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	 Understanding the spatiotemporal dynamics of land surface temperature (LST) and its drivers 
is essential for mitigating urban heat and guiding climate-responsive planning. In this study, we 
integrate multitemporal remote sensing data derived from satellite sensors with multiresolution 
image segmentation and spatial regression models to investigate seasonal LST patterns and their 
influencing factors. Seasonal variability is assessed across the year. Analyses are conducted on 
spatial units consistent across time, and ordinary least squares (OLS) and geographically 
weighted regression (GWR) models are applied to identify both global and local driving 
mechanisms. In addition, Getis-Ord Gi* hotspot analysis is employed to delineate core high- and 
low-temperature zones for focused analysis. Results show pronounced seasonal and spatial 
heterogeneity. Forest cover and elevation consistently cool LST, whereas urban form effects vary 
by season and location. GWR reveals strong spatial non-stationarity, especially within thermal 
core zones. The findings highlight the importance of incorporating both spatial heterogeneity 
and seasonal dynamics in urban heat analysis. The results of this study provide a spatially 
explicit understanding of LST drivers and offer practical insights for climate-adaptive land use 
and urban design strategies.
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1.	 Introduction

	 With rapid urbanization, the urban thermal environment has become a major concern, as 
elevated surface temperatures intensify heat stress, increase energy demand, worsen air quality, 
and degrade ecosystems.(1) A major contributor is the urban heat island (UHI) effect, where 
impervious surfaces retain heat, making cities significantly warmer than surrounding rural 
areas.(2,3) Understanding the spatial distribution and drivers of urban thermal patterns is 
essential for effective mitigation and climate-resilient planning.
	 Land surface temperature (LST) and air temperature (AT) are commonly used to assess 
urban thermal conditions.(4) While AT reflects human heat stress more directly, its limited 
spatial coverage restricts its applicability at the urban scale.(5) In contrast, LST derived from 
satellite data offers broad coverage, high resolution, and strong temporal consistency, making it 
a widely accepted proxy for surface thermal patterns.(6–8) This study utilizes multi-temporal 
remote sensing data acquired by satellite sensors, particularly the Operational Land Imager 
(OLI) and Thermal Infrared Sensor (TIRS) aboard Landsat 8. These instruments capture 
surface-emitted radiation in the TIR spectrum, enabling the accurate retrieval and detailed 
spatial analysis of LST. The accuracy of LST largely depends on the TIR data acquired by sensors 
such as Landsat 8 OLI and TIRS, which detect emitted surface radiation and provide reliable 
information for retrieving and analyzing the spatial distribution of LST. LST is influenced by 
both natural and human factors such as land cover, topography, and urban form.(9–11) Impervious 
surfaces elevate LST, while vegetation and water bodies cool it via evapotranspiration. Elevation 
is also important, as higher areas tend to be cooler.(12) Urban form significantly influences local 
ventilation and thermal accumulation. However, the relationship between LST and its influencing 
factors often exhibits spatial non-stationarity, meaning that both the strength and direction of 
influence vary across locations.(13) Global models like ordinary least squares (OLS) assume 
uniform effects and may overlook local variation.(14) To address this, we apply a hybrid approach 
combining OLS and geographically weighted regression (GWR) to capture both global and local 
effects. Additionally, Getis-Ord Gi* analysis is used to detect LST clustering and identify high- 
and low-temperature core zones.
	 Although the seasonal variability of LST and its drivers have been explored in recent studies, 
key limitations persist. Many are based on a single time point or season,(12,15) limiting insights 
into temporal dynamics. Even with multitemporal data, spatial units are often defined by 
administrative boundaries, which fail to reflect the actual distribution of surface temperature. In 
this study, we apply multitemporal data and OLS–GWR modeling to examine LST patterns, 
aiming to reveal the mechanisms of urban thermal environments and inform urban planning for 
climate adaptation.
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2.	 Methodology

2.1	 Study area

	 This study is focused on Chuncheon (Fig. 1), a city in Gangwon-do, South Korea, with an 
urbanized area of approximately 333.09 km2. Situated in the northern part of the country, 
Chuncheon experiences a temperate monsoon climate characterized by distinct seasonal 
variations. The city’s landscape is composed of hills and basins surrounded by mountains, with 
urban development primarily concentrated in relatively flat lowland areas. This unique 
combination of topographic and climatic features makes Chuncheon a representative example of 
a mountainous urban environment in South Korea. It offers a valuable setting for analyzing the 
spatiotemporal patterns of LST, which will provide insights applicable to other mountainous 
cities with similar climatic conditions.

2.2	 Data and methods 

	 We integrated Landsat 8 remote sensing imagery with multisource geographic datasets (e.g., 
land use, elevation, and vegetation indices) to characterize the spatiotemporal patterns of LST in 
the urban area of Chuncheon, South Korea. Regression modeling approaches were subsequently 
applied to analyze the driving factors influencing LST variations. The research methodology 
encompassed five primary steps (Fig. 2): (1) data preprocessing; (2) the calculation of LST and 

Fig. 1.	 (Color online) Study area.
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relative LST (RLST); (3) the identification of high- and low-temperature core zones; (4) the 
extraction and assignment of driving factors; and (5) regression analysis using OLS and GWR.

2.3	 Data description and preprocessing

	 We utilized multisource geospatial data, including remote sensing imagery, topographic data, 
land use, and population and urban form data (Table 1). Landsat 8 OLI/TIRS remote sensing 
imagery provided by the United States Geological Survey (USGS) was employed to calculate 
LST and vegetation indices. Four seasonal Landsat 8 images (March 15, June 19, October 25, and 
December 28, 2024) were selected to capture the seasonal variations of LST in Chuncheon, each 
with cloud coverage below 10%. 
	 Topographic data were obtained from the Digital Elevation Model (DEM) provided by the 
Korea Land Information Platform (KLIP), enabling the extraction of elevation and slope data. 
Land use data consisted of the latest medium-classified land cover dataset (2023), sourced from 
the Environmental Geographic Information Service (EGIS) of Korea, and were utilized to 
identify different land use categories. Population and urban form data comprised population 

Fig. 2.	 Research framework.
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density from KLIP (2024) and building and road vector datasets from V-World, supporting the 
analysis of the impacts of urban form and population distribution on thermal conditions.
	 All data preprocessing was conducted using ArcGIS Pro 3.0 software, standardizing datasets 
to the WGS 84/UTM Zone 52N coordinate system and resampling them to a consistent spatial 
resolution of 30 m.

2.4	 LST calculations

	 Landsat 8 TIRS imagery and the single-channel algorithm(16) were employed to retrieve LST 
for Chuncheon City. Subsequently, RLST was calculated to characterize the spatial distribution 
and temporal variation of surface temperatures across the urban area.
	 The digital number (DN) of Landsat 8 images was converted to the top of atmosphere (TOA) 
radiance (Lλ). The calculation formula is

	 L cal L iL M Q A Oλ = × + − ,	 (1)

where ML is the band-specific multiplicative rescaling factor, Qcal represents the DN for Band 
10, AL is the band-specific additive rescaling factor, and AL is the correction value for Band 10. 
Both ML and AL are radiometric calibration parameters provided in the image metadata.
	 TOA radiance was then converted into brightness temperature (BT) using 
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where K1 and K2 are the thermal conversion constants specific to the sensor. The computed 
temperature values were converted to degrees Celsius (℃) by subtracting 273.15.
	 The normalized difference vegetation index (NDVI) is an important index to measure the 
state of vegetation cover and was calculated using (NASA, 2000)
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NIR RED

−
=
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Table 1
Data sources.
Data type Data source Spatial resolution Temporal resolution

Landsat 8 OLI/TIRS USGS 30 m (OLI) 2024.03.15, 06.19, 10.25, 
12.28100 m (TIRS)

DEM KLIP 90 m 2023
Land cover EGIS 30 m 2023
Population data KLIP Vector 2024
Building & road data V-World Vector 2024
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where NIR represents the near-infrared band (Band 5) and RED represents the red band (Band 
4). NDVI values range from −1 to +1. High values indicate dense vegetation, while low or 
negative values typically represent barren surfaces or water bodies.
	 The proportion of vegetation (Pv) was calculated based on NDVI using 

	
2

s
v

v s

NDVI NDVIP
NDVI NDVI

 −
=  − 

.	 (4)

	 According to Ref. 17, NDVI values for vegetation and soil are used in the calculation of Pv to 
apply in global conditions (NVDIv = 0.5 and NVDIs = 0.2).
	 The estimation of land surface emissivity (LSE, ε) was determined using NDVI values:

	 ε = ενPν + εs(1 − Pν) + C,	 (5)

where εv and εs​ represent the emissivity values of vegetation and soil, respectively, and C is the 
surface roughness correction factor (C = 0.005). Emissivity values were assigned on the basis of 
the NDVI range. For NDVI < 0, the area was designated as water with an emissivity of 0.991. 
NDVI values between 0 and 0.2 indicated bare soil, with emissivity set at 0.996. NDVI ranging 
from 0.2 to 0.5 signified a mix of vegetation and bare soil, with emissivity calculated using Eq. 
(5). NDVI > 0.5 indicated fully vegetated areas with an emissivity of 0.973.
	 The BT was corrected for emissivity to calculate the LST using 
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where λ represents the wavelength of Landsat 8 TIRS (λ =10.895 µm) and ρ denotes the second 
radiation constant of Planck’s law (ρ =1.438 × 10⁻2 m·K).  The resultant LST values were recorded 
in degrees Celsius (℃) for further image segmentation and anomaly detection analysis.
	 To reduce systematic errors arising from temporal variations, the RLST was computed by 
standardizing LST values using

	 RLSTi = LSTi − LSTmean,	 (7)

where RLSTi represents the RLST for month i, LSTi is the LST for month i, and LSTmean​ denotes 
the average LST across all analyzed months.

2.5	 Image segmentation and identification of high- and low-temperature core zones

	 In this study, an object-based multiresolution segmentation approach was employed to 
delineate spatial units for subsequent regression modeling. The segmentation was performed 
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using eCognition software, with the scale parameter set to 15 and the shape and compactness 
factors optimized to 0.5 and 0.1, respectively, to maintain the geometric integrity and clear 
boundaries of segmented objects. To mitigate discrepancies caused by temporal variations in 
imagery, a multitemporal fusion strategy was adopted, integrating the LST and RLST data from 
four selected time periods prior to segmentation.
	 On the basis of the segmentation results, average LST values were calculated for each spatial 
unit to preliminarily characterize the temperature distribution patterns within the city. To 
enhance the statistical robustness of spatial clustering, Getis-Ord Gi* hotspot analysis was 
conducted using ArcGIS Pro to detect statistically significant high-temperature (hotspot) and 
low-temperature (coldspot) clusters. By integrating the average LST values of the segmented 
units with the results of the hotspot analysis, potential high- and low-temperature core zones 
could be delineated for further investigation.

2.6	 Selection of explanatory variables

	 To support the analysis of LST patterns, a set of explanatory variables was selected on the 
basis of literature review(18–20) and data availability. These variables were classified into three 
categories, namely, (1) land surface variables, (2) topographic variables, and (3) population and 
urban form variables, and were spatially assigned to the segmented units derived from the 
multiresolution image segmentation to ensure spatial consistency for subsequent regression 
modeling.

2.6.1	 Land surface variables 

	 Land surface variables were derived from Korea’s medium-classification land cover dataset 
and Landsat 8 imagery. The land cover dataset was used to calculate the proportion of surface 
types within each segmented unit and included water-related indicators such as water body 
density and distance to the nearest water body (Table 2). In addition, several spectral indices 
(Table 3) were derived from Landsat 8 imagery to quantify vegetation status, built-up intensity, 
and other surface conditions. All selected variables were incorporated as explanatory inputs for 
the regression analysis of LST variation.

2.6.2	 Topographic variables

	 Topographic variables were derived from the DEM, including elevation and slope. These 
variables were assigned to the segmented units and used as explanatory inputs in the regression 
analysis to evaluate their association with LST patterns (Table 4).

2.6.3	 Population and urban form variables

	 Population and urban form variables were selected to represent socio-spatial patterns 
influencing LST. This included population density, building footprint area, and road network 
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Table 2
Land surface variables.
Category Variable Code Description

Land Cover 
Type

Public Facilities Area N1 Environmental, educational, administrative, or public 
use areas

Industrial Area N2 Areas for production, transportation, or mixed industrial 
use

Orchard N3 Land for growing fruit trees
Transportation Area N4 Airports, ports, roads, and other transport-related areas

Other Cultivated Land N5 Areas for livestock, aquaculture, or ornamental crops
Inland Water N6 Rivers, lakes, reservoirs, and dams

Inland Wetland N7 Wetlands, estuaries, and riparian zones
Paddy Field N8 Irrigated fields used for rice cultivation

Cultural, Sports, and 
Recreational Facilities N9 Resorts, stadiums, exhibition sites, golf courses

Upland Field N10 Dry farmland, including both managed and unmanaged 
fields

Commercial Area N11 Retail, business, entertainment, and terminal zones
Facility-based Cultivation 

Area N12 Areas with greenhouses, mushroom farms, nurseries

Artificial Bare Land N13 Quarries, construction sites, and cleared areas
Artificial Grassland N14 Man-made grasslands such as golf or ski courses

Natural Bare Land N15 Naturally exposed terrain like tidal flats and rocky 
slopes

Natural Grassland N16 Naturally formed grasslands near mountains or rivers
Residential Area N17 Areas for residential, commercial, or public buildings
Coniferous Forest N18 Forests with >75% coniferous tree cover

Mixed Forest N19 Mixed forests with both coniferous and broadleaf trees 
(<75% each of the total area)

Broadleaf Forest N20 Forests with >75% broadleaf tree cover
Other Bare Land N21 Bare lands not classified elsewhere

Water-related 
Variables

Water Surface Area Water_A Water surface area within each spatial unit
Water Body Density Water_D Density of water bodies per spatial unit

Distance to the Nearest 
Water Body Water_DT Distance to the nearest water body (m)

Table 3
Spectral indices.
Variable Code Formula
Normalized Difference Vegetation Index NDVI (NIR − RED)/(NIR + RED)
Normalized Difference Water Index NDWI (NIR − SWIR)/(NIR + SWIR)
Normalized Difference Built-up Index NDBI (SWIR − NIR)/(SWIR + NIR)
Soil Adjusted Vegetation Index SAVI ((NIR − RED)/(NIR + RED + L)) × (1 + L), L = 0.5
Enhanced Vegetation Index EVI 2.5 × (NIR − RED)/(NIR + 6 × RED − 7.5 × BLUE + 1)

Table 4
Topographic variables.
Variable Code Description
Digital Elevation Model DEM Represents surface elevation
Slope Slope Rate of elevation change, derived from DEM
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density. All variables were spatially assigned to the segmented units and used as explanatory 
variables in the regression analysis (Table 5).

2.7 Data assignment and normalization

	 All variable values were calculated and assigned to the segmented spatial units using ArcGIS 
Pro 3.0. This process generated a region-level dataset for subsequent statistical analysis. To 
ensure comparability among variables and minimize the impact of scale differences in regression 
modeling, Z-score standardization was applied to LST and all explanatory variables using 

	 XZ µ
σ
−

= ,	 (8)

where X represents the original variable value, μ is the mean, and σ is the standard deviation. 
This standardization allows all variables to be analyzed within the same numerical range, 
enhancing the stability and interpretability of the regression model.

2.8	 OLS and GWR analysis

2.8.1	 OLS model

	 OLS was used to examine the linear relationship between LST and the explanatory variables 
identified in Sect. 2.6. LST was set as the dependent variable, and the model was implemented 
using the OLS tool in ArcGIS Pro 3.0. The general expression is 

	 0i i i iY Xβ β ε= + ∑ + ,	 (9)

where Yi represents the dependent variable, Xi represents the independent variable, β0 is the 
intercept, βi is the regression coefficient, and εi is the random error term.

Table 5
Population and urban form variables.
Category Variable Code Description Unit

Building

Building Area Building_A Total building area within each spatial 
unit m2

Building Density Building_D Proportion of building area within the 
unit %

Distance to Nearest Building Building_DT Distance to the nearest building m

Road
Road Area Road_A Total road area within each spatial unit m2

Road Density Road_D Proportion of road area within the unit %
Distance to Nearest Road Road_DT Distance to the nearest road m

Population Population Density Pop_D Number of people per square kilometer persons/km2
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	 As a global model, OLS assumes spatial stationarity, meaning that the relationships between 
variables are constant across space. To account for spatial heterogeneity, GWR was used to 
model spatially varying relationships between LST and its influencing variables.

2.8.2	 GWR model

	 GWR was implemented in ArcGIS Pro 3.0 to account for spatial heterogeneity in LST and its 
explanatory variables. Unlike OLS, GWR is a local regression model that captures spatial non-
stationarity by allowing model coefficients to vary across locations. The general form of the 
GWR model is expressed as 

	 i i i o i i a
n
a i i ia i i iu v B u v B u v x u v, , , ,� � � � � � � � � � �� � ,	 (10)

where ( ),  i i iu v (ui, vi) represents the dependent variable at sample i, Bo(ui, vi) is the intercept parameter 
for sample i, and Ba(ui, vi) denotes the local regression coefficient of the ath spatial variable at 
sample i. ui, vi represent the spatial coordinates of sample i, n is the total number of independent 
variables, xia is the independent variable at sample i, and δi(ui, vi) is the error term.
	 GWR incorporates a spatial weighting matrix to estimate location-specific coefficients, 
effectively revealing spatial variations in the relationships between LST and its influencing 
variables. In this study, the significant influencing variables identified through OLS were 
subsequently incorporated into the GWR model to explore how their effects vary across space. 
The bandwidth of the GWR model was selected automatically in ArcGIS Pro using the corrected 
Akaike Information Criterion (AICc), a method that balances model fit and complexity by 
minimizing residual variance while penalizing overfitting. This approach provides a deeper 
understanding of the spatial mechanisms underlying LST formation.

3.	 Results and Discussion

3.1	 Spatiotemporal distribution of LST and RLST

	 To examine the seasonal variation in LST across Chuncheon, four representative dates were 
selected: March 15, June 19, October 25, and December 28. The spatial distribution of LST for 
each period is presented in Figs. 3(a)–3(d), with the corresponding statistical summaries shown 
in Table 6. The results reveal substantial seasonal differences, with the highest temperatures 
recorded in summer (12.47–37.80 ℃) and the lowest in winter (−14.55–3.47 ℃).
	 In spring, high-temperature zones were primarily observed in the city center, including 
commercial, residential, and transportation areas, and in agricultural areas in the southeast. 
These patterns likely result from active anthropogenic heat emissions, heat release from urban 
infrastructure, and increased surface heat absorption in exposed agricultural land owing to 
incomplete vegetation recovery. In summer, high LST values remained concentrated in the city 
center and were also evident in industrial zones, densely populated residential areas, and major 
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transportation corridors. These distributions were shaped by the combined effects of the UHI 
phenomenon, heat retention by impervious surfaces, low vegetation coverage, and increased 
human activity. In autumn, although the overall temperature decreased, high-temperature zones 
persisted in built-up and agricultural areas. Forested regions continued to maintain lower LST, 
primarily as a result of evapotranspiration and shading. In winter, relatively warm areas 
appeared near water bodies and certain farmlands, likely owing to water’s thermal inertia and 
soil moisture retention. The lowest temperatures were consistently recorded in forested areas 
throughout the year, demonstrating their stable cooling function.
	 RLST exhibited spatial patterns closely aligned with those of the original LST, with only 
minor differences observed along the boundaries of high-temperature zones (Fig. 4). To reduce 
the impact of inter-seasonal temperature variation on the segmentation results, RLST was 
introduced as a normalized input in the multitemporal image segmentation process. This 
approach was aimed at improving the consistency of spatial unit delineation across different 
seasons.

3.2	 Identification of core high-/low-temperature zones

	 Multiresolution segmentation was conducted using eCognition software to process LST and 
RLST images for four dates, resulting in a total of 340 spatial units. On the basis of these units, 
the Getis-Ord Gi* statistic was applied to the LST values for each season to detect significant 
spatial clusters of high and low temperatures. Figure 5 shows the seasonal LST distributions 
across the segmented units, while Fig. 6 presents the corresponding Gi* hotspot and coldspot 
patterns.

Fig. 3.	 (Color online) Seasonal variation of LST: (a) March 15 (℃), (b) June 19 (℃), (c) October 25 (℃), and (d) 
December 28 (℃).

(a) (b) (c) (d)

Table 6
Seasonal statistics of LST.
Date Mean (℃) Max (℃) Min (℃) Std. Dev. (℃)
3/15 10.98 19.00 2.97 2.62
6/19 22.01 37.8 12.47 3.53
10/25 12.02 21.37 6.90 2.44
12/28 −5.09 3.47 −14.55 2.83
Note: Max = Maximum; Min = Minimum; Std. Dev. = Standard Deviation
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	 The results reveal that, in spring, summer, and autumn, hotspot clusters are primarily located 
in the city center and extended into surrounding urban–agricultural transition areas. In contrast, 
winter hotspots are mainly distributed near water bodies, which aligns closely with the seasonal 
distribution of high LST values. Coldspots are consistently found in forested areas across all 
seasons, indicating a stable cooling role of vegetated land cover in mitigating surface 
temperatures.
	 To further identify representative core zones, the top 20 highest and lowest LST units for each 
season were selected and compared with statistically significant hotspot and coldspot areas 

Fig. 5.	 (Color online) Post-segmentation output incorporating LST results: (a) March 15 (℃), (b) June 19 (℃), (c) 
October 25 (℃), and (d) December 28 (℃).

Fig. 6.	 (Color online) Getis-Ord Gi* results: (a) March 15, (b) June 19, (c) October 25, and (d) December 28.

Fig. 4.	 (Color online) Seasonal variation of RLST: (a) March 15 (℃), (b) June 19 (℃), (c) October 25 (℃), and (d) 
December 28 (℃).

(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)



Sensors and Materials, Vol. 38, No. 1 (2026)	 199

identified through Gi* analysis. Spatial units that met both criteria, including extreme LST 
values and significant spatial clustering, were designated as high- and low-temperature core 
zones (Fig. 7).

3.3	 Results of OLS and GWR model

	 To examine the driving factors influencing LST variations, we employed an OLS regression 
model based on 340 spatial units generated through multiresolution segmentation. The OLS 
regression model was used for an initial assessment of the relationships between LST and a set of 
explanatory variables. To control multicollinearity, only variables with a variance inflation 
factor (VIF) less than 7.5 were included. GWR was then applied to further explore the spatial 
heterogeneity of significant predictors.
	 The OLS results for each season (Table 7) show strong explanatory power, with R2 values of 
0.95 (spring), 0.95 (summer), 0.94 (autumn), and 0.96 (winter), as well as corresponding adjusted 
R2 values of 0.94, 0.95, 0.93, and 0.96. F-tests for all seasons were significant at the 99% 
confidence level (p < 0.01), confirming the robustness of the models.
	 Table 8 shows the key variables significantly associated with LST across seasons. Land cover 
variables such as N1, N8, and N12 were significant in multiple seasons. N1 and N12 showed 
consistent positive correlations with LST in spring, autumn, and winter. In contrast, N8 was 
negatively associated in these seasons. N15 and N19 exhibited seasonal shifts in their 
relationships with LST. Among topographic variables, DEM showed a consistent negative 
correlation with LST across all seasons, indicating a stable cooling effect of higher altitudes. 
Regarding urban morphological factors, Water_A showed a cooling effect in summer and 
autumn, with the strongest association observed in autumn. Building_D was positively 
associated with LST in autumn, while Road_D showed a similar effect in winter. The influence 

Table 7
OLS results for each season.
Date 3/15 6/19 10/25 12/28 (mean)
R2 0.95 0.95 0.94 0.96 0.95
Adjusted R2 0.94 0.95 0.93 0.96 0.95
AICc 67.77 17.47 109.01 −52.61 35.41

Fig. 7.	 (Color online) High-/low-temperature core zones: (a) March 15, (b) June 19, (c) October 25, and (d) 
December 28.

(a) (b) (c) (d)
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of Road_DT varied between summer and winter, suggesting potential interactions with seasonal 
urban heat dynamics.
	 Overall, the results of the analysis indicate that the driving factors of LST varied significantly 
across seasons. While the influence of land cover remained relatively stable, topographic and 
urban morphological variables exhibited more pronounced seasonal variability. These results 
highlight the complex and seasonally dynamic nature of LST regulation.
	 Table 9 presents the GWR estimation results for the variables selected from the OLS model. 
In addition, the residuals derived from the GWR model were examined to assess their spatial 
randomness. The results indicated that the residuals were randomly distributed in space, with no 
significant clustering observed (Fig. 8). Figures 9–12 illustrate the spatial distributions of 
coefficients across four seasons. In these figures, positive and negative values represent positive 
and negative correlations with LST, respectively, while stronger color saturation indicates greater 
impact intensity.
	 With respect to topographic factors, DEM exhibited a consistently negative correlation with 
LST across all seasons, suggesting that higher elevations are generally associated with lower 
surface temperatures. In contrast, Water_A showed a negative association in most regions, 
though some localized areas, particularly in winter, a positive relationship was observed. This 
implies potential regional differences in the seasonal regulation effects of water bodies.
	 For urban morphological factors, Road_DT had a negative impact on LST in June, while in 
December, both Road_DT and Road_D showed considerable spatial variability in effect 
direction and magnitude. The effect of Building_D in October was spatially mixed, with both 
positive and negative associations observed across regions.
	 Regarding land cover variables, N1 was positively associated with LST in spring and autumn 
but showed a spatially varied pattern in winter. N8 generally exhibited a positive correlation in 
spring, autumn, and winter, although some areas displayed localized negative effects. N2 and 
N21 were positively correlated with LST in autumn and winter, respectively, while N3 had a 

Table 8
Significant explanatory variables for LST across seasons (OLS results).
Variable 3/15 6/19 10/25 12/28
N1 0.052  – 0.0363 0.0348
N2  –  – 0.0268  – 
N3  –  – −0.0391  – 
N7 −0.0698  – −0.0371  – 
N8 −0.0743  – −0.0779 −0.0481
N12 0.0158  – 0.0266 0.0163
N13  – −0.0703  –  – 
N15  –  – −0.0305 0.029
N18  – 0.0541  – −0.0475
N20  –  –  – 0.047
N21  –  –  – 0.0289
DEM −0.4563 −0.0876 −0.2079 −0.4269
Water_A 0.0751 −0.1509 −0.0935 0.0596
Road_D  –  –  – 0.0985
Road_DT  – −0.0575  – 0.0528
Building_D  –  - 0.2059  – 
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consistent negative effect only in autumn. Variables such as N7, N12, N13, N15, and N20 
displayed considerable spatial variation depending on the season and region. In contrast, N18 
showed a consistently negative effect on LST in both summer and winter.

Fig. 8.	 (Color online) Spatial distribution of residuals from the GWR model: (a) March 15, (b) June 19, (c) October 
19, and (d) December 28.

Fig. 9.	 (Color online) GWR coefficient distribution on March 15: (a) N1, (b) N7, (c) N8, (d) N12, (e) DEM, and (f) 
Water_A.

Table 9
GWR results for each season.
Date 3/15 6/19 10/25 12/28 (mean)
R2 0.64 0.74 0.70 0.75 0.71
Adjusted R2 0.60 0.70 0.65 0.72 0.67
AICc 674.84 580.06 651.20 552.10 614.55
Sigma 0.63 0.55 0.59 0.53 0.57

(a) (b) (c) (d)

(a) (b) (c)

(d) (e) (f)
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Fig. 10.	 (Color online) GWR coefficient distribution on June 19: (a) N13, (b) N18, (c) DEM, (d) Water_A, and (e) 
Road_DT.

Fig. 11.	 (Color online) GWR coefficient distribution on October 25: (a) N1, (b) N2, (c) N3, (d) N7, (e) N8, (f) N12, (g) 
N15, (h) DEM, (i) Water_A, and (j) Building_D.

(a) (b) (c) (d)

(a) (b) (c)

(e) (f) (g)

(h) (i) (j)

(d) (e)
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	 Overall, the GWR results revealed substantial spatial heterogeneity in the effects of 
environmental variables on LST. The direction and strength of influence varied not only across 
seasons, but also among regions, emphasizing the importance of spatial context in understanding 
LST regulation.
	 To further examine variable behavior under extreme conditions, the spatial characteristics of 
significant factors were analyzed within core high- and low-temperature zones. While most 
variables exhibited trends consistent with citywide patterns, their spatial intensity and sensitivity 
were more pronounced in extreme areas. For example, N18 exerted a stronger cooling effect in 
low-temperature core zones during summer and winter, suggesting a stabilizing role under 
thermal extremes. Water_A, though generally cooling in spring and summer, showed positive 
correlations in high-temperature core zones in autumn and winter—possibly owing to the 
seasonal thermal retention capacity of water bodies. DEM remained negatively associated with 
LST across all seasons, with even stronger effects in core zones, reinforcing the importance of 
elevation under extreme conditions.
	 Urban morphological factors also exhibited heightened sensitivity in core zones. BUILD_D 
was positively associated with LST in autumn hotspots. ROAD_D showed contrasting effects in 
winter: it contributed to warming in cold zones but had a cooling influence in hot zones. ROAD_
DT also displayed distinct seasonal and spatial shifts, reflecting the complex interactions 
between urban form and surface temperature.

Fig. 12.	 (Color online) GWR coefficient distribution on December 28: (a) N1, (b) N8, (c) N12, (d) N15, (e) N18, (f) 
N20, (g) N21, (h) DEM, (i) Water_A, (j) Road_D, and (k) Road_DT.

(a) (b) (c) (d)

(h) (i) (j) (k)

(f)(e) (g)
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	 In summary, while the spatial patterns of LST determinants in core zones generally aligned 
with citywide trends, the intensity and direction of several variables—particularly DEM, 
Water_A, and urban morphological indicators—were more spatially heterogeneous. These 
findings underscore the spatially non-stationary and multifactorial nature of LST regulation, 
especially in thermally extreme urban environments.

4.	 Conclusions

	 In this study, we examined the spatiotemporal patterns of LST in Chuncheon, South Korea, 
and identified the key driving factors using multiresolution segmentation, OLS, and GWR 
models. The results revealed distinct seasonal variations in LST distribution, with high 
temperatures predominantly concentrated in built-up and low-lying areas during summer, while 
forested and elevated regions consistently exhibited lower surface temperatures across all 
seasons. LST was significantly affected by land surface, topography, urban morphological, and 
population factors, with notable temporal and spatial variability.
	 Forests and DEM consistently produced cooling effects in both summer and winter, 
underscoring their importance in thermal regulation. Since DEM is static, it serves better as a 
contextual factor than as a planning variable. In contrast, urban morphological features showed 
strong spatial and seasonal heterogeneity, particularly in temperature hotspots and coldspots. 
Such detailed spatial differentiation is made possible through high-resolution satellite sensing, 
which captures surface thermal variability across diverse urban landscapes.
	 From a planning perspective, the results call for spatially differentiated heat mitigation 
strategies. In high-temperature zones, measures such as expanding green infrastructure, 
optimizing water bodies, and managing urban density can reduce thermal risks. Cooler areas 
provide insights for design adaptation. Overall, the findings offer a scientific basis for climate-
adaptive zoning and heat-resilient urban design, emphasizing that one-size-fits-all solutions are 
inadequate. The integration of satellite-based LST monitoring into urban planning enables the 
continuous sensing and evaluation of thermal environments, facilitating data-driven heat 
mitigation strategies. Integrating sensor-based LST monitoring into urban planning can support 
the continuous observation and evaluation of the urban thermal environment, facilitating data-
driven heat-mitigation strategies.
	 Despite these contributions, several limitations should be acknowledged. In the analysis, four 
daytime LST observations were used, which may not fully represent temporal variability. 
Nighttime thermal behavior and anthropogenic heat emissions were not considered. In addition, 
static land cover and morphological variables may underestimate land-use change effects. 
Moreover, the diagnosis of multicollinearity among explanatory variables relied solely on VIF, 
which provides a limited assessment. Future work will incorporate more comprehensive 
diagnostic methods. Future research should leverage multisource satellite sensors and higher-
temporal-resolution data to improve LST retrieval accuracy and enhance the understanding of 
surface thermal dynamics.
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