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	 Coastal erosion vulnerability assessments are critical for planning effective coastal defense; 
however, previous methods that rely on low-resolution data often lack the analytical precision 
required for local- or site-specific coastal management. This study presents an improved 
approach that constructs a 3D geospatial digital twin of coastal areas by integrating high-
resolution aerial image data and topo-bathymetric light detection and ranging (Lidar) data, 
which are acquired by airborne sensors. Using this digital twin, coastal erosion vulnerability 
was assessed at 5 m intervals along the coastline in the digital twin based on six vulnerability 
indices including geomorphological feature, beach width, coastal slope, and so on. A key 
innovation of the proposed method is the application of the Jenks natural breaks optimization to 
measure vulnerability scores for each index. Then, the vulnerability assessment is determined 
by combining these six scores. The method was applied to a coastal area in Uljin-gun, Republic 
of Korea, and, unlike previous low-resolution 2D data assessment approaches, it successfully 
identified specific coastline segments exhibiting high vulnerability that would not be identified 
with previous approaches.

1.	 Introduction

	 Coastal erosion breaks down rocks, soil, and sand along coasts through local sea level 
rise, strong wave action, and coastal f looding. It is a critical problem because many 
development activities such as residential development, industrial development, 
transportation, and tourism are common in coastal areas. To address this problem, recent 
geospatial data and techniques have been used to study coastal erosion. In previous 
studies, various analyses related to coastal management were conducted by modeling the 
terrain of the coastal area using 3D geospatial information.(1,2) Moreover, several 
studies(3–5) presented an approach for coastal management utilizing high-precision 
geospatial information, which was acquired using optical cameras mounted on unmanned 
aerial vehicles or using light detection and ranging (Lidar) equipment. Accordingly, a 
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vulnerability assessment model was developed by integrating these research findings on 
the spatial information and analysis models for coastal areas.(6,7)

	 With the recent development of geospatial information technology, accurate aerial 
images and Lidar data can be acquired simultaneously, and a large amount of data can be 
processed and analyzed effectively. The European Union developed Destination Earth, 
which includes high-precision digital models of the Earth that integrate various aspects of 
the Earth’s system to monitor and simulate natural phenomena and related human 
activities.(8) Moreover, Duque and Brovelli(8) suggested a plan to build an integrated 
geospatial dataset for the Italian coast. Allen et al.(9) proposed a digital twin system 
structure and a service that provides conditional decision-making to analyze and predict 
f loods in coastal areas.
	 In the vulnerability assessment model, several previous studies have utilized geospatial 
data with a low spatial resolution instead of precise large-scale geospatial information 
acquired through the latest geospatial technologies, resulting in inaccuracy for small-
scale vulnerability assessment. For example, small rocks distributed locally in many 
coastal areas can be erroneously detected as erosion prevention facilities. Conversely, 
ground erosion may occur even on rocky coasts where roads or buildings are located and 
on locally distributed sand dunes, which can contribute to sinkholes. Although several 
studies(3–5) suggested methods for constructing more precise 2D or 3D geospatial 
information, information on the land cover condition was not comprehensively analyzed 
or utilized through aerial image or Lidar data analysis.
	 To address this gap, we propose a method to assess vulnerability to coastal erosion 
with a 3D geospatial dataset using the latest geospatial information technology. On the 
basis of this dataset, a 3D virtual representation of the area was obtained, which can 
implement a detailed vulnerability assessment to predict small-scale erosions and plan 
appropriate coastal structures. In the 3D virtual representation, namely, the Digital Twin, 
various spatial criteria used for vulnerability analysis in previous studies were measured 
along the coastline at specific intervals, and each was normalized to a range between 0 
and 1. Then, Jenks natural breaks optimization(10–12) was applied to the normalized values 
for each spatial criterion to perform clustering, and the value of one spatial criterion for the 
segment in the cluster was simplified to the ranking score of the cluster. Given a specific 
interval along the coastline, the simplified scores of each criterion are then processed to 
obtain a single coastal vulnerability score (CVC). After calculating the scores for all 
segments in this manner, the vulnerability indices were then determined by applying the 
Jenks natural breaks optimization once again. The specific data, methodology, and 
experimental results are as follows.

2.	 Data and Methods

2.1	 Study area and geospatial data

	 The proposed dataset and assessment method were applied to a coastal area located in 
Uljin-gun, Republic of Korea, as shown in Fig. 1. Three types of geospatial data were used to 
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construct a 3D integrated geospatial dataset. Among them, aerial image data and point cloud 
data were acquired using Leica DMC III and Chiroptera 4×, as shown in Table 1. Data on 
facilities and buildings were extracted from the datasets provided by the government-operated 
National Spatial Data Infrastructure Portal. Additionally, the linear geospatial data extracted 
from the coastal management database of the National Spatial Data Infrastructure Portal were 
used to obtain the required coastline data for the proposed analysis method. Figure 2 shows the 
geospatial data of the study area.

2.2	 Methods

	 The CVC was determined by applying six criteria using Eq. (1):

	   .CVC a b c d e f= ⋅ ⋅ ⋅ ⋅ ⋅ 	 (1)

Fig. 1.	 (Color online) Location of study areas in Uljin-gun, Republic of Korea.
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	 The four criteria [(a)–(d)] were related to the geospatial information obtained from aerial 
images, which were acquired using the instruments listed in Table 1. Criteria (e) and (f) were 
obtained on the basis of the information on the facilities and buildings in the study area, which 
were managed by public institutions. Since each criterion has a different range of values, 
normalization is necessary. However, performing simple min-max normalization can lead to 
distortion caused by some outliers (over- or underestimated observations). Specifically, if the 
observations are likely to form several clusters related to vulnerability, applying min-max 
normalization including outliers can result in clusters with different characteristics having 
similar normalized values. Therefore, in this study, we extracted clusters from the observations 
and assigned a score of 1/n to the cluster with the lowest erosion risk, followed by scores of 2/n, 
3/n, 4/n, etc., where n is the number of these clusters in order of increasing risk. These clusters 
are calculated using the Jenks natural breaks algorithm. Details of the six criteria are as follows.

2.2.1	 Geomorphology
	
	 The coastal geomorphology can be classified into rock, dune (sand), mudflat, and waterbody. 
The erosion risk was assessed according to the size and distribution of rocks located on the water 
surface, which can break the waterflow. Thus, extracting geomorphic features and rocks from 

Table 1
Specifications of data acquisition instruments.
Camera/Lidar instrument GPS/INS instrument
Camera model DMC Ⅲ GPS model AT1675-80
Focal length 92 mm GPS std 0.05 m
Spatial resolution 8 cm INS model LCI-100C
Lidar model Leica Chiroptera 4X INS std 0.01 deg
Lidar depth range 2.7 /k
k : diffuse attenuation coefficient

Fig. 2.	 (Color online) Geospatial data (partial) of the study area.
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aerial images is necessary.(13–15) In this study, eCognition Developer 9.1, an image processing 
software program, was used to extract terrain and rock objects, as shown in Fig. 3, according to 
the multiresolution segmentation.(16) Then, a 10-m-long rectangular area toward the sea was 
calculated for each interval along the coastline, and the area ratio of rock extracted from the 
imagery was calculated for every coastline interval. For the area ratio values, the Jenks natural 
breaks algorithm was applied. The cluster with the highest mean ratio was identified as the 
lowest erosion risk, so that the coast intervals have a score of 1/n. Then, the intervals of the 
cluster with the second value have a score of 2/n and so on, where n is the number of clusters. 
The same method is applied to the remaining criteria.

2.2.2	 Beach width
	
	 A beach acts as a barrier and dissipates wave energy; particularly, beaches with large widths 
reduce not only the wave magnitude considerably but also the impacts of extreme weather 
events.(17) Therefore, the larger the beach width, the greater the coastal erosion that can be 
prevented. Beach width was calculated by measuring the width of the dune (sand) terrain object 
extracted along the coast, as shown in Fig. 3. 

2.2.3	 Regional elevation

	 High-elevation coastal regions are considered less vulnerable because they provide higher 
resistance to inundation against rising sea levels, tsunami run-ups, and storm surges.(17) In this 

Fig. 3.	 (Color online) Aerial images of the (a) study area and (b) feature objects extracted from the image using 
eCognition Developer 9.1. 

(a) (b)



270	 Sensors and Materials, Vol. 38, No. 1 (2026)

study, the risk level increased as the elevation decreased. The regional elevation values were 
obtained by constructing a digital elevation model (DEM) from Lidar data using the geographical 
information system software ArcMap 10.8, with a spatial resolution of 5 m; subsequently, the 
coastline data extracted from the coastal management database of the National Spatial Data 
Infrastructure Portal were overlapped on the DEM. The risk level was determined according to 
the criteria described above.

2.2.4	 Coastal slope

	 The coastal slope is defined as the ratio of the altitude change to its horizontal distance within 
two points on the coast. A gentle coastal slope has greater penetration of seawater towards the 
land, whereas coasts with a high slope have less seawater penetration because of wave energy 
dissipation.(16) In this study, the coastal slope was obtained by constructing a DEM with a spatial 
resolution of 5 m for bathymetry, similar to that used for calculating the regional elevation. 

2.2.5	 Defense facility

	 The study area is characterized by the proximity of mountains and the coast, with roads and 
residential facilities developed around the coast. Accordingly, various erosion defense facilities 
are installed in this region to prevent coastal erosion. Compared with natural coasts, an artificial 
coast with installed facilities should exhibit a low risk. According to the coastal management DB 
provided by the National Spatial Data Infrastructure Portal, coastlines are divided into natural 
and artificial coasts, and erosion prevention facilities are observed as polygonal (polygon) 
objects. In this study, the value of artificial coasts was assigned as 0.2, whereas the value of 
natural ones as 1. 

2.2.6	 Distance to town and road

	 Determining the criterion for the impact of coastal erosion on buildings or roads is difficult. 
Thus, more rigorous management is necessary for coastal areas adjacent to buildings or roads, 
even under the same risk level. The CVC was also applied to analyze the priorities for such 
management efforts. Therefore, the risk level was determined to adjust the CVC to a higher level 
as the buildings or roads were closer to the coast.3.	

3.	 Results
	
	 Figure 4 shows the 3D high-precision digital twin space in the coastal area, constructed using 
the geospatial information technology described in Table 1. Geomorphology and beach width 
were measured by applying automated image analysis technology to aerial image data, and the 
regional elevation of the ground and the coastal slope below sea level were obtained from Lidar 
data, as shown in Fig. 5.
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	 In the study area, the percentage of the sand dune or beach coasts was the highest (79.3%), 
followed by that of the sand dune with small rocks (9.4%). Other terrain types accounted for 
approximately 6%, and artificial structures, such as ports, were included under the rocky base. 
Moreover, the coastal beach widths of more than 10 m and less than 50 m comprised about 65% 
of the coastline. Coasts with a beach width of less than 10 m were mostly found to be rocky 
bases, ports, or coasts installed with erosion prevention facilities. The coastal elevations of 2.5–5 
m and 1–2.5 m accounted for 51.3 and 23.8% of the coastline, respectively. The high percentage 
of the sand dune or beach coasts (79.6%) showed the characteristics of coasts having a low 
elevation and gentle boundary with the sea level.
	 A significant error occurred in the calculation process for coastal slopes when the laser of the 
Leica Chiroptera 4× used in this study did not sufficiently reach the seabed and did not reflect 
sufficient intensity. The bathymetry of the East Coast, which is the study area, can be described 
as having a rapid decrease in water depth compared with other coasts; therefore, the Lidar laser 
could not reach the seabed occasionally or was scattered owing to high waves and the resulting 
foam. Consequently, compared with the bathymetry data shown in Fig. 5(c) (regional elevation), 
the coastal slope information shown in Fig. 5(d) indicates that some data are missing or include 
errors, rendering the slope information at that point unfeasible. Moreover, 34.1% of the coastline 
had a slope of 0.1–0.15, whereas 27.3% had a slope of 0.05–0.1. Generally, when the beach width 
was 50 m or more, the slope was <0.1, representing flat topographical characteristics. As shown 
on the right side of Fig. 5(a) (geomorphology), in some cases, the slope had a high value when 
rocks were distributed around the sandy beach.
	 In the study area, most coastlines were natural coastlines (94.3%), with only 5.7% 
representing artificial coastlines, such as areas with ports or those installed with erosion 
prevention facilities. Regarding the distance from buildings and facilities, roads were built all 

Fig. 4.	 (Color online) Digital twin (partial) built using geospatial information database of coastal area management 
agency, aerial image data, and Lidar data as described in Table 1.
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Fig. 5.	 (Color online) Cases of six criteria in the study area in Fig. 1.
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along the coast of the study area. Although the distance between the coasts and some roads was 
> about 100 m, as shown in Fig. 5(b) (beach width), most roads were within about 25 m from the 
coast [Fig. 5(a) (geomorphology)].
	 The CVC value can be calculated by applying the acquired six criteria values to Eq. (1). In 
this study, the coastline was divided into 5 m intervals, and the CVC values were calculated for 
each segment. The corresponding results are shown in Fig. 6. The mid-section of the coastline 
shown in Fig. 4 represents an area with a beach width of <10 m; moreover, the road was located 
close to the coast, and the coastal slope was relatively high. Subsequently, the calculated CVC 
value showed a high risk for this section. In contrast, under the same conditions, the coastline 
shown in Fig. 6(a) has a local- or site-specific coastal erosion prevention facility, and thus, the 
risk becomes relatively low. Conversely, the coastline shown in Fig. 6(b), where beach width 
changes abruptly along the coast, exhibits various CVCs as the beach width changes. A small 
coastline where the sandy beach is much narrower than the surrounding coastline, as indicated 
by the orange line in Fig. 6(b), can present a high risk of coastal erosion while neighboring 
coastlines present a low risk. In this case, the proposed method can be utilized to prioritize the 
deployment of local- or site-specific coastal erosion prevention facilities in high-risk areas and to 
develop mitigation strategies through the periodic monitoring of the adjacent coastlines.

4.	 Discussion

	 In this study, a high-precision 3D geospatial dataset was constructed using the latest 
geospatial information construction technology to assess the risk of coastal erosion. In previous 
studies, risk assessments considering the changes in the coastline over the years, sea level rise, 
and tidal differences were conducted. While many studies have attempted to detect changes in 
the coastline using aerial images, the detection of such changes arising due to coastal erosion or 
temporal changes in water level is challenging using only images because the sea level changes 

Fig. 6.	 (Color online) CVC results acquired by the proposed method along the coastline at an interval of 5 m.



274	 Sensors and Materials, Vol. 38, No. 1 (2026)

according to the image capture time. Compared with previous studies, in this study, coastline 
changes were analyzed at a high spatial resolution. As reported in previous studies, sea level rise 
and tidal changes produce effects at regional (tens-to-hundreds km) scales that alter coastal 
hydrodynamics relevant to erosion.(18) However, as the spatial domain of this study was relatively 
small (within 20 km), although the effect of sea level rise and tidal differences existed, it 
appeared to be statistically insignificant. Nevertheless, the analysis based on 3D geospatial 
information conducted in this study was more precise than that conducted in previous studies. 
Therefore, analyzing the global CVC for a wide domain is appropriate, followed by analyzing the 
local CVC in a higher resolution using the proposed method for maintaining erosion prevention 
facilities and other purposes.
	 In this study, in addition to beach width, various geomorphological parameters were 
extracted by applying image analysis technology to high-resolution aerial images, and the 
extracted parameters were used for calculating CVC. While this approach allowed for more 
comprehensive analysis using high-resolution data, it also resulted in errors while calculating the 
coastal slope. Regional elevation and coastal slope were calculated after converting Lidar data 
into gridded data at 5 m intervals. However, as shown on the right side of Fig. 5(a) 
(geomorphology), when small-scale rocks were distributed along the coast, the coastal slope was 
calculated by combining the height values of these rocks on the seafloor terrain where the rocks 
were distributed. Since the Lidar data were acquired with high-point density, stable results can 
be obtained when the regional elevation was measured on the ground, with more than 100 height 
values acquired in a grid space of 5 m × 5 m. However, in the case of bathymetry, the slope was 
over-measured or under-measured in some cases. This was because less than 20–30 height 
values were acquired depending on the water quality affected by floating objects or the material 
characteristics constituting the sea surface, and the bathymetry measured using these height 
values differed from the actual bathymetry. This problem was caused by the increase in the 
effect of error values as the grid size decreased while calculating the DEM of the bathymetry to 
perform spatial analysis. Therefore, future research should focus on the optimal data unit for 
analysis according to the performance of the surveying equipment. Additionally, a verification 
process is required to determine whether the risk area identified through the proposed method is 
truly vulnerable to coastal erosion and whether it poses a risk to the safety of coastal buildings or 
facilities. Presently, in facility safety management, research is underway to measure cavities in 
underground spaces, such as sinkholes, cracks in old facilities, and ground stability using 
ground penetration radar (GPR) sensors. Therefore, to verify and improve the accuracy of the 
proposed CVC model, combining the analysis model proposed in this study with the underground 
geospatial information of the coastal region explored by the GPR sensors is necessary.

5.	 Conclusion
	
	 In this study, high-precision 3D geospatial information on the coastal area was acquired 
using the latest spatial information construction technology. Information types were combined 
to establish a geospatial space to apply various analysis techniques. Six criteria (geomorphology, 
beach width, regional elevation, coastal slope, defense facility, and distance to town or road) 
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were selected by referring to the CVC models proposed in several previous studies, and five 
differentiated risk levels were applied to the analysis. The results showed that, unlike previous 
studies, coastal areas having a high risk of erosion could be detected at a local scale, as the 
spatial information used in this study had higher accuracy and degree of detail. In contrast, the 
observation systems for sea level changes and tidal differences provided observation data with a 
spatial resolution of tens of kilometers; therefore, their application as parameters in analyzing a 
small area, such as that studied in this research, shows limitations. However, with the recent 
development of technical standards for combining real-time sensor information centered on 
spatial information, further improvements in coastal management can be achieved if the precise 
geospatial dataset established in this study and real-time observation data are combined for 
integrated analysis and monitoring.
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