment.

2.2	 Exploration of A* algorithm and carbon-aware path optimization application

	 Since its introduction, the A* algorithm has been widely applied in autonomous navigation 
and shortest path planning on image-based maps owing to its combination of shortest distance 
guarantee and heuristic search efficiency. Its core operation mechanism is shown by Eq. (1).

	 ( )1 2   S k k q ds dθ= + ∫∫ 	 (1)

Here, g(v) represents the path cost from the start point to v (Dijkstra’s algorithm). h(v) is the 
heuristic path estimate from v to the goal (BFS algorithm). The algorithm prioritizes nodes with 
the smallest f(v). It continuously updates the path information of neighboring nodes until the 
shortest path to the goal is found. Typically, Euclidean distance or Manhattan distance is used as 
the heuristic evaluation.(15) In static and structured environments, such as inside factories and 
automated warehouses, A* can provide highly reliable and consistent shortest paths, and can 
incorporate obstacle expansion to ensure navigation safety.
	 However, the traditional A* has limited sensitivity to energy consumption and carbon 
emissions. In recent years, various groups have proposed incorporating energy consumption 
models or carbon weighting into its heuristic function, transforming it into a carbon-aware path 
optimization problem. For example, Wang et al.(16) transformed the estimated carbon emission 
rate into spatial weight distributions, incorporated these wights into the h(v) evaluation, and 
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designed the Energy-Aware A* algorithm, which effectively reduced energy consumption by 
nearly 15% in simulated warehouse environments.(16) Han et al. performed feature recognition 
on hotspots and high-energy-consumption areas within indoor spaces, combining heatmaps with 
grayscale images to adjust the A* costmap, enhancing its ability to identify low-carbon paths.(17)

	 Overall, the A* algorithm possesses both implementation and simulation advantages in 
carbon-aware navigation because of its high adjustability and simple structure. In the future, 
further integration of real-time sensing feedback mechanisms combined with reinforcement 
learning for costmap self-learning holds promise to become one of the most stable and scalable 
core modules in low-carbon autonomous navigation systems.

2.3	 Application exploration of RRT, RRT* algorithm, and carbon-aware path 
optimization

	 RRT is a well-known sampling-based path planning algorithm with the ability to rapidly 
explore feasible regions in high-dimensional spaces. It primarily expands the tree structure by 
repeatedly sampling random points qrand, finding the nearest node qnear, and extending toward it 
to a new node qnew, until the goal is reached or the maximum number of samples is met.(18) RRT 
has high exploration efficiency and simple implementation, making it particularly suitable for 
handling complex geometric and dynamic environment problems. However, its random nature 
causes the generated paths to be suboptimal and often discontinuous and jagged, which increases 
the actual travel distance and energy consumption.
	 Furthermore, Yuan and colleagues developed adaptive sampling RRT, which integrates 
environmental energy monitoring data to dynamically adjust the sampling density in real time. 
Nonetheless, challenges remain for RRT in low-carbon applications. Its unstable expansion 
directions and nonreproducible sampling results may cause the system to generate differing or 
even inefficient paths within the same environment.(19) Additionally, RRT lacks local 
optimization and node rewiring capabilities, limiting its performance in avoiding carbon 
hotspots and in final path optimization.(20) Therefore, subsequent research has been focused on 
improving RRT stability and energy efficiency sensitivity, laying a crucial foundation for the 
evolution and application of RRT*.

3.	 Experimental Design

	 To verify the performance differences and application potential of the three algorithms A*, 
RRT, and RRT* under the same environmental conditions, we constructed an experimental 
platform equipped with an “image-based map environment”, “carbon-sensitive parameter 
simulation”, and “visualized path analysis” functions. The experimental design is aimed at 
investigating the path quality, total length, computational efficiency, and environmental 
adaptability of the three methods in static 2D spaces and further analyzing their feasibility in 
low-carbon-oriented robot mobility tasks.
	 The environment modeling adopted in this study is a grayscale image (PNG format) of a real 
warehouse map with a resolution of 640 × 480 pixels. The original map undergoes image 
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processing procedures, including grayscale binarization (with a fixed threshold of 127) and 
morphological dilation (using a 5 × 5 convolution kernel to simulate safety distance), to form a 
binary obstacle map suitable for algorithm operation. Obstacle areas are represented by a 
grayscale value of 0, indicating non-traversable regions; the remaining areas have a value of 255, 
representing traversable regions.
	 In each experiment, the start and goal points are fixed at coordinates S = (100, 400) and G = 
(550, 150), respectively, with coordinate transformation applied so that the bottom-left corner 
serves as the origin. Each algorithm is executed under the same environment to ensure fair 
comparison. Each algorithm is run five times to reduce bias caused by randomness, and the 
average is taken as the evaluation basis. The platform hardware comprises an Intel Core i7 
processor with 16 GB of RAM running on Python 3.10 and OpenCV framework.
	 The A* algorithm is configured with a grid unit of 2 pixels, expanding in eight directions (up, 
down, left, right, and diagonals). The heuristic function is the Euclidean distance, aiming to 
minimize (v) = g(v) + h(v). RRT and RRT* are sampling-based algorithms in continuous space, 
with a maximum step size set to 20 pixels and a sampling limit of 2000 iterations. RRT* 
additionally sets a rewiring radius r(v) = γ(log n/n)1/2, where γ is empirically set to 30, enabling 
semi-local optimization.
	 The evaluation indicators include the following four items.
(1)	�Total Path Length: Calculate the sum of Euclidean distances between all adjacent points 

along the path from the start to the goal, simulating actual movement energy consumption.
(2)	�Computation Time: Computation time is defined as the elapsed time (in seconds) from the 

start of the algorithm to the acquisition of the first feasible path.
(3)	�Expanded Nodes or Sampled Nodes: Represent the computational resources and redundancy 

required by the algorithm within the search space.
(4)	�Path Smoothness and Number of Direction Changes: The number of directional changes 

between segmented path lines is used as an approximate measure of path tortuosity, 
supplemented by visual representation.

	 In addition, in this study, we design a “carbon sensitivity simulation mechanism” by defining 
virtual high-carbon hotspot zones on the map (simulated using grayscale values from 128 to 
200). The algorithm must avoid these areas as much as possible to align with low-carbon 
planning objectives. This configuration is applicable to the extended versions of the RRT* and 
A* algorithms and can serve as a foundation for incorporating energy cost functions in future 
research.
	 The overall experimental framework is illustrated in Fig. 1. The paths generated by each 
algorithm are visualized as colored trajectory lines using OpenCV, and their execution results 
and statistical data are recorded. Final analysis is conducted using integrated tables and path 
diagrams. This experimental design effectively demonstrates the differences among algorithms 
in low-carbon-oriented applications and their potential application scenarios.

4.	 Results and Discussion

	 To evaluate the performance and behavioral characteristics of different path planning 
algorithms, we conducted a series of experiments under various map configurations, with fixed 
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start and goal positions in each setup. The following methods were compared in the experiments: 
baseline (original) path, A*, RRT, and RRT*. Each method was evaluated on the basis of the total 
path length as well as qualitative aspects such as path smoothness, spatial efficiency, and 
adherence to free-space corridors.

4.1	 Case 1

	 The RRT* algorithm is an improved version developed to overcome the lack of optimality 
and rewiring capability in traditional RRT.(3) Its core lies in the node rewiring mechanism, 
which searches the set of neighboring nodes around the newly added node qnew and evaluates 
whether rewiring these neighbors through qnew can reduce the total cost. This semilocal 
optimization mechanism enables RRT* to converge to the shortest path under sufficient time 
and sampling conditions, possessing asymptotic optimality.
	 Figure 1(a) shows the original path result applied to the same map configuration, serving as 
the comparison baseline. Although the path is valid and collision-free, it does not account for the 
actual spatial structure or distribution of obstacles in the environment. As a result, the path 
traverses longer segments than necessary and fails to utilize more direct shortcuts. Figure 1(b) 
shows the result of applying the A* algorithm to the same map configuration. The blue shaded 
area represents the set of explored nodes, illustrating the spatial breadth of the algorithm’s 
search. The final path is more compact and closely aligned with the geometric center of the free-
space corridor. The results of RRT and RRT* path planning are shown in Fig. 2.
	 Figure 2(a) shows the path generated by the RRT algorithm. This algorithm employs a rapidly 
exploring tree structure based on uniform random sampling. Because of the lack of global cost 
optimization, the path exhibits high curvature, especially in the middle and final segments. The 
algorithm tends to prioritize rapid expansion over refinement, which, while enabling effective 

(a) (b)

Fig. 1.	 (Color online) Path planning comparison. (a) Original path. (b) A* algorithm.
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spatial coverage, also leads to irregular path quality. Additionally, the distribution of red 
sampling points throughout the environment highlights the algorithm’s randomness; many nodes 
are sampled but, because of early pruning or collisions with obstacles, ultimately do not 
contribute to the final path. Figure 2(b) shows the results of RRT*. RRT* retains the core 
structure of RRT while incorporating a local rewiring mechanism to improve path efficiency. 
The results show that the trajectory is noticeably smoother and more direct than that obtained 
using RRT with fewer abrupt direction changes and better alignment. The total path length 
evaluation is presented in Table 1.
	 The original path has a total length of 660.00 pixel units and does not consider environmental 
constraints. Although this path appears geometrically simple and requires low computational 
effort, its lack of environmental awareness can lead to inefficiency in dynamic or constrained 
environments. The path generated by the A* algorithm is the shortest among all methods, with a 
length of 561.59 pixel units. This result demonstrates the strong advantage of the A* algorithm in 
producing optimal solutions within structured grid environments. By combining actual 
movement costs and heuristic estimates, the algorithm efficiently explores the most promising 
areas of the map, minimizing redundant expansions while avoiding close proximity to obstacles. 
Using the A* algorithm reduces the path length by 14.90% compared with the original path. The 
trajectory generated by the RRT-based method is noticeably longer, with a total length of 704.00 
pixel units. This result aligns with the inherent randomness of the algorithm and its lack of 
global optimization. Although RRT demonstrates strong capability in rapidly exploring free 
space, its greedy expansion strategy often produces irregular and suboptimal paths. The path 
generated by the RRT* algorithm is even longer, reaching 756.70 pixel units. Although RRT* 
includes a local rewiring mechanism aimed at improving path efficiency, this result highlights a 
practical limitation: under constrained iteration budgets and dense obstacle distributions, the 
rewiring process may fail to sufficiently converge to the optimal path.

Fig. 2.	 (Color online) Path planning results: (a) RRT algorithm and (b) RRT* algorithm.

(a) (b)
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4.2	 Case 2

	 Figure 3(a) shows that the route fails to utilize available diagonal corridors or more direct 
paths to avoid excessive turning. The rigid path structure may be suitable for highly controlled 
or static environments but has limited adaptability and often results in increased travel distance 
especially in spaces where obstacle configurations change or more efficient diagonal routes can 
be formed. In Fig. 3(b), the A* algorithm result demonstrates a more efficient utilization of the 
navigable space. The shaded area represents the region explored by the algorithm, indicating a 
focused and heuristic-driven expansion strategy. The final path fully leverages the open 
corridors between obstacles and minimizes total distance by aligning more closely with the 
geometric center of the free space.
	 In Fig. 4(a), the path generated by RRT exhibits significant irregularity in its trajectory, 
especially in the early and middle segments. The path shows sharp turns and inconsistent 
directionality, with considerable deviation from the geometric center of the available free space. 
These characteristics stem from the RRT algorithm’s tendency to explore random samples 
without considering the cumulative path cost. Although the algorithm ultimately finds a feasible 
solution, its reactive nature and lack of optimization result in an extended final path length. In 
Fig. 4(b), the result of the RRT* algorithm shows significant improvement in both path 
smoothness and trajectory compactness. The route avoids unnecessary oscillations and aligns 
more consistently with the global direction between the start and goal points. This improvement 
is primarily attributed to RRT*’s rewiring mechanism, which gradually reduces local costs 
through neighborhood evaluation and tree restructuring. Although the sampling distributions of 
RRT and RRT* are roughly similar, the trajectory obtained by RRT* is more refined, with 
smoother transitions between points and overall lower curvature.
	 The original path with a total length of 700.00 pixel units does not consider environmental 
constraints. Although feasible, this result does not reflect adaptability to surrounding spatial 
limitations. The rigid shape introduces unnecessary detours and fails to utilize more direct open 
areas between obstacles. The A* algorithm demonstrates significant improvement, producing a 
final path length of 593.39 pixel units. Using the A* algorithm reduces the path length by 15.23% 
compared with the original path. The A* algorithm effectively prunes less desirable paths and 
focuses computational effort on directions likely to yield shorter routes. The RRT algorithm 
generated a path of 802.40 pixels. Although the resulting trajectory is valid, it exhibits issues of 
random curvature and inefficient path segments. The RRT* algorithm shortens the total path 

Table 1
Total path length evaluation.
Path search Total path length
Original path 660.00
A* 561.59
RRT 704.00
RRT* 756.70
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length to 726.26 pixels through local optimization via rewiring, as show in Table 2. Although 
this result is still longer than the output of A*, it represents a significant improvement over RRT. 
The path generated by RRT* is smoother and better aligned with the target direction.

Table 2 
Total path length evaluation.
Path search Total path length
Original path 700.00
A* 593.39
RRT 802.40
RRT* 726.26

(a) (b)

Fig. 3.	 (Color online) Path planning results. (a) Original path. (b) A* algorithm.

Fig. 4.	 (Color online) Path planning results. (a) RRT algorithm. (b) RRT* algorithm.

(a) (b)
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5.	 Conclusions

	 In this study, we conducted a comprehensive comparison of four path planning strategies—
original path, A*, RRT, and RRT*—across various obstacle-dense environments. Through 
visual inspection and quantitative evaluation of the total path length, the results revealed the 
trade-offs between planners based on deterministic rules and those utilizing heuristic or random 
sampling algorithms. From the results of the above analyses, the following conclusions are 
drawn.
(1)	The A* algorithm generated the shortest path in both test cases, producing routes that are the 

shortest and most spatially efficient.
(2)	The RRT algorithm demonstrated rapid exploration capability, but because of its greedy 

expansion behavior, it often resulted in suboptimal paths.
(3)	RRT* improved upon the results of RRT by incorporating a rewiring mechanism, producing 

smoother and more compact trajectories, albeit with increased computational load.
	 In the future, incorporating dynamic obstacle scenarios will help in the evaluation of the 
efficiency of replanning and real-time adaptability. Integrating motion constraints such as speed, 
curvature, or kinematic models can better simulate the real-world limitations of robots for 
practical deployment. Implementing the evaluation framework on physical robots will help 
validate planning efficiency, smoothness, and robustness in real-world applications involving 
sensor noise, localization uncertainty, and actuator constraints.
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