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Understanding the spatiotemporal dynamics of land surface temperature (LS7) and its drivers
is essential for mitigating urban heat and guiding climate-responsive planning. In this study, we
integrate multitemporal remote sensing data derived from satellite sensors with multiresolution
image segmentation and spatial regression models to investigate seasonal LST patterns and their
influencing factors. Seasonal variability is assessed across the year. Analyses are conducted on
spatial units consistent across time, and ordinary least squares (OLS) and geographically
weighted regression (GWR) models are applied to identify both global and local driving
mechanisms. In addition, Getis-Ord Gi* hotspot analysis is employed to delineate core high- and
low-temperature zones for focused analysis. Results show pronounced seasonal and spatial
heterogeneity. Forest cover and elevation consistently cool LST, whereas urban form effects vary
by season and location. GWR reveals strong spatial non-stationarity, especially within thermal
core zones. The findings highlight the importance of incorporating both spatial heterogeneity
and seasonal dynamics in urban heat analysis. The results of this study provide a spatially
explicit understanding of LST drivers and offer practical insights for climate-adaptive land use
and urban design strategies.
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1. Introduction

With rapid urbanization, the urban thermal environment has become a major concern, as
elevated surface temperatures intensify heat stress, increase energy demand, worsen air quality,
and degrade ecosystems.() A major contributor is the urban heat island (UHI) effect, where
impervious surfaces retain heat, making cities significantly warmer than surrounding rural
areas.®¥) Understanding the spatial distribution and drivers of urban thermal patterns is
essential for effective mitigation and climate-resilient planning.

Land surface temperature (LS7) and air temperature (AT) are commonly used to assess
urban thermal conditions.” While AT reflects human heat stress more directly, its limited
spatial coverage restricts its applicability at the urban scale.®) In contrast, LST derived from
satellite data offers broad coverage, high resolution, and strong temporal consistency, making it
a widely accepted proxy for surface thermal patterns.©-®) This study utilizes multi-temporal
remote sensing data acquired by satellite sensors, particularly the Operational Land Imager
(OLI) and Thermal Infrared Sensor (TIRS) aboard Landsat 8. These instruments capture
surface-emitted radiation in the TIR spectrum, enabling the accurate retrieval and detailed
spatial analysis of LST. The accuracy of LST largely depends on the TIR data acquired by sensors
such as Landsat 8§ OLI and TIRS, which detect emitted surface radiation and provide reliable
information for retrieving and analyzing the spatial distribution of LS7. LST is influenced by
both natural and human factors such as land cover, topography, and urban form.®~!" Impervious
surfaces elevate LST, while vegetation and water bodies cool it via evapotranspiration. Elevation
is also important, as higher areas tend to be cooler.!!?) Urban form significantly influences local
ventilation and thermal accumulation. However, the relationship between LST and its influencing
factors often exhibits spatial non-stationarity, meaning that both the strength and direction of
influence vary across locations.13) Global models like ordinary least squares (OLS) assume
uniform effects and may overlook local variation.(!¥) To address this, we apply a hybrid approach
combining OLS and geographically weighted regression (GWR) to capture both global and local
effects. Additionally, Getis-Ord Gi* analysis is used to detect LST clustering and identify high-
and low-temperature core zones.

Although the seasonal variability of LST and its drivers have been explored in recent studies,
key limitations persist. Many are based on a single time point or season,(!2:19) limiting insights
into temporal dynamics. Even with multitemporal data, spatial units are often defined by
administrative boundaries, which fail to reflect the actual distribution of surface temperature. In
this study, we apply multitemporal data and OLS—-GWR modeling to examine LST patterns,
aiming to reveal the mechanisms of urban thermal environments and inform urban planning for
climate adaptation.
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2. Methodology
2.1 Study area

This study is focused on Chuncheon (Fig. 1), a city in Gangwon-do, South Korea, with an
urbanized area of approximately 333.09 km?. Situated in the northern part of the country,
Chuncheon experiences a temperate monsoon climate characterized by distinct seasonal
variations. The city’s landscape is composed of hills and basins surrounded by mountains, with
urban development primarily concentrated in relatively flat lowland areas. This unique
combination of topographic and climatic features makes Chuncheon a representative example of
a mountainous urban environment in South Korea. It offers a valuable setting for analyzing the
spatiotemporal patterns of LS7, which will provide insights applicable to other mountainous
cities with similar climatic conditions.

2.2 Data and methods

We integrated Landsat 8 remote sensing imagery with multisource geographic datasets (e.g.,
land use, elevation, and vegetation indices) to characterize the spatiotemporal patterns of LS7 in
the urban area of Chuncheon, South Korea. Regression modeling approaches were subsequently
applied to analyze the driving factors influencing LST variations. The research methodology
encompassed five primary steps (Fig. 2): (1) data preprocessing; (2) the calculation of LST and

Gangwon-do, South Korea

Fig. 1. (Color online) Study area.
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Fig. 2. Research framework.

relative LST (RLST); (3) the identification of high- and low-temperature core zones; (4) the
extraction and assignment of driving factors; and (5) regression analysis using OLS and GWR.

2.3 Data description and preprocessing

We utilized multisource geospatial data, including remote sensing imagery, topographic data,
land use, and population and urban form data (Table 1). Landsat 8 OLI/TIRS remote sensing
imagery provided by the United States Geological Survey (USGS) was employed to calculate
LST and vegetation indices. Four seasonal Landsat 8 images (March 15, June 19, October 25, and
December 28, 2024) were selected to capture the seasonal variations of LS7 in Chuncheon, each
with cloud coverage below 10%.

Topographic data were obtained from the Digital Elevation Model (DEM) provided by the
Korea Land Information Platform (KLIP), enabling the extraction of elevation and slope data.
Land use data consisted of the latest medium-classified land cover dataset (2023), sourced from
the Environmental Geographic Information Service (EGIS) of Korea, and were utilized to
identify different land use categories. Population and urban form data comprised population
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Table 1

Data sources.

Data type Data source Spatial resolution Temporal resolution
Landsat 8 OLI/TIRS USGS 138 :11 E,CI,)IL;)S) 2024'03'1?2.0268'19’ 10.25,
DEM KLIP 90 m 2023

Land cover EGIS 30m 2023
Population data KLIP Vector 2024

Building & road data V-World Vector 2024

density from KLIP (2024) and building and road vector datasets from V-World, supporting the
analysis of the impacts of urban form and population distribution on thermal conditions.

All data preprocessing was conducted using ArcGIS Pro 3.0 software, standardizing datasets
to the WGS 84/UTM Zone 52N coordinate system and resampling them to a consistent spatial
resolution of 30 m.

2.4 LST calculations

Landsat 8 TIRS imagery and the single-channel algorithm% were employed to retrieve LST
for Chuncheon City. Subsequently, RLST was calculated to characterize the spatial distribution
and temporal variation of surface temperatures across the urban area.

The digital number (DN) of Landsat 8 images was converted to the top of atmosphere (TOA)
radiance (L;). The calculation formula is

L/?.:MLXQcal+AL_Oi’ (1)

where M; is the band-specific multiplicative rescaling factor, Q,,; represents the DN for Band
10, A; is the band-specific additive rescaling factor, and A4; is the correction value for Band 10.
Both M; and A4; are radiometric calibration parameters provided in the image metadata.

TOA radiance was then converted into brightness temperature (BT) using

_K
K
In| =1 +1
Ly
where K; and K, are the thermal conversion constants specific to the sensor. The computed
temperature values were converted to degrees Celsius (°C) by subtracting 273.15.

The normalized difference vegetation index (NDVI) is an important index to measure the
state of vegetation cover and was calculated using (NASA, 2000)

BT = 273.15, ®)

_ NIR—-RED

NDVI[ =22
NIR + RED

)
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where NIR represents the near-infrared band (Band 5) and RED represents the red band (Band
4). NDVI values range from —1 to +1. High values indicate dense vegetation, while low or
negative values typically represent barren surfaces or water bodies.

The proportion of vegetation (P,) was calculated based on NDVT using

2
P :[ NDVI — NDVI, j . @

NDVI, — NDVI,

According to Ref. 17, NDVI values for vegetation and soil are used in the calculation of P, to
apply in global conditions (NVDI,= 0.5 and NVDI, = 0.2).
The estimation of land surface emissivity (LSE, &) was determined using NDVI values:

8:8vpv+8s(1_Pv)+C: ®)

where ¢, and ¢ represent the emissivity values of vegetation and soil, respectively, and C is the
surface roughness correction factor (C = 0.005). Emissivity values were assigned on the basis of
the NDVI range. For NDVI < 0, the area was designated as water with an emissivity of 0.991.
NDVI values between 0 and 0.2 indicated bare soil, with emissivity set at 0.996. NDVI ranging
from 0.2 to 0.5 signified a mix of vegetation and bare soil, with emissivity calculated using Eq.
(5). NDVI > 0.5 indicated fully vegetated areas with an emissivity of 0.973.

The BT was corrected for emissivity to calculate the LST using

LST = BT ©)

1+[ﬂxBleng
Y2,

where A represents the wavelength of Landsat 8 TIRS (4 =10.895 um) and p denotes the second
radiation constant of Planck’s law (p =1.438 x 102 m'K). The resultant LST values were recorded
in degrees Celsius (°C) for further image segmentation and anomaly detection analysis.

To reduce systematic errors arising from temporal variations, the RLST was computed by
standardizing LST values using

RLST; = LST, — LST, ., )

where RLST, represents the RLST for month i, LST; is the LST for month i, and LS7,,,,, denotes
the average LST across all analyzed months.

2.5 Image segmentation and identification of high- and low-temperature core zones

In this study, an object-based multiresolution segmentation approach was employed to
delineate spatial units for subsequent regression modeling. The segmentation was performed
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using eCognition software, with the scale parameter set to 15 and the shape and compactness
factors optimized to 0.5 and 0.1, respectively, to maintain the geometric integrity and clear
boundaries of segmented objects. To mitigate discrepancies caused by temporal variations in
imagery, a multitemporal fusion strategy was adopted, integrating the LST and RLST data from
four selected time periods prior to segmentation.

On the basis of the segmentation results, average LST values were calculated for each spatial
unit to preliminarily characterize the temperature distribution patterns within the city. To
enhance the statistical robustness of spatial clustering, Getis-Ord Gi* hotspot analysis was
conducted using ArcGIS Pro to detect statistically significant high-temperature (hotspot) and
low-temperature (coldspot) clusters. By integrating the average LST values of the segmented
units with the results of the hotspot analysis, potential high- and low-temperature core zones
could be delineated for further investigation.

2.6 Selection of explanatory variables

To support the analysis of LST patterns, a set of explanatory variables was selected on the
basis of literature review(!829 and data availability. These variables were classified into three
categories, namely, (1) land surface variables, (2) topographic variables, and (3) population and
urban form variables, and were spatially assigned to the segmented units derived from the
multiresolution image segmentation to ensure spatial consistency for subsequent regression
modeling.

2.6.1 Land surface variables

Land surface variables were derived from Korea’s medium-classification land cover dataset
and Landsat 8 imagery. The land cover dataset was used to calculate the proportion of surface
types within each segmented unit and included water-related indicators such as water body
density and distance to the nearest water body (Table 2). In addition, several spectral indices
(Table 3) were derived from Landsat 8 imagery to quantify vegetation status, built-up intensity,
and other surface conditions. All selected variables were incorporated as explanatory inputs for
the regression analysis of LST variation.

2.6.2 Topographic variables

Topographic variables were derived from the DEM, including elevation and slope. These
variables were assigned to the segmented units and used as explanatory inputs in the regression
analysis to evaluate their association with LST patterns (Table 4).

2.6.3 Population and urban form variables

Population and urban form variables were selected to represent socio-spatial patterns
influencing LST. This included population density, building footprint area, and road network
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Table 2
Land surface variables.
Category Variable Code Description
Public Facilities Area NI Environmental, educational, administrative, or public
use areas
Industrial Arca N2 Areas for production, translf)s(;rtatlon, or mixed industrial
Orchard N3 Land for growing fruit trees
Transportation Area N4 Airports, ports, roads, and other transport-related areas
Other Cultivated Land N5 Areas for livestock, aquaculture, or ornamental crops
Inland Water N6 Rivers, lakes, reservoirs, and dams
Inland Wetland N7 Wetlands, estuaries, and riparian zones
Paddy Field N8 Irrigated fields used for rice cultivation
Culturgl, Sp orts? e}pd N9 Resorts, stadiums, exhibition sites, golf courses
Recreational Facilities
Upland Field N10 Dry farmland, including both managed and unmanaged
Land Cover fields
Type Commercial Area N11 Retail, business, entertainment, and terminal zones
Fac111ty-ba;er(ifultlvat10n NI12 Areas with greenhouses, mushroom farms, nurseries
Artificial Bare Land N13 Quarries, construction sites, and cleared areas
Artificial Grassland N14 Man-made grasslands such as golf or ski courses
Natural Bare Land NI5 Naturally exposed terrain like tidal flats and rocky
slopes
Natural Grassland Nl16 Naturally formed grasslands near mountains or rivers
Residential Area N17 Areas for residential, commercial, or public buildings
Coniferous Forest NI18 Forests with >75% coniferous tree cover
. Mixed forests with both coniferous and broadleaf trees
M F N1
ixed Forest ? (<75% each of the total area)
Broadleaf Forest N20 Forests with >75% broadleaf tree cover
Other Bare Land N21 Bare lands not classified elsewhere
Water Surface Area Water A Water surface area within each spatial unit
Water-related Water Body Density Water D Density of water bodies per spatial unit
Variables i
Distance to the Nearest Water DT Distance to the nearest water body (m)
Water Body -
Table 3
Spectral indices.
Variable Code Formula
Normalized Difference Vegetation Index ~ NDVI (NIR — RED)/(NIR + RED)
Normalized Difference Water Index NDWI (NIR — SWIR)/(NIR + SWIR)
Normalized Difference Built-up Index NDBI (SWIR — NIR)/(SWIR + NIR)
Soil Adjusted Vegetation Index SAVI ((NIR — RED)/(NIR + RED + L)) x (1 + L), L=10.5

Enhanced Vegetation Index

EVI 2.5 (NIR — RED)(NIR + 6 x RED — 7.5 x BLUE + 1)

Table 4
Topographic variables.

Variable Code

Description

Digital Elevation Model DEM

Represents surface elevation
Slope Slope Rate of elevation change, derived from DEM
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density. All variables were spatially assigned to the segmented units and used as explanatory
variables in the regression analysis (Table 5).

2.7 Data assignment and normalization

All variable values were calculated and assigned to the segmented spatial units using ArcGIS
Pro 3.0. This process generated a region-level dataset for subsequent statistical analysis. To
ensure comparability among variables and minimize the impact of scale differences in regression
modeling, Z-score standardization was applied to LST and all explanatory variables using

Z= ; ®

where X represents the original variable value, u is the mean, and ¢ is the standard deviation.
This standardization allows all variables to be analyzed within the same numerical range,
enhancing the stability and interpretability of the regression model.

2.8 OLS and GWR analysis
2.8.1 OLS model

OLS was used to examine the linear relationship between LST and the explanatory variables
identified in Sect. 2.6. LST was set as the dependent variable, and the model was implemented

using the OLS tool in ArcGIS Pro 3.0. The general expression is

V=P +2XBX; +¢g, ©)

where Y; represents the dependent variable, X; represents the independent variable, S, is the
intercept, f; is the regression coefficient, and ¢; is the random error term.

Table 5
Population and urban form variables.
Category Variable Code Description Unit
Building Area Building A Total building arelfn\ixt/lthm each spatial 2
Building Building Density Building D Proportion of bulllltlillirtlg area within the %
Distance to Nearest Building Building DT Distance to the nearest building m
Road Area Road A  Total road area within each spatial unit m?
Road Road Density Road_D  Proportion of road area within the unit %
Distance to Nearest Road Road DT Distance to the nearest road m

Population Population Density Pop D Number of people per square kilometer persons/km>
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As a global model, OLS assumes spatial stationarity, meaning that the relationships between
variables are constant across space. To account for spatial heterogeneity, GWR was used to
model spatially varying relationships between LST and its influencing variables.

2.8.2 GWR model

GWR was implemented in ArcGIS Pro 3.0 to account for spatial heterogeneity in LS7 and its
explanatory variables. Unlike OLS, GWR is a local regression model that captures spatial non-
stationarity by allowing model coefficients to vary across locations. The general form of the
GWR model is expressed as

N (ui,v[) =B, (ui,vi)+ZZBa (ui,vi)xia +6; (ui,vi ), (10)

where ) (u;, v;) represents the dependent variable at sample i, B, (u;, v;) is the intercept parameter
for sample 7, and B,(;, v;) denotes the local regression coefficient of the ath spatial variable at
sample i. u;, v; represent the spatial coordinates of sample 7, # is the total number of independent
variables, x;, is the independent variable at sample 7, and J,(;, v;) is the error term.

GWR incorporates a spatial weighting matrix to estimate location-specific coefficients,
effectively revealing spatial variations in the relationships between LST and its influencing
variables. In this study, the significant influencing variables identified through OLS were
subsequently incorporated into the GWR model to explore how their effects vary across space.
The bandwidth of the GWR model was selected automatically in ArcGIS Pro using the corrected
Akaike Information Criterion (AICc), a method that balances model fit and complexity by
minimizing residual variance while penalizing overfitting. This approach provides a deeper
understanding of the spatial mechanisms underlying LS7 formation.

3. Results and Discussion
3.1 Spatiotemporal distribution of LST and RLST

To examine the seasonal variation in LST across Chuncheon, four representative dates were
selected: March 15, June 19, October 25, and December 28. The spatial distribution of LST for
each period is presented in Figs. 3(a)-3(d), with the corresponding statistical summaries shown
in Table 6. The results reveal substantial seasonal differences, with the highest temperatures
recorded in summer (12.47-37.80 °C) and the lowest in winter (—14.55-3.47 °C).

In spring, high-temperature zones were primarily observed in the city center, including
commercial, residential, and transportation areas, and in agricultural areas in the southeast.
These patterns likely result from active anthropogenic heat emissions, heat release from urban
infrastructure, and increased surface heat absorption in exposed agricultural land owing to
incomplete vegetation recovery. In summer, high LST values remained concentrated in the city
center and were also evident in industrial zones, densely populated residential areas, and major
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Fig. 3. (Color online) Seasonal variation of LST: (a) March 15 (°C), (b) June 19 (°C), (c) October 25 (°C), and (d)
December 28 (°C).

Table 6
Seasonal statistics of LST.

Date Mean (°C) Max (°C) Min (°C) Std. Dev. (°C)

3/15 10.98 19.00 2.97 2.62
6/19 22.01 37.8 12.47 3.53
10/25 12.02 21.37 6.90 2.44
12/28 -5.09 3.47 —14.55 2.83

Note: Max = Maximum; Min = Minimum; Std. Dev. = Standard Deviation

transportation corridors. These distributions were shaped by the combined effects of the UHI
phenomenon, heat retention by impervious surfaces, low vegetation coverage, and increased
human activity. In autumn, although the overall temperature decreased, high-temperature zones
persisted in built-up and agricultural areas. Forested regions continued to maintain lower LS7,
primarily as a result of evapotranspiration and shading. In winter, relatively warm areas
appeared near water bodies and certain farmlands, likely owing to water’s thermal inertia and
soil moisture retention. The lowest temperatures were consistently recorded in forested areas
throughout the year, demonstrating their stable cooling function.

RLST exhibited spatial patterns closely aligned with those of the original LST, with only
minor differences observed along the boundaries of high-temperature zones (Fig. 4). To reduce
the impact of inter-seasonal temperature variation on the segmentation results, RLST was
introduced as a normalized input in the multitemporal image segmentation process. This
approach was aimed at improving the consistency of spatial unit delineation across different
seasons.

3.2 Identification of core high-/low-temperature zones

Multiresolution segmentation was conducted using eCognition software to process LST and
RLST images for four dates, resulting in a total of 340 spatial units. On the basis of these units,
the Getis-Ord Gi* statistic was applied to the LST values for each season to detect significant
spatial clusters of high and low temperatures. Figure 5 shows the seasonal LST distributions
across the segmented units, while Fig. 6 presents the corresponding Gi* hotspot and coldspot
patterns.
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@) (b © @

Fig. 4. (Color online) Seasonal variation of RLST: (a) March 15 (°C), (b) June 19 (°C), (c) October 25 (°C), and (d)
December 28 (°C).
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Fig. 5.  (Color online) Post-segmentation output incorporating LST results: (a) March 15 (°C), (b) June 19 (°C), (c)
October 25 (°C), and (d) December 28 (°C).

@ (b © (d
Fig. 6.  (Color online) Getis-Ord Gi* results: (a) March 15, (b) June 19, (c) October 25, and (d) December 28.

The results reveal that, in spring, summer, and autumn, hotspot clusters are primarily located
in the city center and extended into surrounding urban—agricultural transition areas. In contrast,
winter hotspots are mainly distributed near water bodies, which aligns closely with the seasonal
distribution of high LST values. Coldspots are consistently found in forested areas across all
seasons, indicating a stable cooling role of vegetated land cover in mitigating surface
temperatures.

To further identify representative core zones, the top 20 highest and lowest LST units for each
season were selected and compared with statistically significant hotspot and coldspot areas
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identified through Gi* analysis. Spatial units that met both criteria, including extreme LST
values and significant spatial clustering, were designated as high- and low-temperature core
zones (Fig. 7).

3.3 Results of OLS and GWR model

To examine the driving factors influencing LST variations, we employed an OLS regression
model based on 340 spatial units generated through multiresolution segmentation. The OLS
regression model was used for an initial assessment of the relationships between LST and a set of
explanatory variables. To control multicollinearity, only variables with a variance inflation
factor (VIF) less than 7.5 were included. GWR was then applied to further explore the spatial
heterogeneity of significant predictors.

The OLS results for each season (Table 7) show strong explanatory power, with R? values of
0.95 (spring), 0.95 (summer), 0.94 (autumn), and 0.96 (winter), as well as corresponding adjusted
R? values of 0.94, 0.95, 0.93, and 0.96. F-tests for all seasons were significant at the 99%
confidence level (p < 0.01), confirming the robustness of the models.

Table 8 shows the key variables significantly associated with LST across seasons. Land cover
variables such as N1, N8, and N12 were significant in multiple seasons. N1 and N12 showed
consistent positive correlations with LST in spring, autumn, and winter. In contrast, N8 was
negatively associated in these seasons. NI15 and N19 exhibited seasonal shifts in their
relationships with LS7. Among topographic variables, DEM showed a consistent negative
correlation with LST across all seasons, indicating a stable cooling effect of higher altitudes.
Regarding urban morphological factors, Water A showed a cooling effect in summer and
autumn, with the strongest association observed in autumn. Building D was positively
associated with LST in autumn, while Road_D showed a similar effect in winter. The influence

@ (b) © @

Fig. 7. (Color online) High-/low-temperature core zones: (a) March 15, (b) June 19, (c) October 25, and (d)
December 28.

Table 7

OLS results for each season.

Date 3/15 6/19 10/25 12/28 (mean)
R? 0.95 0.95 0.94 0.96 0.95
Adjusted R? 0.94 0.95 0.93 0.96 0.95

AlCc 67.77 17.47 109.01 —52.61 35.41
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Table 8

Significant explanatory variables for LST across seasons (OLS results).

Variable 3/15 6/19 10/25 12/28
N1 0.052 - 0.0363 0.0348
N2 - 0.0268 -
N3 - —0.0391 -
N7 —0.0698 - —-0.0371 -
N8 —0.0743 - —0.0779 —0.0481
N12 0.0158 - 0.0266 0.0163
N13 - —-0.0703 - -
N15 - - —0.0305 0.029
N18 0.0541 - —0.0475
N20 - - - 0.047
N21 - - - 0.0289
DEM —0.4563 —0.0876 —0.2079 —0.4269
Water A 0.0751 —-0.1509 —0.0935 0.0596
Road_D - - - 0.0985
Road_DT —0.0575 - 0.0528
Building_D - 0.2059 —

of Road DT varied between summer and winter, suggesting potential interactions with seasonal
urban heat dynamics.

Overall, the results of the analysis indicate that the driving factors of LST varied significantly
across seasons. While the influence of land cover remained relatively stable, topographic and
urban morphological variables exhibited more pronounced seasonal variability. These results
highlight the complex and seasonally dynamic nature of LST regulation.

Table 9 presents the GWR estimation results for the variables selected from the OLS model.
In addition, the residuals derived from the GWR model were examined to assess their spatial
randomness. The results indicated that the residuals were randomly distributed in space, with no
significant clustering observed (Fig. 8). Figures 9-12 illustrate the spatial distributions of
coefficients across four seasons. In these figures, positive and negative values represent positive
and negative correlations with LST, respectively, while stronger color saturation indicates greater
impact intensity.

With respect to topographic factors, DEM exhibited a consistently negative correlation with
LST across all seasons, suggesting that higher elevations are generally associated with lower
surface temperatures. In contrast, Water A showed a negative association in most regions,
though some localized areas, particularly in winter, a positive relationship was observed. This
implies potential regional differences in the seasonal regulation effects of water bodies.

For urban morphological factors, Road DT had a negative impact on LS7 in June, while in
December, both Road DT and Road D showed considerable spatial variability in effect
direction and magnitude. The effect of Building D in October was spatially mixed, with both
positive and negative associations observed across regions.

Regarding land cover variables, N1 was positively associated with LST in spring and autumn
but showed a spatially varied pattern in winter. N8 generally exhibited a positive correlation in
spring, autumn, and winter, although some areas displayed localized negative effects. N2 and
N21 were positively correlated with LST in autumn and winter, respectively, while N3 had a
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Table 9

GWR results for each season.

Date 3/15 6/19 10/25 12/28 (mean)
R? 0.64 0.74 0.70 0.75 071
Adjusted R? 0.60 0.70 0.65 0.72 0.67
AlCc 674.84 580.06 651.20 552.10 614.55
Sigma 0.63 0.55 0.59 0.53 0.57

@) (b © @

Fig. 8.  (Color online) Spatial distribution of residuals from the GWR model: (a) March 15, (b) June 19, (c) October
19, and (d) December 28.
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Water A.

consistent negative effect only in autumn. Variables such as N7, N12, N13, N15, and N20
displayed considerable spatial variation depending on the season and region. In contrast, N18
showed a consistently negative effect on LST in both summer and winter.
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Overall, the GWR results revealed substantial spatial heterogeneity in the effects of
environmental variables on LST. The direction and strength of influence varied not only across
seasons, but also among regions, emphasizing the importance of spatial context in understanding
LST regulation.

To further examine variable behavior under extreme conditions, the spatial characteristics of
significant factors were analyzed within core high- and low-temperature zones. While most
variables exhibited trends consistent with citywide patterns, their spatial intensity and sensitivity
were more pronounced in extreme areas. For example, N18 exerted a stronger cooling effect in
low-temperature core zones during summer and winter, suggesting a stabilizing role under
thermal extremes. Water A, though generally cooling in spring and summer, showed positive
correlations in high-temperature core zones in autumn and winter—possibly owing to the
seasonal thermal retention capacity of water bodies. DEM remained negatively associated with
LST across all seasons, with even stronger effects in core zones, reinforcing the importance of
elevation under extreme conditions.

Urban morphological factors also exhibited heightened sensitivity in core zones. BUILD D
was positively associated with LST in autumn hotspots. ROAD D showed contrasting effects in
winter: it contributed to warming in cold zones but had a cooling influence in hot zones. ROAD
DT also displayed distinct seasonal and spatial shifts, reflecting the complex interactions
between urban form and surface temperature.
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In summary, while the spatial patterns of LST determinants in core zones generally aligned
with citywide trends, the intensity and direction of several variables—particularly DEM,
Water A, and urban morphological indicators—were more spatially heterogeneous. These
findings underscore the spatially non-stationary and multifactorial nature of LST regulation,
especially in thermally extreme urban environments.

4. Conclusions

In this study, we examined the spatiotemporal patterns of LS7 in Chuncheon, South Korea,
and identified the key driving factors using multiresolution segmentation, OLS, and GWR
models. The results revealed distinct seasonal variations in LS7 distribution, with high
temperatures predominantly concentrated in built-up and low-lying areas during summer, while
forested and elevated regions consistently exhibited lower surface temperatures across all
seasons. LST was significantly affected by land surface, topography, urban morphological, and
population factors, with notable temporal and spatial variability.

Forests and DEM consistently produced cooling effects in both summer and winter,
underscoring their importance in thermal regulation. Since DEM is static, it serves better as a
contextual factor than as a planning variable. In contrast, urban morphological features showed
strong spatial and seasonal heterogeneity, particularly in temperature hotspots and coldspots.
Such detailed spatial differentiation is made possible through high-resolution satellite sensing,
which captures surface thermal variability across diverse urban landscapes.

From a planning perspective, the results call for spatially differentiated heat mitigation
strategies. In high-temperature zones, measures such as expanding green infrastructure,
optimizing water bodies, and managing urban density can reduce thermal risks. Cooler areas
provide insights for design adaptation. Overall, the findings offer a scientific basis for climate-
adaptive zoning and heat-resilient urban design, emphasizing that one-size-fits-all solutions are
inadequate. The integration of satellite-based LST monitoring into urban planning enables the
continuous sensing and evaluation of thermal environments, facilitating data-driven heat
mitigation strategies. Integrating sensor-based LST monitoring into urban planning can support
the continuous observation and evaluation of the urban thermal environment, facilitating data-
driven heat-mitigation strategies.

Despite these contributions, several limitations should be acknowledged. In the analysis, four
daytime LST observations were used, which may not fully represent temporal variability.
Nighttime thermal behavior and anthropogenic heat emissions were not considered. In addition,
static land cover and morphological variables may underestimate land-use change effects.
Moreover, the diagnosis of multicollinearity among explanatory variables relied solely on VIF,
which provides a limited assessment. Future work will incorporate more comprehensive
diagnostic methods. Future research should leverage multisource satellite sensors and higher-
temporal-resolution data to improve LST retrieval accuracy and enhance the understanding of
surface thermal dynamics.
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