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	 In this study, we investigated the variation in vegetation index in Hwado, South Korea, from 
2022 to 2025. The analysis utilized time-series data collected from multiple sensors mounted on 
drones. The primary vegetation indices used for the analysis included the normalized difference 
vegetation index (NDVI) (V1), red-edge NDVI (RENDVI) (V2), normalized difference water 
index (NDWI) (V3), and photochemical reflectance index (PRI) (V4). These indices were 
specifically applied to assess vegetation health across various periods (A, B, C, and D). Notably, 
the indices V1 and V2 during Period A demonstrated a higher vitality than the other periods and 
indices. To overcome the limitations of single vegetation indices, we analyzed 44 unique 
combinations of multiple vegetation indices, together referred to as the composite vegetation 
index (CVI). In this study, we aimed to evaluate and assess areas of healthy vegetation both 
quantitatively and qualitatively. The results showed that combinations (1), (7), and (11) during 
Period A had the highest vegetation vitality, with more than 80% of the area covered by healthy 
vegetation. During all periods, combinations (1) and (7), each consisting of V1 and V2, 
consistently demonstrated a high percentage of healthy area. As a result, Combination (7) in 
Period A was identified as the optimal composite vegetation index (Optimal CVI) in this study. 
The proposed CVI accurately measures vegetation vitality by effectively reflecting the specific 
characteristics of the study area and integrating multisensor information. It can be utilized for 
health analysis in various types of forest.

1.	 Introduction

	 Recently, the societal awareness of climate change and environmental issues has increased, 
and consequently, the importance of precisely monitoring changes in the health and distribution 
of vegetation has attracted increasing attention.(1,2) In particular, vegetation information is the 
basis for critical decision-making in various fields, including agriculture, forestry, and 
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environmental management.(3) Traditional ground-based surveys face physical and economic 
limitations in covering large areas or capturing time-series changes.(4,5) Consequently, the use of 
remote sensing technologies for efficient and wide-range monitoring has gradually increased.
	 Among remote sensing technologies, unmanned aerial vehicles (UAVs) have become 
increasingly important in precision agriculture and forest monitoring owing to their ability to 
acquire high-resolution images at low altitudes.(6) UAV-based remote sensing is actively used to 
detect and manage forest diseases(7) such as pine wilt disease (PWD).(8–11) It can overcome the 
limitations of traditional methods and enable the rapid assessment of the health of large forests.
	 For vegetation monitoring, vegetation indices are key tools; they are quantitative indicators of 
the vitality, density, and health of vegetation based on combinations of reflectance in specific 
wavelength bands. The normalized difference vegetation index (NDVI), a typical vegetation 
index, has been widely used to indicate vegetation density and health. However, it has the 
limitation of saturating in high-density vegetation areas.(12) To overcome this limitation, various 
vegetation indices have been developed, including red-edge NDVI (RENDVI), normalized 
difference water index (NDWI), and photochemical reflectance index (PRI). On the basis of 
these indices, studies have been conducted to capture multifaceted information, such as 
chlorophyll content, water stress, and photosynthetic efficiency.(13–15)

	 However, single vegetation indices are limited by their inability to completely reflect the 
complex physiological and structural characteristics of vegetation. In the early stages of PWD 
infection, subtle and complex symptoms appear, including changes in chlorophyll content, water 
stress, and reduced photosynthetic efficiency.(16) These changes are difficult to effectively detect 
with a single index. An approach utilizing multisensor information (e.g., various spectral bands 
such as rgb, nir, and red-edge) and combining and analyzing multiple vegetation indices is 
required to more accurately assess these complex vegetation conditions.(17) This approach can 
reflect the physical and physiological characteristics of vegetation through various spectral 
information; thus, it can compensate for the limitations of conventional single indices and 
provide a more comprehensive understanding of vegetation health.
	 In this context, in this study, we used multisensor information to present a new composite 
vegetation index (CVI) that can effectively detect areas with high vegetation vitality and 
compensate for the limitations of conventional vegetation indices (NDVI, RENDVI, NDWI, and 
PRI). We aimed to propose a more accurate and efficient method for monitoring changes in 
vegetation health and distribution. This will ultimately contribute to providing basic data for the 
early diagnosis of forest diseases and sustainable forest management.

2.	 Data, Materials, and Methods

2.1	 Study area and data

	 The study area was an inhabited island called Hwado in Geoje (city), Gyeongsangnam-do 
(province), South Korea. The area is dominated by simple pine forests, primarily Pinus 
thunbergii, covering more than 80% of the total area, which makes it favorable for multispectral 
image-based vegetation index analysis. The area has been reported to have dead trees owing to 
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PWD for several years, and owing to the island’s remote location, access for personnel and 
equipment is limited. In recent years, methods to control PWD have relied on aerial surveillance-
based forecasting and drone-based remote sensing rather than on the mechanical control of the 
disease. These environmental characteristics make Hwado suitable for UAV-based multispectral 
image analysis and vegetation index applications, which aligns with the objectives of this study. 
Thus, we selected it as our experimental site (Fig. 1). Table 1 presents the circumstances under 
which images and data were acquired at four time points from 2022 to 2025. These time points 
are categorized as Periods A, B, C, and D. The main reason for selecting these time periods is 
that South Korea has a temporal characteristic of high vegetation vitality (health) from April to 
October.

Fig. 1.	 (Color online) Study area.

Table 1
Drone information.

UAV Period 
classification Shooting date Sensor Band Sentera 6× Mavic 3M

DJI Matrice 300 RTK

A Aug. 11, 2022
Sentera 6× 

Multispectral 
Sensor

Blue 475 ± 15 nm

B Oct. 14, 2022 Green 550 ± 10 nm 560 ± 16 nm
Red 670 ± 15 nm 650 ± 16 nm

C Mar. 16, 2023 Red-Edge 715 ± 5 nm 730 ± 16 nm
NIR 840 ± 10 nm 860 ± 26 nm

Mavic 3M D May 2, 2025 Mavic 3M RGB IR cut at 650 nm 20 MP RGB
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	 In this study, we used a DJI Matrice 300 RTK drone, Sentera 6× Multispectral Sensor 
(Sentera 6× sensor), and Mavic 3M to obtain data. The image-capturing conditions were set at 
150 m above ground level and a longitudinal overlap (70%), and the sensor information was 
acquired at a certain altitude by applying the digital surface model (DSM) information. Table 1 
presents the sensor equipment and information for each spectral band.

2.2	 Research flow diagram

	 Drone multisensor images were used to derive the optimal CVI on the basis of various 
combinations of vegetation indices. Figure 2 shows the research flow diagram. The vegetation 
indices NDVI, RENDVI, NDWI, and PRI were analyzed, and changes in these indices were 
quantitatively examined by geographic information system (GIS)-based spatial analysis. The 
final CVI was determined on the basis of the 44 distributions of vegetation vitality analyzed 
using combinations of multiple vegetation indices. 

2.3	 Vegetation indices and vegetation index combination network
	
	 The experimental area is a coniferous forest with a high density of Pinus thunbergii. This 
island area has a high concentration of dead trees owing to PWD. Owing to its simple vegetation 
and minimal external disturbances, the area is very suitable for evaluating the accuracy of 
vegetation index-based disease detection. Moreover, seasonal vegetation responses appear 
clearly in Hwado owing to the maritime climate, and the decline in photosynthetic activity 
caused by disease outbreaks in image (sensor) information can be clearly detected. In particular, 
this area is classified as a vulnerable area for disease control owing to limited access; thus, 
remote early surveillance and forecasting based on drone images and vegetation indices are 
necessary. In this study, we selected four basic vegetation indices suitable for the experimental 
area for analyses.

Fig. 2.	 (Color online) Research flow diagram.



Sensors and Materials, Vol. 38, No. 1 (2026)	 231

	 NDVI is one of the most widely used vegetation indices to indicate the photosynthetic 
activities of plants. Healthy plants show low reflectance in the red wavelength band of visible 
light owing to high chlorophyll absorption and reflectance in the NIR wavelength band owing to 
internal scattering caused by their chlorophyll structure.

	 NIR REDNDVI
NIR RED

−
=

+
	 (1)

	 RENDVI is a vegetation index that uses the red-edge wavelength band. This part is 
characterized by a sharp increase in reflectance from the visible red wavelength band 
(approximately 680 nm) to the NIR wavelength band (approximately 750 nm). This domain is 
characterized by a highly sensitive response to changes in the chlorophyll content and nitrogen 
status of plants. RENDVI was developed to compensate for the limitation of NDVI of saturating 
in dense vegetation. It is particularly sensitive to changes in chlorophyll content, making it 
useful for detecting plant stress or early-stage disease.

	  NIR Red EdgeRENDVI
NIR + Red Edge

−
= 	 (2)

	 NDWI, proposed by Gao,(18) utilizes the NIR (approximately 800–900 nm) and shortwave 
infrared (SWIR; approximately 1550–1750 nm) bands to directly measure the water content of 
plant leaves. As the NIR band shows a high reflectance owing to the cellular structure of 
vegetation, the combination of these two bands shows a highly sensitive response to leaf water 
content, making it effective for assessing water stress. The Sentera 6× sensor can acquire data 
for blue, green, red, red-edge, and NIR bands but does not include SWIR bands. Accordingly, we 
used the NIR and green bands (approximately 550 nm) to analyze NDWI in this study.

	 Green NIRNDWI
Green NIR

−
=

+
	 (3)

	 PRI was proposed by Gamon et al.;(19) it uses changes in reflectance in a very narrow 
wavelength band between 531 and 570 nm to primarily estimate a plant’s photosynthetic 
radiation use efficiency (RUE) in real time. Changes in reflectance in this wavelength band are 
caused by the activity of the xanthophyll cycle of carotenoid pigments. It is closely related to the 
phenomenon of non-photochemical quenching, wherein plants dissipate excess light energy.(19) 
Considering the characteristics of very narrow bandwidths, which are required to calculate PRI, 
such as 531 or 570 nm, we set PRI using Eq. (4) for the Sentera 6× sensor.

	 Green REDPRI
Green RED

−
=

+
	 (4)

	 The four vegetation indices used in this study were selected as each one represents the 
different physiological and structural characteristics of vegetation, enabling a comprehensive 
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analysis of vegetation condition.(20) By using these four indices together, a variety of information, 
such as vegetation cover, pigment content, water content status, and photosynthetic efficiency, 
can be extracted through complex analysis.
	 We followed a four-step spatial analysis procedure using ArcGIS Pro to quantitatively 
calculate the total area and area by category on the basis of the results of the analysis of 
vegetation index. First, we used the Raster Calculator to categorize the continuous vegetation 
index raster into four bins based on predefined thresholds, and we converted them to raster 
integer values to ensure that categorical (gridcode) attributes can be assigned. Second, we used 
the “Raster to Polygon” tool to convert the pixel-based raster data into polygonal data in a vector 
form (polygonal shape), thereby transforming data with a spatial unit that enables area 
calculation. Third, the area field for each polygon object was created and automatically 
calculated using the “Calculate Geometry” tool with the generated polygon data. Finally, we 
used the “Summary Statistics” function to aggregate the area totals by category (gridcode) to 
quantitatively calculate the area distribution of each vegetation index bin relative to the total 
area.
	 As shown in Fig. 3, vegetation indices (Group 1) are categorized as follows: V1 = NDVI, 
V2 = RENDVI, V3 = NDWI, and V4 = PRI. For the categories (Groups 2 and 3) based on the 
combination of vegetation indices, we showed each combination as (1), (2), (3), ..., (11). We 
produced 11 combination equations: (1) = V1 + V2, (2) = V1 + V3, (3) = V1 + V4, ..., 
(10) = V2 + V3 + V4, and (11) = V1 + V2 + V3 + V4.

3.	 Results

3.1	 Analysis of basic vegetation indices

	 The images used for the analysis of basic vegetation indices were preprocessed using Pix4D 
Mapper. We applied the four vegetation indices (V1, V2, V3, and V4) to the periods of image 

Fig. 3.	 (Color online) Combination network of vegetation indices.
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acquisition (A, B, C, and D, respectively) and presented 16 index distributions, as shown in Fig. 
4. Considering the presence of a certain amount of noise in the experimental area, we excluded 
noise less than 0.5% of total area as it had no significant effect on analysis. In Table 2, we 
presented the vegetation indices according to each combination equation using a legend for five 
vegetation levels [vegetation levels: green (L5), blue-green (L4), yellow (L3), orange (L2), and 
red (L1)]. The areas corresponding to green and blue-green (L5 and L4), which represent healthy 
vegetation, were calculated and summed to assess the vegetation vitality of the corresponding 
combination. 
	 Table 2 shows the vegetation index area by period, and Fig. 4 shows four of the 16 basic 
vegetation indices. Vegetation indices closer to 1 (green) indicate higher vitality, whereas those 
closer to −1 (red) indicate lower vitality. NDVI shows that the overall healthy vegetation area 
(L4 + L5) was approximately 92234 m2 in Period A, indicating very high vitality. RENDVI 
revealed that the blue-green areas (L4) were approximately 45060 m2 (28%) during Period C, 
indicating low vitality, and approximately 69363 m2 (43%) in Period D, indicating high vitality. 
NDWI showed that the L1 areas were the largest in Periods A (66744 m2) and B (66273 m2), 
suggesting that desiccation (lack of moisture) was a factor in the decline in vitality. PRI reflects 
the photosynthesis of plants(21) and is characterized by high values in summer and low values in 
fall and winter. Notably, PRI increased during Period A.
	 Figure 5 shows a heatmap of the area distribution of vegetation index by classifying periods 
(A, B, C, and D) and vegetation levels (L1–L5). Healthy vegetation is higher in Periods A (V1, 

Fig. 4.	 (Color online) Basic vegetation index by period.
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V2, and V4), B (V1 and V2), and D (V1). Conversely, in Period C, V3 and V4 show low vitality 
overall. This may be ascribed to seasonal factors. Nonetheless, this also suggests that the water 
content of plants, as indicated by NDWI, and the growth rate of vegetation affected by 
photosynthetic efficiency, as indicated by PRI, are low.

Table 2
(Color online) Basic vegetation index analysis. (unit: m2)

Period Vegetation index
Vegetation level V1 V2 V3 V4

A

	 Green (L5) 92234 45241 3282 41023
	Blue-green (L4) 42405 61305 7601 61324
	 Yellow (L3) 1119 35083 14600 31869
	 Orange (L2) 8280 9382 67853 16018
	 Red (L1) 5835 9094 66744 9717

B

L5 84300 42100 3634 3634
L4 46585 65836 8200 8199
L3 15824 32467 19900 19900
L2 7580 12742 62071 62074
L1 5673 6943 66273 66284

C

L5 40076 33035 4210 12993
L4 37717 45060 13945 25044
L3 42362 48467 33296 33881
L2 26799 23778 56270 50922
L1 13132 9750 52337 37216

D

L5 64685 21926 4989 42697
L4 53268 69363 12806 45057
L3 19484 53888 20739 38001
L2 1096 14911 66299 23941
L1 11685 4 55260 10397

Fig. 5.	 (Color online) Basic vegetation indices (Group 1).
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3.2	 Analysis of multivegetation index combinations

	 In the analysis of the multivegetation index combinations, the total number of combinations 
based on Groups 2 and 3 is 44, as shown in Fig. 3. We conducted qualitative and quantitative 
analyses for each combination. In Fig. 6, we showed the vegetation distribution for only six out 
of the 44 combinations of multiple vegetation indices owing to the limited space in this study. 
Table 3 presents the results of the area of the combined vegetation indices by period, and we 
analyzed the correlation of the combination equations for healthy vegetation (L4 and L5). 
	 The analysis of vegetation area showed that combinations (1), (7), and (11), which contained 
V1 for Period A, were found to have a healthy vegetation area (L4 + L5) of 80% or more. Period 

Fig. 6.	 (Color online) Multivegetation index combinations (Groups 2 and 3).
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A is characterized by summer, which is the growth season, and is commonly characterized by 
the overall increase in vegetation vitality. In Period B, combinations (4), (6), (9), and (10) showed 
that the healthy vegetation area was relatively low. This period is characterized by a gradual 
decrease in photosynthetic activity and a reduction in chlorophyll content, resulting in a general 
decline in vegetation vitality. In Period C, the healthy vegetation areas of (1), (2), and (7) were 
relatively high, but vegetation vitality was generally low. In Period D, the healthy vegetation area 
was high, at approximately 73%, in combinations (1), (2), (7), and (11). This indicates that the 
vitality area in Period D significantly increased compared with that in Period C, suggesting that 
vegetation showed rapid growth.
	 Figure 7 shows the multivegetation index area combinations in a manner that facilitates the 
intuitive identification of combinations exhibiting high (green) and low values. This enables the 
comparison of trends and differences between the combinations or healthy vegetation area (L4 + 
L5) in Periods A, B, C, and D. The analysis shows high vegetation vitality for (1), (2), (3), (7), (8), 
and (11) in Periods A, B, and D.

3.3	 Analysis of CVI

	 The analysis of CVI was based on the results of the basic vegetation indices and 
multivegetation index combinations. A total of 44 combinations were analyzed, and Table 4 
presents the results, which are arranged in descending order of the percentage of healthy 

Table 3
Analysis of multivegetation indices. (unit: m2)

Period
Vegetation index

Vegetation 
level (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

A

L5 75667 21914 65565 905 72354 12067 88070 80331 41493 45442 73261
L4 55584 75361 56145 52371 48312 43356 46808 46769 71377 62390 53743
L3 13446 47102 18223 86105 19209 59477 11616 15027 27504 29136 16281
L2 8020 12482 19090 19410 12759 34626 9016 11124 14691 16858 11457
L1 7237 3092 928 1283 7318 10427 4442 6701 4887 6125 5210

B

L5 63717 25047 17117 2086 2175 3644 61575 63158 1479 1361 831
L4 57015 101617 69524 20813 23098 8199 57141 55941 8513 5804 44186
L3 22362 6654 52625 78568 80479 19981 24567 23147 33261 17732 78692
L2 10303 21290 16476 50016 45553 62171 11524 12146 70389 72511 29591
L1 6556 5451 4189 8594 8742 66053 5151 5540 46280 62639 6630

C

L5 42894 42280 27294 1175 22630 827 42335 29390 26437 1463 29301
L4 39129 37550 33665 21279 32877 18062 39196 35828 34159 30667 35981
L3 43429 41028 38552 79661 40257 42074 43803 40971 41174 47184 42284
L2 24145 32274 42070 53902 50804 65787 26463 39596 45992 59830 43264
L1 10459 6900 18452 4041 13488 33307 8236 14249 12271 20912 9204

D

L5 59361 73165 54145 5576 47133 14400 67793 57585 56062 1238 62065
L4 60637 51370 51117 17590 53929 46872 59931 52934 52997 64602 53712
L3 19634 21260 27559 46784 32086 52640 18735 25271 30456 61872 25869
L2 11006 13480 14154 66525 18089 39076 12677 13424 19594 31258 17316
L1 9454 817 13117 23617 8855 7104 957 10879 982 1123 1071
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vegetation area. As presented in Table 4, three combinations had a healthy vegetation area 
exceeding 80%, and 10 combinations had a healthy index above 75%. Considering the CVI 
characteristics of the study area, we found relatively high connectivity among Periods A, B, and 

Fig. 7.	 (Color online) Multivegetation indices (Groups 2 and 3).

Table 4
Analysis results of CVI.
Rank Period Combination formula Area (m2) Ratio (%)
1 A (7) 134878 84
2 A (1) 131251 82
3 D (7) 127724 80
4 A (8) 127100 79
5 A (11) 127004 79
6 B (2) 126664 79
7 D (2) 124535 78
8 A (3) 121710 76
9 B (1) 120732 75

10 A (5) 120666 75
⁝ ⁝ ⁝ ⁝ ⁝

35 B (11) 45017 28
36 C (10) 32130 20
37 B (5) 25273 16
38 D (4) 23166 14
39 B (4) 22899 14
40 C (4) 22454 14
41 C (6) 18889 12
42 B (6) 11843 7
43 B (9) 9992 6
44 B (10) 7165 4
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D and combinations (1), (2), and (7). Additionally, the vegetation indices V1 and V2 that 
correspond to combinations (1) and (7) were high, indicating that they best represent vegetation 
vitality. Seasonal factors indicate that vegetation vitality is highest from late spring to summer 
(May to August); thus, applying the vegetation combination equation [Eq. (7)] during this period 
will provide relatively more reliable vegetation indices. 
	 The optimal CVI for the study area was determined to be (7), and our analysis indicates that 
combining the vegetation indices V1, V2, and V3 (V1 + V2 + V3) is effective. By combining 
indices that measure different physiological aspects (vitality, chlorophyll, and water content), the 
combination equation [Eq. (7)] facilitates the appropriate representation of comprehensive, 
multifaceted vegetation status information, which is difficult to obtain with a single index or a 
combination of two indices. The optimal CVI equation in this study is expressed in Eq. (5).

	 ( )  7
 

NIR RED NIR Red Edge Green NIRCVI NDVI RENDVI NDWI
NIR RED NIR Red Edge Green NIR

− − −
= + + = + +

+ + +
	 (5)

4.	 Discussion

	 CVI(7) achieves a correction effect by applying the water constraint factor, using V3, to the 
data on photosynthetic potential and efficiency provided by V1 and V2. This means that even if 
the physiological signals from V1 and V2 are elevated, the index more accurately captures the 
decrease in plant vitality caused by severe environmental stress, such as water scarcity, which is 
indicated by low V3 values. As a result, CVI(7) can evaluate the health of the Pinus thunbergii 
forest in the study area more thoroughly and accurately than individual indices alone.(22–25)

5.	 Conclusions

	 In this research, we focused on evaluating the healthy vegetation zones (L4 + L5) over 
different periods, vegetation indexes, and vegetation levels. We utilized multisensor data 
gathered from drones specific to the experimental location in Hwado. Afterward, we proposed 
the ideal CVI.
	 The analysis of the 16 basic vegetation indices utilized in the experiment, combined with the 
44 vegetation vitality distributions calculated from the 11 combination equations for Groups 2 
and 3, resulted in the following conclusions.
	 During Period A, V1 (92234 m2) and V2 (84300 m2) both exhibited significant levels of 
vitality. Throughout Periods C and D, Index V2 showed a marginally higher vitality than V1. 
The conclusion reached can be attributed to the intense photosynthetic activity observed in 
plants during Periods A and B, as well as the indices’ ability to accurately represent the 
characteristics of the sensor data. Conversely, low vegetation vitality was observed for V3 during 
Period A, for both V3 and V4 during Period B, and once again for V3 in both Periods C and D.
	 The qualitative and quantitative analyses of the 44 combination equations revealed significant 
seasonal variations in vegetation health. The combinations (1), (7), and (11), which included V1 
during Period A, were identified as having a healthy vegetation area (L4 + L5) totaling 80% or 
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more in each case. In contrast, Period B showed generally low vitality because of a decline in 
photosynthetic activity and a decrease in chlorophyll content.
	 By calculating different vegetation indices and examining regions with healthy plant growth, 
we were able to determine the optimal CVI for the experimental site. The usual indicators in the 
high-vitality CVI are V1 and V2. Given that the combination in Eq. (7) resulted in the highest 
value, we have determined that CVI = (7) is the optimal vegetation index.
	 The CVI analysis method proposed in this study can overcome the limitations of traditional 
single vegetation indices, allowing for the more accurate and effective monitoring of changes in 
vegetation health and area. This method, which makes use of multiple sensors, will assist in the 
early and effective monitoring of seasonal forest vegetation growth and the detection of forest 
diseases, including PWD.
	 However, a limitation of this study is that the determination of the optimal CVI(7) was based 
solely on the internal metric of the “healthy vegetation area ratio”. The optimal CVI(7) was not 
thoroughly validated using actual ground truth data or independent statistical performance 
metrics such as RMSE and R-squared. Therefore, at this stage, CVI(7) is considered more of a 
site-specific vegetation vitality indicator specialized for the Hwado region, rather than a method 
suitable for universal application.
	 Future research should focus on integrating various fields of study and multidimensional 
vegetation indices by utilizing artificial intelligence learning techniques. To ensure the statistical 
reliability and generalizability of CVI(7), it is essential to perform cross-validation using field-
measured physiological variables of vegetation. Moreover, further research is needed to extend 
the application of the index to larger areas, facilitating the development of quicker and more 
accurate large-scale vegetation health maps.
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