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We present the development of a programmable logic controller (PLC) system designed for
three-phase motor applications, incorporating a web-based monitoring system using the ESP32
microcontroller and Modbus transmission control protocol/internet protocol (TCP/IP). It
supports six different motor starting methods: direct on line (DOL), on delay, off delay,
sequential, alternating, and star-delta. Communication between PLC and ESP32 utilizes Modbus
TCP/IP for reliable data exchange, and the web interface displays operational modes, PLC output
status, and live data logging with export functionality. Additionally, the system also includes an
embedded Al module for wiring fault detection, which improves safety and allows for offline
documentation through local SD card storage. The results confirm that ESP32 has been
successfully implemented as a central platform that functions simultaneously as a Modbus TCP/
IP client, web server, data logger, and Al processor. It communicates with PLC in under 200 ms,
while its data logging capabilities provide accurate and reliable information for analysis. The
developed system thus provides an effective platform for industrial automation, modern IoT-
based monitoring, and intelligent fault detection capabilities.

1. Introduction

The rapid advancement of industrial automation technology, particularly in heating,
ventilation, air conditioning, and refrigeration (HVAC-R) systems, requires educational
institutions to continually update their curriculum to align with industry standards. In response
to evolving technological trends, students are expected to possess stronger competencies in
programmable logic controller (PLC) and IoT applications. This gap between academic
preparation and industry expectations highlights the need to develop innovative practical
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learning tools that integrate modern control and monitoring technologies. Electric motors play a
vital role in HVAC-R systems as they drive key components such as compressors, fans, and
pumps, thereby supporting the overall system performance. While PLC technology is not a
recent innovation, its reliability and functionality remain essential in industrial settings, with
ongoing research demonstrating its continued relevance across both traditional and emerging
applications in industrial automation.

Previous research has demonstrated diverse applications of PLC technology in industrial
monitoring and control systems. Vandana et al. developed an automatic sorting system using a
PLC (S71200) and color sensor. The system’s ability to identify colors through frequency
analysis can enhance speed, accuracy, and consistency in parallel processing industries.!) Trung
employed the same PLC model for industrial boiler control, providing a detailed control system
design for circulating fluid bed (CFB) boilers.??) Prasad et al. developed an energy-efficient
system integrating PLC and SCADA for real-time monitoring and control, improving efficiency,
optimizing energy consumption, and enabling proactive maintenance.®

Advanced developments in industrial monitoring systems include PLC-controlled conveyor
belt surface inspection systems equipped with high-resolution cameras and laser transmitters,
designed to operate reliably in harsh environments.® These systems effectively detect belt
defects to optimize efficiency and minimize downtime. Innovative PLC data collection methods
have emerged for addressing the challenges of real-time acquisition from legacy PLCs. Cost-
effective, noninvasive methods using ready-to-use components and open-source software have
been developed, where cameras were aimed at PLC 1/O panels to capture and analyze indicator
lights for status monitoring.®) Automated testing equipment (ATE) for PLC functional testing
has been developed using commercial off-the-shelf (COTS) components and model-based
system engineering, achieving pattern speeds of up to 10 ms with total costs under 140 USD.©

To enable efficient municipal wastewater treatment, a PLC is enhanced with incremental
proportion and integration (PI) control and a backpropagation neural network to stabilize
dissolved oxygen, reduce nitrogen levels, and lower energy consumption.”) Communication
infrastructure for remote PLC monitoring has been developed, including 5G/fiber optic network
structures for the remote security monitoring of PLC communications.® Also, a SCADA system
for solar panel monitoring was developed using Siemens S7-1200 PLC, TIA Portal V17, and
sensors to provide real-time data, alarms, logging, and remote access for performance
optimization.*)) This demonstrates that PLC is applied in various domains, including
environmental automation and sustainable energy systems.

A human—machine interface (HMI)-based automated packaging system utilizing Siemens
LOGO! PLC and Arduino has been developed to enable remote monitoring and control via a
mobile application, providing a cost-efficient alternative to conventional SCADA systems.(!0)
PLC CPIE integrated with Raspberry Pi was applied in an IoT-based egg-incubator monitoring
system, enabling remote HMI and web dashboard access to temperature, humidity, and dust
parameters, reducing manual intervention and improving hatching efficiency.!) An IoT-based
control system links the ESP-WROOM-32S with Siemens S7-1200 PLC for real-time Wi-Fi
monitoring and control. Integrating Node-RED on Raspberry pi with an HTML interface
enhances visualization and enables flexible remote access in industrial automation.(1?
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Marzuki et al. developed a motor control module using a variable frequency drive, ESP32,
and Modbus remote terminal unit (RTU) to enhance energy efficiency and reduce cost, enabling
Wi-Fi-based remote monitoring via WhatsApp and Blynk IoT for safe operation in both learning
and industrial use.(?) To address challenges in understanding and implementing PLC technology,
innovative lIoT-based PLC trainer kits have been developed to enhance practical learning by
providing direct experience, improved skills, and optimized applications across various
domains.("® Serkies and Gorla investigated the deployment of PI controllers with extra feedback
loops and model predictive controllers (MPCs) on PLC to control drives with elastic coupling,
improving the dynamic performance with low CPU load as a cost-effective alternative to rapid
prototyping.(!>)

In this research, we propose a comprehensive PLC-based electric motor control system with
online monitoring for HVAC-R applications. The system integrates PLC control with IoT devices
for online system monitoring. In addition, the control system is also combined with modern
web-based monitoring and is equipped with Al for circuit testing. This developed system is
intended to be suitable for industrial applications, as well as to bridge the gap between
educational training and industrial requirements, ultimately improving the competence of both
graduates and industrial workers.

2. ESP32-centric Integrated Motor Control Platform

In the motor control system designed in this study, PLC and ESP32 are integrated to operate
several modes of three-phase motor operation. The motor’s output can be controlled via a web
page using the ESP32’s local web server, and the results can also be monitored using a
spreadsheet connected to Google App Script. This integration allows the operator to control the
motor while using the same local network as the PLC and ESP32, with monitoring results
accessible remotely via the internet. The flowchart is shown in Fig. 1.

Wiring process

Operator Voltage detect le—220V 220 V—»  Contactors
sensor setup

Event listener 33V 220V 3~380V
v v | v
. Modbus
Javascript  [€—WebSocket—>| ESP32 [— TCP/IP —> PLC Motor

DOM manipulation

POST

SPI
webpage webpage

Fig. 1. Integration diagram of the ESP32-centric motor control platform.
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This system is entirely centered on the ESP32 as a device that handles different roles
simultaneously. Other devices, such as the PLC and voltage detection sensor, will serve as
supporting components for the primary task of safely controlling the operation of a three-phase
motor. The design utilizes a total of seven PLC output relays and six contactors with limited
functionality. Full access requires an authorized operator to run the three-phase motor control
system after verification through login.

3. Research Methodology

The research methodology used in this study consists of several stages to ensure the
effectiveness of development, integration, and evaluation of the system. The following stages
have been completed.

(1) Designing a PLC training board and contactor for three-phase motor applications.

(2) Establishing communication between the ESP32 and PLC via Modbus transmission control
protocol/internet protocol (TCP/IP).

(3) Developing a web page as an interface for system operators.

(4) Using operator accounts as a key to run the device.

(5) Applying Al for operational security in the circuit.

User safety was a key consideration throughout this research, including during the design of
the PLC and contactor systems. All designs and component selections were carefully chosen in
accordance with existing standards. For this reason, an electrical diagram was created at the
initial stage to provide an overview of the system’s operation before it was built, as shown in
Fig. 2.

After creating an electrical diagram, the research is continued with the development of a
program for ESP32 so that it can handle the required functions in the future. The use of Arduino
IDE with the provided library can unlock the potential of ESP32 for Modbus TCP/IP
communication to the PLC, with the web server being used as the interface, and the data
obtained can be processed. In this stage, the router configuration is required to ensure clear
communication between components. The workflow shown in Fig. 3 is a general overview of
how the system works, including control actions, feedback capture, and recording of change
history.

a:
g vt
T e
sell sel? seld seld sel§ sel§ ){j\f\f\ PRAVENS s . ’_\ Y
2 e ds 24 4 Bl I
jj ittt
T V.
bt b
i W
(@) (b)

Fig. 2. Wiring design: (a) PLC system wiring scheme and (b) Star-delta wiring diagram for operator.
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Fig. 3. Process for displaying PLC feedback on web interface.

The library used by ESP32 to run the web server works asynchronously. Pages stored in flash
memory are served statically via the ESP32’s IP address, which is covered by multicast domain
name system (mDNS) options. This method makes web pages faster and easier for users to
access via a browser as a viewer. Features accessible at this level include viewing data history
and Al training that can be used for circuit testing. For logging functions, the library uses a
JSON compiler, SD card processor, and HTTP client manager.

The next stage is the operator account development to improve the user experience. The
expected result is to limit full access to operations to authorized operators only. This feature
provides a sense of exclusivity and security when the system is running. With this level,
authorized users can access features such as circuit testing and IP PLC replacement processed
by ESP32. Figure 4 shows the process of obtaining the operator key (authentication).

For the operator to gain full access to the system, the motor wiring must be correctly
assembled according to the instructions. If the motor wiring is correct, the operator can start
controlling the motor from the web page with a time limit of 60 min via cookies. During this
time, the ESP32 will send an operator signal, which is a communication signal from the ESP32
to unlock the system from the PLC side. This signal will control the PLC coil’s rising edge to
turn on and off at 1 s intervals, connected to a timer with a 20 s preset (setting period time) delay
after the last power-on signal. This time allows for a remaining period if the user reloads the
page and logs in again via a cookie. As long as the ESP32’s signal transmission is ongoing and
does not exceed the preset, the system will remain active. However, when the page is inactive or
the operator that exits the page exceeded the preset time, the system will be shut down
immediately. The details of the ladder logic used are shown in Fig. 5, taken from the PLC
application.

In an attempt to make circuit testing independent, the idea of using Al to handle it emerged.
Typically, testers use electrical testing instruments such as ohmmeters, voltmeters, and test pens.
In this study, a voltage detection sensor is used. It give outputs of HIGH signal (3.3 V) when idle
and a LOW signal (GND) when 220 V is detected. This sensor is already packaged in a module
board containing an optocoupler, resistor, and diode with eight different channels. To be readable
by the ESP32, the pins used must be configured in a pull-up input mode so it is always HIGH by
default. The connection between ESP32 and voltage sensor is shown in Fig. 6.

The system was designed using six sensor channels to be placed on the first and third
contactor outputs on the basis of the electrical diagram that had been created. Under these
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M102 as the operator beat (signal) from ESP32 and M103 as the system lock signal.

conditions, mathematical calculations showed that there were at least 3 x 26 = 192 possibilities
for sensor readings for the three different phases. On the basis of this concept, error types were
classified to serve as labels that can be studied by TensorFlow as a machine learning and Al

library.
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Fig. 6. Wiring diagram showing the connection between ESP32 and the voltage detection sensor.

Labeling is done with the help of a rule-based system in JavaScript with error types defined
in advance in accordance with each possibility. In developing the model, it is expected that the
output will have high accuracy in predicting labels even though it is trained with as little
learning material as possible. Training is conducted using a dataset containing selected data with
representation of each error type. The data structure consists of nine bits with the following
details: L1, L2, L3, Ul, VI, W1, W2, U2, and V2, according to the winding connection in the AC
motor. Details of the classification of errors are shown in Table 1.

4. Results and Discussion

The microcontroller, SD card, and sensor are enclosed in the same housing with a cover on
the front. This allows all systems to be integrated into a single training board alongside the PLC
and contactor. The ESP32 can still be powered via a USB cable connected to a 5 VDC power
supply. On the front of each training board, there are labels for each port, and on the ESP32
enclosure, there is a circuit diagram that can be used as a guide for the assembly process by the
operator.

As shown in Fig. 7, the circuit is connected to the motor in accordance with the diagram.
Although there are six modes to choose from, the sequential mode is restricted for safety
reasons. Unlike other modes, which only activate two control contactors, the sequential mode
can activate all three, which is not possible in a star-delta circuit with a single motor. The
sequential mode can still be used and is visible from the operation of its output coil, but the
power supply to the system will be automatically cut off.
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Table 1
Wiring error label classification.
Label Description Rule-based Bit example
EO Normal wiring and sensors work as expected. All sensot ]?lts match 100100100
the activated input phase.
El Only one sensor is active during the tested phase. 1 sensor bit = HIGH, input phase correct. 100000001
E2 TW(? s.ensors are actlve? . 2.s§ns.or bits = HIQH, 100000101
but one is in the wrong position. 1 bit in incorrect position.
E3 Two sen.sors are actlvst,. . .2 sensor bits = HIGH, 100000011
but both are in wrong positions. neither bit matches the expected pattern.
Sensor pattern mostly correct, but input phase Sensor bits match expected pattern,
E4 . . . 100001001
order is incorrect. May cause unexpected outputs. input phase order incorrect.
Unusual sensor pattern detected, possibly owing Sensor pattern not recognized;
E5 . L . . . . 100011011
to bit duplication or signal interference. number of active bits is atypical.
E6 ' Three sensors gre active. . . 3 sensor bits = HIGH, 100001011
Indicates partial wiring connection. input phase partially correct.
Four sensors are active. Possible nonstandard 4 sensor bits = HIGH,
E7 .. . . . . 100001111
wiring or incorrect configuration. input phase mismatch present.
Five sensors are active. Suggests potential 5 sensor bits = HIGH,
E8 - .o Lo . . 100011111
short circuit or significant miswiring. input phase may be incorrect.
9 Invalid wiring pattern. Critical error requiring Sensor pattern and input phase 100111111

a thorough recheck of all connections.

do not match any defined rule.

900009009 v

RERRELRRL i 1

Fig. 7. (Color online) Physical implementation of the wiring diagram on training board.

Table 2 contains data recorded by ESP32 provided by feedback from the PLC captured every
200 ms, and during that time, all commands can be processed. For example, the DOL mode can
be activated without any time difference, while the delay in the OFF mode can be exactly 5 s, or
even 1 s during the star-to-delta transition. This is in accordance with the settings in the ladder
logic that was designed. Responsiveness is indeed a key advantage of the PLC as a controller, but

in this system, other aspects also play significant roles. Communication via Modbus TCP/IP
over an ethernet cable and WebSocket with compact bit data can match the speed of the PLC. All
data is recorded to an SD card or online spreadsheet with a timestamp from the PLC real-time

clock (RTC) processed by ESP32.
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Table 2

Samples of feedback data from online spreadsheet converted from bits to coil status.

Mode Timestamp OFF ONI1 ON2 Q0 Q1 Q2 Bits
15:54:06 OFF ON OFF ON ON OFF 0101000000110

DOL 15:54:13 ON OFF OFF OFF OFF OFF 1001000000000
15:54:13 OFF OFF OFF OFF OFF OFF 0000000000000
15:54:38 OFF ON OFF ON ON OFF 0100010000110

OFF delay 15:54:43 ON OFF OFF ON ON OFF 1000010000110
15:54:43 OFF OFF OFF ON ON OFF 0000010000000
15:54:48 OFF OFF OFF OFF OFF OFF 0000000000000
15:55:45 OFF ON OFF ON ON OFF 0100000010110
15:55:50 OFF ON OFF OFF OFF OFF 0100000010000

Star-delta  15:55:51 OFF ON OFF ON OFF ON 0100000010101
15:56:00 ON OFF OFF OFF OFF OFF 1000000000000
15:56:01 OFF OFF OFF OFF OFF OFF 0000000000000

JavaScript can easily translate feedback data obtained from WebSocket to be processed and
placed in accordance with their respective elements. The variety of document object model
(DOM) manipulations that can be performed through programming allows for a more attractive
and informative user interface. Figure 8 shows how a web page can reject users who are not
logged in as operators and the operating modes of the AC motor. After selecting one of the motor
operating modes, the other modes will be locked and can no longer be selected.

Figure 9 shows the test page to check the wiring of the motor operation mode using Al before
actually running AC motor. On the test page, the testing process begins when the user presses
the start test button, then the request will be checked by ESP32 for its validity. The request will
not proceed if access is not from authorized operators or from an operator who previously passed
the test. Once approved, the flow will start by ensuring that all PLC coils are turned off first. In
accordance with the electrical design shown in Fig. 2, PLC output coil Q4 will be activated to
supply 220 V to the power line L1, with a pause for the sensor reading, then the power will be
turned off. After that, a similar process is repeated for Q5 to L2 and Q6 to L3, ending concluding
by turning off all the coils and allowing time for Al to process the data. The readout data by
ESP32 is checked one by one using the embedded Al model, sending the results to the operator
on the web page, and then the Al judges whether the wiring configuration was correct. Only if,
according to Al, all the data results indicate EO, then the operator can proceed to run the system.

Figure 10(a) shows the web page for configuring the Al model, whereas Fig. 10(b) shows the
confidence percentage prediction of the Al model. To find the best model, the system page is
used to simplify the process by constantly comparing the training results with the original labels
that have been defined using rule-based methods according to Table 1. This page shows the
model with the highest accuracy. Additionally, there are other features for analyzing existing
models or exploring new models randomly on the basis of the preferences for the maximum
dataset, number of epochs, and iteration count.

On this training page of Al the training results can be exported in JSON and weight BIN
files. Both are interconnected and need to be converted to h5, then to TFLite, and h extension.
All conversion processes must use TensorFlow Python with a customized environment. Once
converted into a C/C++ array, the model can be embedded into the ESP32 through the compile
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AC Motor System
via Modbus TCP/IP Communication Using ESP32
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Fig. 8. (Color online) Homepage showing (a) non-operator denied changing of the PLC IP address, and (b) star-
delta mode activating output coil indicators while other mode buttons are dimmed.
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Fig. 9. (Color online) Screenshot of the test webpage showing (a) a failed wiring test result at test 4, and (b) a
rejected example when the wiring configuration is incorrect.
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Fig. 10. (Color online) Screenshot of the system webpage showing (a) the model exploration section based on the
settings, and (b) the upload section for model evaluation.
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and upload process using the Arduino IDE. In this study, a model trained using a dataset of 64
data with an accuracy of up to 62.5% was used, as shown in Fig. 10(b).

For data collection, seven tests were conducted to see how the Al responded to several types
of conditioned circuit error. After data collection, it was found that the AI was able to make
accurate predictions even when the data had not been studied during training. However, out of
the 21 data points, there were six incorrect predictions, three of which were for data that had
been studied using the model. Figure 11 shows the results during data collection, and Table 3
lists the details of the seven tests. This analysis provides an initial overview of the model’s
potential and limitations in real-world application scenarios compared with rule-based systems.

4, Star-Delta Wiring Test 4, Star-Delta Wiring Test

Z Requesting test from ESP32... Z Requesting test from ESP32...
11l started *, Wiring test started 1l started *, Wiring test started

Phase 1 complete. Phase 1 complete.

Phase 2 complete. Phase 2 complete.

Phase 3 complete. Phase 3 complete.
1 processing @ Processing wiring test with Al.. [l processing @ Processing wiring test with Al
& Al Phase 1: E5 (55.9%) & Al Phase 1: E1 (99.9%)
& Al Phase 2: E4 (30.2%) & Al Phase 2: E8 (97.6%)
& Al Phase 3: E6 (48.1%) & Al Phase 3: E7 (98.2%)
W Final Result: { Wiring test FAILED W Final Result: )¢ Wiring test FAILED
= All phases testing process done! = All phases testing process done!

> Wiring test FAILED > Wiring test FAILED
Phase 1-E5: |, Unusual sensor 3 rbances. Phase 1-E1: . Only one sensor active, possible loose or incorrect connection.
Phase 2-E4: |, Sensor patter nearly correct, phase order might be off. Phase 2-E8: |, Five sensors active, potential short circuit detected.
hase 3 - E6: | wiring may be partially X has 1 F rs active, possible non-standard wiring,
(@ (b)

Fig. 11. (Color online) Screenshot of the test webpage showing (a) wiring test 3 results with errors E5, E4, and E6,
and (b) wiring test 5 results with errors El, E8, and E7.

Table 3

Actual circuit fault detection and Al model prediction.

Test Input Dataset included ~ Actual label ~ Model prediction Status
100000100 YES El El CORRECT

1 010000000 NOT E9 El WRONG
001001000 NOT El El CORRECT
100100010 NOT E2 E2 CORRECT

2 010011101 NOT E7 E7 CORRECT
001011101 NOT E7 E7 CORRECT
100110101 NOT E7 ES WRONG

3 010001010 YES E2 E4 WRONG
001110101 NOT E7 E6 WRONG
100101101 YES ES ES CORRECT

4 010101101 NOT E5 E5 CORRECT
001010010 YES E4 E4 CORRECT
100000000 YES E9 El WRONG

5 010111111 NOT ES E8 CORRECT
001011111 NOT E7 E7 CORRECT
100010001 YES E3 E4 WRONG

6 010001100 YES E3 E3 CORRECT
001100010 NOT E3 E3 CORRECT
100100100 YES EO EO CORRECT

7 010000010 NOT El El CORRECT

001001001 YES EO EO CORRECT
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5. Conclusions

From the results of testing and data collection on the initial design of the system in this study,
the following conclusions have been drawn.

(1) The system board that was created successfully supports research activities on three-phase
motors safely and works as designed prior to its creation.

(2) The Modbus TCP/IP protocol has been successfully implemented between the ESP32 and
PLC, with communication and processing times under 200 ms.

(3) The web page with WebSocket serves as a responsive system interface, enabling real-time
control and monitoring of the PLC.

(4) The data logging performed by the ESP32 provides accurate and appropriate data, which can
be effectively used in analysis.

(5) The operator account mechanism has proven effective when applied to securing and
restricting access to PLC control from the ESP32, which should not be freely accessible.

(6) A simple Al circuit tester model can be integrated into the ESP32 and operates in accordance
with the analysis results from training. However, its reliability has not yet surpassed those of
systems using rule-based approaches.

(7) The ESP32 microcontroller has successfully become a central platform capable of functioning
as a Modbus client, web server, data logger, and Al processor all at once.
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