
5201Sensors and Materials, Vol. 37, No. 11 (2025) 5201–5220
MYU Tokyo

S & M 4241

*Corresponding author: e-mail: HC.Huang@nkust.edu.tw
https://doi.org/10.18494/SAM5879

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Optimized Thermal Error Prediction and Real-time Compensation 
in Computer Numerical Control Milling Machines 

Using Neural Networks and Advanced Sensor Selection

Dang-Khoa Nguyen,1,2 Hua-Chih Huang,1* and Zhong-Ming Hsu1

1Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, 
Kaohsiung 807618, Taiwan

2Faculty of Engineering and Technology, Nong Lam University, 
Ho Chi Minh City 700000, Vietnam

(Received August 25, 2025; accepted November 20, 2025)

Keywords:	 thermal error (TE), thermal compensation (TC), back propagation neural network (BPNN), 
K-means, PCA+K-means

	 In this study, we developed a thermal error prediction (TEP) model and employed the error 
compensation in real time in a computer numerical control (CNC) milling machine with three 
axes in actual cutting operations. Thirty-three PT-100 sensors were used in each critical part of 
the machine to collect temperature data during cutting. K-means was adopted to select eight 
crucial temperature sensors from the 33 temperature sensors, and PCA+K-means was used to 
determine seven critical temperature sensors from the 33 sensors to apply a model for TEP. In 
this study, we made the prediction model from a back propagation neural network (BPNN). The 
number of sensors chosen as the critical temperature sensors constitutes the input layer of the 
BPNN. In contrast, the three neurons in the output layer represent the deformation of X, Y, and Z. 
After training the model to predict errors, it is brought into the control system for real-time TEP. 
We conducted a 6 h actual cutting experiment to verify the effect of error compensation, and the 
average three-axis thermal error was decreased from 50 to 14 μm by the K-means selection 
method. The PCA+K-means selection method reduced the average thermal three-axis error from 
50 to 11 μm as compared with the previous measurements. The results show that these two 
methods can effectively improve the machining accuracy of the workpiece by combining the 
BPNN model with a compensated real-time TEP model.

1.	 Introduction

	 In the era of the prevalence of the processing manufacturing industry, with the increasing 
degree of automation and the development of tooling machines to move in a high-speed, high-
precision direction, processing accuracy has become the most significant problem to explore. 
Numerous factors affect the accuracy of the machining process. The errors of computer 
numerical control (CNC) machine tools when machining can be categorized into the following 
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five types: (1) geometrical errors created by the assembly and manufacturing process; (2) 
thermal distortion errors related to internal and external heating sources; (3) the deformation 
error caused by reaction force that resulted from material cutting; (4) the control error caused by 
the control system, i.e., positioning error, and digital control error compensation algorithm; and 
(5) the machine tool vibration at high frequencies and tool wear. Thermal deformation (TD) has 
contributed the highest level of manufacturing error and accounted for more than 70% of it.(1) 
The machine part will undergo TD during reworking, changing the workpiece’s and tooltip’s 
relative location, leading to TE.
	 In compensation for TE, modeling technology is emphasized. The experimental modeling 
method, which uses statistical theory to examine temperature and TE, is the most widely used 
technique for modeling TE. Multiple temperature sensors are typically positioned on the 
machine tool to collect data for error modeling. However, it is necessary to filter the temperature 
variables throughout the modeling process. The presence of numerous temperature variables 
will significantly impair the modeling accuracy as a result of collinearity. However, the 
compensation process will be ineffective if important regions are not selected as variables for the 
model. Lo et al.(2) used coordinates to measure error components and proposed a temperature 
sensor optimization method that eliminated the co-linearity problem through correlation 
grouping. Three search cycles provided a fast path to obtain the best decision, and the most 
significant residual TE was reduced from 20 to 2.2 μm by selecting 4 out of 46 sensors. Zhang et 
al.(3) used a fuzzy similarity matrix to filter temperature sensors and experimented with a 
precision horizontal milling machining center. This experiment selects seven temperature 
variables as input from 29 temperature sensors monitoring the device model. Then, a multivariate 
regression analysis model was applied to build a model for thermal compensation, and the model 
accuracy can reach the range of −1.3–1.6 μm. Ming et al.(4) conducted thermal error prediction 
(TEP) experiments utilizing a CNC vertical milling center Leaderway V-450 and classified 
temperature variables using a fuzzy clustering method to acquire important and logical 
categories, after which crucial temperature measurement points were obtained for each kind on 
the basis of the gray correlation between TE and temperature variables. Next, nonsignificant 
temperature data were removed, and various co-linearity issues were resolved using a stepwise 
regression technique. Ten temperature sensors were lowered to two, and the ideal temperature 
sensitivity points were used to build the TEP model. Lou et al.(5) utilized a fuzzy clustering 
method to screen out the sensitivity of temperature issues, and seven temperature points were 
chosen from 27. A BP neural network model was applied to build a model for TEP. The average 
error before the TE compensation was 4.5868 μm, and after the TE compensation, the average 
error was reduced to 1.5633 μm, which was 65.92% lower. Ramesh et al.(6) used an artificial 
neural network (ANN) and support vector machine (SVM) to perform a comparison from the 
TEP model. They showed that the training time and prediction accuracy of the SVM model were 
better than those of the ANN model, and the thermal inaccuracy dropped from −20 to −60 μm to 
2 to 4 μm. Horejš et al.(7) compensated for real-time TE using a horizontal milling center as a 
tester, used heat transfer functions (TTFs), and performed a comparison with multiple linear 
regression (MLR), where the machine’s temperature and spindle speed serve as the adjustment 
algorithm’s inputs. The prediction model is tested at spindle speed and machine temperature, 
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and the findings demonstrate that the TTF model minimizes the TE by more than 75% as 
compared with the MLR model. Wang et al.(8) deployed particle swarm optimization (PSO) to 
improve the back propagation neural network (BPNN). The hidden layer node and layer counts 
of the BPNN were optimized by including the PSO method to train the local network effectively. 
The PSO algorithm is applied to maximize the number of hidden layer nodes and layers of the 
BPNN and network out of the local optimal trap and improve flexibility. PSO also improves the 
weight and threshold of the BPNN. According to the results, the PSO-BPNN can reduce the TEP 
error on the main axis in the z-direction from 6.74 to 1.82% in the training range.
	 In this study, first, we used temperature sensors at critical points where the temperature 
changes considerably in various parts of the machine to collect the temperature data generated 
during the operation of the device:
(1)	�Method 1: K-means clustering (K-means) filters the best combination of temperature sensing 

points.
(2)	�Method 2: Principal component analysis (PCA) and K-means are used to select critical 

temperature sensors, which can accurately reflect the variation pattern between TE and the 
temperature of the machine, and improve the prediction accuracy of the TE model.

(3)	�The BP modeling approach was later used to construct the error prediction model. After 
completing the prediction model, the machine controller reads from the model for real-time 
error compensation using the controller compensation method to calculate the error 
prediction model.

2.	 TD Principle of Three-axis CNC Milling Machine

2.1	 Structure of three-axis CNC milling machine

	 The load for this research is the TMV-720A three-axis CNC milling machine manufactured 
by Tung Tai Precision Machinery Co., which mainly comprises a spindle box, table, slide, 
column, base, and so forth. The TMV-720A three-axis CNC milling machine has travel strokes 
of 720, 480, and 530 mm for the X-, Y-, and Z-axes, respectively, a rapid feed of 48 m/min for the 
three axes, a table size of 800 × 480 mm, a maximum table load of 500 kg, and a maximum 
spindle speed of 8000 rpm.
	 The controller used in the three-axis CNC milling machine is the 21 MB controller from 
Suntech. The 21 MB controller is equipped with the Yaskawa bus communication control 
method, which solves the timing problem of the traditional pulse-type general-purpose controller 
in multi-axis motion control and provides reasonable simultaneous control and timeliness. 

2.2	 Heat source analysis of three-axis CNC milling machine

	 Milling machines generate many heat sources owing to the long operation time, and these 
heat sources are transmitted to different machine components in various ways, causing the 
temperature of the machine parts to rise and resulting in the TD of the parts. Common machine 
heat deformations can be divided into two types of heat elongation and heat lift, as shown in 
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Fig. 1, which shows the machine heat elongation and heat lift, thus causing the deterioration of 
machining accuracy. 
	 Generally, the heat sources of a tool machine can be divided into two major groups: internal 
and external. The internal heat source comes from the heat generated during the operation and 
processing of the machine body. When the spindle rotates, the heat from the spindle is mainly 
generated by the spindle motor operation and the frictional heat of the bearings. The feeding 
system’s primary heat source is the heat created by the motor operation, the frictional heat 
created by the movement of the ball and nut seat in the ball screw, the friction caused by the heat 
of the front bearing and rear, and the thermal friction of the linear slider. External heat sources 
affect the TD of the spindle and feed system heat sources. External heat sources mainly include 
the amount of heat generated by the peripheral devices on the CNC machine tool, the 
environment temperature change, and human error (the amount of heat generated by personnel 
and the temperature change caused by frequent access). These eventually cause the milling 
machine tool tip displacement because of the heat deformation, the so-called TE, as shown in 
Fig. 2, which illustrates the cause of the machine’s temperature error.

2.3	 Establishment of temperature sensor system

	 The position of the temperature sensor installation considerably affects the TE compensation 
and prediction accuracy. Because of the spindle cantilever extension and bending deformation 
brought on by heat sources from the spindle motor, cantilever, column, and so forth, the CNC 
milling machine experiences the most significant TD. To monitor the TD temperature of the 
CNC milling machine, the best location to install temperature sensors is determined to be the 
main heat sources or areas of extreme temperature changes, such as the spindle box, drive motor, 
slider, and ambient-temperature of work floor.
	 In this study, we used 33 PT-100 temperature sensors to monitor the temperature changes on 
the CNC milling machine, as shown in Fig. 3. The ambient temperature was monitored by the 
33rd sensor among them as the data needed to construct the model for predicting TE. The 
schematic of the implementation diagram of the real-time compensation of TD is depicted in 
Fig. 4.

Fig. 1.	 TD occurs in milling machines.
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Fig. 2.	 TE in the machine.

Fig. 4.	 (Color online) Implementation diagram of real-time compensation of TD.

Fig. 3.	 (Color online) TE in the machine.
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3.	 Optimization of the Temperature Sensor Method

3.1	 K-means

	 The K-means of fuzzy cluster analysis is used for cluster selection because this method is 
simple, and only the representative sensors in each cluster are identified to represent the 
characteristics of the sensors in that cluster. Fuzzy cluster analysis is a system analysis based on 
the comparability between the sequences of system characteristic parameters, where similar 
variables are first grouped into the same class. Then, a representative variable from each class is 
selected as the independent variable. K-average clustering is an unsupervised machine learning 
algorithm that uses the target function to find the best cluster representatives. Then, the distance 
between the data and the cluster representatives is used to do the clustering; thus, the distance 
between the data and the cluster representatives is important. The line length of a segment 
between two locations in space is known as the Euclidean distance. The following is the 
computational step of K-means:(9)

(1)	Randomly set the number of k clusters to be divided.
(2)	Arbitrarily generate k clusters and determine the cluster centers.
(3)	Determine the Euclidean distance between each data point and the centers of the k clusters 

for each data point.
(4)	Each data point should be assigned to the cluster center nearest to it.
(5)	Compute the updated centroid of the cluster.
(6)	Repeat steps 3–5 until all the cluster centers no longer have much change (convergence).
	 The goal of K-means is to minimize the target function so that the error within the cluster is 
as small as possible, as shown in Eq. (1):
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where J(z, a) is the target function, k is the size of the clusters, xj is one of the data sets, ai is the 
cluster centroid, and zij is the European Distance.

3.2	 Sum of squares error (SSE)

	 Owing to the unsupervised nature of K-means, the number of clusters that must be divided 
varies depending on the circumstances. As such, the question of how many clusters must be 
separated arises. In this study, SSE determines the number of bins. SSE will decrease 
considerably when the clusters are smaller in size than the actual cluster. When the size of the 
clusters approaches the real number of clusters, the decline will become flat, which is a turning 
point, so there is an “elbow point,” which is the optimal number of clusters,(10) as shown in Eq. 
(2).
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Ci is the ith group, p is the data point in Ci, mi is the group center of Ci, and SSE is the aggregation 
error, representing the good or bad aggregation.

3.3	 PCA

	 There are many features available for data grouping. If too many features (dimensions) are 
input for grouping, the grouping effect will be poor and the operation speed will be slow. The 
PCA method can solve the processing of multidimensional (feature) data. After processing, most 
of the data information quantity can be retained. This method can retain the quantity of all the 
data characteristics and solve the problem that the feature selection may take a long time for trial 
and error.
	 There is a certain correlation between different data. Training more data, coupled with the 
correlation between data, will increase the complexity of the analysis problem. However, PCA is 
a way to restrict the dimension of data correlation as much as possible, seeking to combine the 
original huge data into a group of unrelated comprehensive data and reflect the original data 
information.
	 The calculation steps of PCA are as follows.(11,12)

(1)	First, sort out a large amount of data and create a data matrix X:
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	 where p is the variable value of each sample and n is the total number of samples.
(2)	The covariance of the variables i and j is
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(3)	The correlation coefficient represents the relationship between i and j:
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(4)	�Equation (5) gives the sample correlation matrix. The correlation matrix is the covariance 
matrix following variable standardization:
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(5)	�Finally, the first p' principal components are selected through the eigenvalue λ of the 
covariance matrix R:
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=∑  is the sum of variances of all variables. When a new variable contributes more, λ will be 

larger.
	 To reduce the amount of work involved in the analysis, the principal components in the PCA 
are arranged according to variance. This allows for discarding some main components and 
identifying the original variables in only the first few principal components with larger 
variances. To ensure that the comprehensive evaluation results are unaffected by the workload-
saving removal of important indicators, the 80% cumulative contribution rate concept is used 
when utilizing the PCA approach.

4.	 Screening of Critical Sensors in Temperature Sensors

4.1	 Measurement experiments on TD

	 In this study, to obtain the thermal equilibrium and the deformation data when cutting, the 
experiment was run for 8 h, and the cutting operation was performed every 2 h to obtain the TD 
data of the three axes of the machine, which was planned by running and stopping the engine. In 
the processing part, we used the rotary cutting method for the trajectories of the X-, Y-, and 
Z-axes, as depicted in Fig. 5.
	 The cutting material is aluminum block AL6061, the workpiece is 100 mm in length, 100 mm 
in width, and 100 mm in height, and the tool used is the ϕ10 three-flute tungsten carbide end 
mill. To determine the X-, Y-, and Z-axes’ deformation, the block was divided into five sides, and 
the first and third sides were applied to determine the deformation of the Y-axis; the deformation 
of the X-axis was measured using the second and fourth sides, and the deformation of the Z-axis 
was measured using the top side as shown in Fig. 6.
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	 After the experiment started, a set of TD cutting and measurement procedures was designed 
to obtain the temperature change and the TD data on the three axes while cutting the CNC 
milling machine with the three axes.
	 To obtain the thermal balance of the machine and the TD data of the time machine cutting, 
the experiment was run empty for 8 h, and the cutting operation was carried out every 2 h to 
obtain the TD data of the three axes of the machine, which was planned by running empty and 
stopping the machine. After the cutting process was completed, the final dimensional 
measurement of the cutting workpiece was carried out using a three-dimensional measuring 
instrument to obtain the error of the three axes X, Y, and Z at each speed. Figure 7 shows the 
experimental diagram of TD. The settings for the machining of this flow chart are as follows: the 
spindle speed ranges from 5000 to 7000 rpm, the feed rate is 3000 mm/min, and the X-, Y-, and 
Z-axes of travel are 0–−720, 0–−430, and 0–−500 mm each, respectively.

Fig. 5.	 Five-face cutting workpiece path diagram.

Fig. 6.	 (Color online) Aluminum block measurement setting.
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4.2	 K-means-selected key temperature sensors

	 In this study, K-means was first used to screen key sensors, and SSE was used to find the 
number of clusters, as illustrated in Fig. 8. Then, the relationship between temperatures was used 
to group sensors, and the sensor with the greatest correlation coefficient between temperatures 
in each group was selected as the key sensor. Finally, seven temperature sensors and the ambient 
temperature were selected as sensors 2, 3, 17, 18, 23, 26, and 31. In addition, eight key 
temperature sensors plus the ambient temperature Ta were selected as the temperature data input 
to the neural network. Figure 9 shows the location diagram of key temperature sensors selected 
by K-means in the machine. Table 1 indicates the placements of eight key temperature sensors.

4.3	 PCA+K-means-selected key temperature sensors

	 First, the temperature data were divided into 12 characteristic quantities: maximum, 
minimum, standard deviation, mean, 25th percentile, 50th percentile, 75th percentile, maximum 
minus minimum, temperature difference at 0–2, temperature difference at 2–4, temperature 
difference at 4–6, and temperature difference at 6–8. The results of the 12 characteristic 
quantities were analyzed by PCA, as shown in Table 2. From Table 3, the contribution rates are 
0.026833 when there are three features and 0.00091 or less when there are four or more features, 
indicating that the amount of information on three features is sufficient, so it is decided to use 
three components to represent more than 99% of the data information.
	 After the PCA analysis of the three features, the K-means method was used to perform the 
grouping, first using SSE to determine the K-means into seven groups, as shown in Fig. 10. In 
seven groups, the sensor with the highest temperature correlation in each group was chosen as 
the key temperature sensor to represent the group. The selected temperature sensors are sensors 
3, 6, 12, 18, 19, and 20, and the ambient-temperature sensor is Ta. The positions of these key 
temperature sensors correspond to the machine’s location, as shown in Fig. 11. Table 3 shows the 
positions of the seven key temperature sensors.

Fig. 7.	 (Color online) Experimental diagram of TD.
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Fig. 8.	 (Color online) SSE is classified as Group 7.

Fig. 9.	 (Color online) K-means selection of key temperature sensors in machine location 7.

Table 1
Locations of eight crucial temperature sensors.
K-means-selected key temperature sensors
Sensor Location
  2 Spindle head
  3 On cantilever
17 Column
18 Z-axis motor base
23 Y-axis bearing
26 Z-axis slider
31 X-axis motor base
Ta Ambient temperature
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Table 2
Temperature data were classified into 12 characteristic components of the PCA cumulative contribution rate (CR).
Cumulative CA of PCA principal component

CA Cumulative CA
  1 0.870214 0.870214
  2 0.101288 0.971502
  3 0.026833 0.998335
  4 0.00091 0.999245
  5 0.000308 0.999553
  6 0.000282 0.999835
  7 6.97E−05 0.999905
  8 4.85E−05 0.999953
  9 2.86E−05 0.999982
10 1.64E−05 0.999998
11 1.8E−06 1
12 1.05E−33 1

Table 3
Locations of eight crucial temperature sensors.
PCA+K-means-selected key temperature sensors
Sensor Location
  3 On cantilever
  6 Under cantilever
12 Y-axis slider
18 Z-axis motor base
19 Z-axis bearing
20 Z-axis bearing
Ta Ambient temperature

Fig. 10.	 (Color online) SSE is classified as Group 7.
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5.	 TEP Model Using Neural Network

5.1	 Architecture of BPNN 

	 In this study, we built a TEP model from the BPNN. The BPNN uses BP as a learning 
algorithm, and its architecture is a multilayer perceptron. To supervise and train the prediction 
model, the BPNN, which is a feedforward multilayer neural network, uses the error back-
propagation method to address the nonlinear problem between input and output. The relationship 
between TE and temperature at different points of the CNC milling machine is nonlinear, so the 
BPNN can solve this problem.
	 The algorithm of error inverse transmission is a combination of forward and reverse 
propagation processes, as shown in Fig. 12.(13,14)

(1)	�The forward propagation process consists of weighting the data in the input layer by the 
hidden layer, processing the activation function, and then transmitting it to the output layer to 
calculate the output (real line).

(2)	�On the other hand, when the output does not reach the target of the output layer, it will turn to 
reverse propagation and send the error back to the neurons of each layer along the original 
path, and improve it by modifying the weights so that the error can reach the tolerance error 
range and then stop (dashed line).

	 The backward propagation neural network realizes the adjustment process of forward and 
reverse transmission of data. The training steps of BPNN are as follows.(15–17)

Fig. 11.	 (Color online) PCA+K-means selection of key temperature sensors in the machine location.
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(1)	Calculate the total number of neurons in each layer and the number of layers. Forward portion 
of the transmission to the input layer.

(2)	Randomly set the weights of the hidden and output layers.
(3)	Input the input and target output of the training data.
(4)	Calculate the outputs of the hidden and output layers.

(5)	Consider the calculation error function as ( )21
2 k kE d y = − 

 
∑ .

Part of BP:
(6)	Calculate the weight and offset corrections between layers (from back to front).
(7)	Update the weights of the output and hidden layers.
(8)	Repeat steps 3 to 7 until convergence (very low loss and almost no longer floating) or the end 

of the preset period (epoch).

5.2	 TEP model building and training

	 Since the training of the TEP model requires big input and output data, the input data is the 
value of the key temperature sensor. In contrast, the output data is the three-axis TE obtained 
from the workpiece measurement. In this study, we used Python syntax as the experimental 
method for training the TEP model. Thermal data from the main temperature sensor and the 
corresponding three-axis TE are introduced into the model, and the BPNN is utilized to train the 
model for TEP. Big data were first divided into training and verification data. The temperature 
sensor and TD data from the three axes were divided into 70% training data and 30% verification 
data. The model for predicting error was obtained after training the training data model. Then, 
the verification data were inserted into the prediction model, and the prediction model error was 

Fig. 12.	 (Color online) Schematic structure of BPNN.
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calculated. When the prediction error reached the expected target, the model was stored as the 
TEP model.
	 In this study, we used two methods to select key temperature sensors to construct and 
compare TEP prediction models. Method 1: K-means three-axis TEP findings are given in Fig. 
13(a). The residual value of the three-axis TEP of K-means is shown in Fig. 13(b). Method 2: 
PCA+K-means three-axis TEP findings are given in Fig. 14(a). The residual value of PCA+K-
means three-axis TEP is shown in Fig. 14(b). The data collation and comparison between 
Methods 1 and 2 are shown in Table 4.
	 From Table 4, the maximum prediction residual of the temperature sensor selected by the 
K-means method through BPNN simulation is 4.7265 μm. The average of the three-axis residual 

Fig. 13.	 (Color online) (a) Results of three-axis TEP by K-means and (b) residual value of the three-axis TEP of 
K-means.

Fig. 14.	 (Color online) (a) Results of three-axis TEP by PCA+K-means and (b) PCA+K-means three-axis TEP 
residual value.

(a) (b)

(a) (b)

Table 4
Averages of three-axis triaxial TEP residuals for two methods.

Temperature sensor selection method X-axis
(µm)

Y-axis
(µm)

Z-axis
(µm)

Three-axis mean
(µm)

K-means method 4.7265 4.3531 2.7982 3.9592
PCA+K-means method 1.1149 1.2941 2.9112 1.7734
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is 3.9592 μm, whereas the maximum prediction residual of the temperature sensor selected by 
the PCA+K-means method through BPNN simulation is 2.9112 μm, and the average of the 
triaxial residual is 1.7734 μm. It can be deduced that the model’s prediction accuracy is improved 
by reducing the complexity and dimensionality of the data computation using PCA, and the 
prediction accuracy tends to improve.

6.	 TEP Model Real-time Compensation Experiment

	 When the TEP model calculates the estimation error, the controller must compensate for it in 
real time. In this study, the controller uses the OPC Unified Architecture (OPC UA), a machine-
to-machine network transmission protocol applied in automation technology, to transfer the 
prediction model-estimated TEP of three axes to the controller for TE compensated for the 
three-axis CNC milling machine in real time. The configuration of a real-time compensation 
strategy for temperature errors is presented in Fig. 15, and real-time error compensation steps 
are depicted in Fig. 16.
	 In this study, we used the TE compensation prediction model completed by training to carry 
out the verification experiment of actual cutting processing. This experiment was carried out for 
6 h, cutting once every 1.5 h and four times in total to obtain the amount of information after 
compensation. The spindle speed was set at 5000 rpm, the feed rate was 3000 mm/min, and the 
experimental conditions are presented in Fig. 17.
	 In Method 1, the temperature changes of the sensors screened by K-means are shown in Fig. 
18, which illustrates the temperature variations of sensors 2, 3, 17, 18, 23, 26, 31, and Ta within 
6 h in experiment. The compensation results of the X-, Y-, and Z-axes, using the model for 
predicting error, are depicted in Table 5. The TE compensation analysis shows that the average 
TE of the X-axis has decreased from 28 to 10 μm, the average TE of the Y-axis has decreased 
from 79 to 16 μm, and the average TE of the Z-axis has decreased from −42 to −15 μm.

Fig. 15.	 (Color online) Configuration of a real-time compensation strategy for temperature errors.
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Fig. 16.	 (Color online) Real-time error compensation steps.

Fig. 17.	 (Color online) Working conditions of the actual cutting heat error compensation experiment of 6 h of run.

Fig. 18.	 (Color online) Method 1: Temperature changes of the key temperature sensors selected by K-means 
running empty for 6 h.
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Table 6
Method 2: PCA+K means screening key temperature sensor TE values before and after experimental compensation.

Axial direction Processing time (h) No real-time compensation 
for TE (µm)

Real-time compensation 
for TE (µm)

X-axis

1.5 11.9 5.3
3 24.2 10.1
4.5 35.9 15.2
6 39.7 20.2

Y-axis

1.5 52.5 1.7
3 82.2 7.3
4.5 89.1 9.8
6 90.3 13.9

Z-axis

1.5 −35.5 −1.3
3 −38.3 −8.9
4.5 −45.3 −17.7
6 −49.7 −25

Fig. 19.	 (Color online) Method 2: Temperature changes of key temperature sensors screened by PCA+K-means after 
running empty for 6 h.

Table 5
Method 1: TE values of key temperature sensors screened by K-means before and after experimental compensation.

Axial direction Processing time (h) No real-time compensation 
for TE (µm)

Real-time compensation 
for TE (µm)

X-axis

1.5 11.9 9.8
3 24.2 9.3
4.5 35.9 10.8
6 39.7 11.5

Y-axis

1.5 52.5 4
3 82.2 12.5
4.5 89.1 22.1
6 90.3 26

Z-axis

1.5 −35.5 −3.4
3 −38.3 −12.6
4.5 −45.3 −18.3
6 −49.7 −25.7
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	 The temperature changes of the seven key temperature sensors screened by PCA+K-means, 
i.e., sensors 3, 6, 12, 18, 19, 20, and Ta running in air for 6 h, are presented in Fig. 19. Table 6 
shows the X-, Y-, and Z-axis compensation results obtained using the model for predicting TE. 
The TE measurements before and after compensation indicate a significant reduction in average 
TE for each axis. Specifically, the average TE for the X-axis decreases from 28 (uncompensated) 
to 13 μm (compensated), the average TE for the Y-axis decreases from 79 (uncompensated) to 8 
μm (compensated), and the average TE for the Z-axis decreases from −42 (uncompensated) to 
−13 μm (compensated). 
	 Tables 5 and 6 show that the key temperature sensors screened by the two methods combined 
with the BPNN can effectively reduce TE. The three-axis average error of the key temperature 
sensor screened by K-means is 14 μm, and that of the key temperature sensor screened by 
PCA+K-means is 11 μm. The experiment proves that if PCA is carried out on big data first, the 
correlation between data can be avoided, thus causing complexity in training and analysis. Later, 
K-means is used to select key temperature sensors in groups as the BPNN input. The model for 
compensating TE can be more effective in the operation of the machine such that the machining 
accuracy of the device can be improved.

7.	 Main Findings and Conclusion

	 In this study, the K-means and PCA+K-means methods were employed to identify critical 
temperature sensors. A Python-based model was developed to predict TE, and the predicted 
three-axis TD was integrated into the machine controller via OPC UA for real-time compensation 
during machining. The main findings and conclusion are summarized as follows:
•	 Main Findings:
A.	Thermal Error Modeling:
	 •	� We developed a TEP model using BPNN to address the significant TD affecting CNC 

milling machines’ machining accuracy.
	 •	� Optimized sensor selection by K-means and PCA effectively reduced the number of 

critical temperature sensors from 33 to 7, improving model efficiency and predictive 
accuracy.

B.	 Accuracy Improvement:
	 •	� The PCA+K-means approach demonstrated superior performance, reducing the average 

residual error in the three-axis TEP model to 1.77 μm, compared with 3.96 μm with 
K-means alone.

	 •	� Real-time compensation experiments showed that PCA+K-means reduced thermal errors 
along the X-, Y-, and Z-axes to 13, 8, and −13 μm, respectively. This outperformed 
K-means, which achieved 10, 16, and −15 μm for the same axes.

C.	 Experimental Validation:
	 •	� A 6 h cutting experiment validated the model’s practical effectiveness. The PCA+K-means 

method achieved an average three-axis error reduction from 50 μm (baseline) to 11 μm, 
further confirming the efficiency of dimensionality reduction and clustering methods
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8.	 Conclusion

	 This research highlights the critical role of integrating advanced sensor optimization methods 
and neural networks for real-time thermal error compensation in CNC milling machines. By 
employing PCA to reduce data dimensionality and K-means to optimize sensor placement, the 
proposed method significantly improved the accuracy of TEP and compensation. The findings 
underscore the importance of combining statistical and machine learning techniques to address 
manufacturing challenges, offering a robust solution for enhancing machining precision in real-
world industrial applications.
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