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	 Drowning incidents in swimming pools remain a critical public health issue globally, where 
rapid detection and response significantly impact survival rates. Traditional human-based 
surveillance and sensor-based systems face challenges of cognitive limitations, environmental 
constraints, and high costs. We propose a two-stage (Two-Stage) framework that, utilizing video 
streams captured by camera sensors, employs computer vision and deep learning to precisely 
detect human objects in real time and subsequently classify ‘risk’ behaviors to predict safety 
incidents. The core focus of this study is (1) to benchmark the performance of the latest real-time 
object detection models, YOLOv12 and RT-DETR, for the ‘person’ detection module (Stage 1) in 
a pool environment and (2) to validate the efficacy of a hybrid data strategy—integrating public 
datasets (Public-Sets) with a custom-collected dataset (Custom-Set)—to optimize this detector’s 
performance against the known challenge of data scarcity. Experiments were conducted in three 
scenarios (public data only, custom data only, and a hybrid combination). The results revealed a 
stark trade-off between detection speed and accuracy; RT-DETR-R50 demonstrated exceptional 
real-time speeds (approximately 140 FPS), whereas YOLOv12-L provided superior accuracy 
(mAP) but was not viable for real-time use. We also found that the Public-Set (from Roboflow 
(9500 images) produced the highest general accuracy (mAP@.5), while the Custom-Set (1,986 
images) produced the highest localization precision (mAP@.5:.95). Through this research, an 
empirical foundation for the ‘detection’ component (Stage 1) of the proposed framework was 
established and the path for integration with Stage 2 ‘precise behavior classification’ models in 
future work was outlined.

1.	 Introduction

	 Drowning is a leading cause of preventable death worldwide, accounting for 7% of all injury-
related fatalities and ranking as the third leading cause of unintentional injury death.(1) It is a 
severe public health problem, particularly for children aged 1–14.(2) The World Health 
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Organization (WHO) reported that more than 236,000 people die from drowning annually,(1) 
representing not only a tragic loss of life but also a significant economic burden.
	 The primary line of defense against these incidents, particularly in supervised pools, has 
traditionally been visual surveillance by trained lifeguards.(3) However, this method has inherent 
limitations. A recent report from Royal Life Saving Australia indicated that when lifeguard-to-
patron ratios exceed 1:75, the detection of a drowning incident is significantly delayed.(4) This 
suggests that human visual attention is highly vulnerable to cognitive fatigue from sustained 
monitoring and the challenges of visually cluttered scenes.(4)

	 To mitigate this human limitation, various technological approaches have been proposed, 
which can be broadly categorized as sensor-based and computer vision-based.(2) Sensor-based 
systems include wearable devices (e.g., specialized goggles) or the installation of underwater 
sonar(5) or other sensors.(6) This approach has the advantage of being relatively free from privacy 
concerns.(7) However, it introduces problems such as forcing users to wear equipment, the need 
for periodic charging and maintenance,(1) and the limited underwater communication range.(7) 
Fixed sensor systems like sonar, in particular, have a very high initial installation cost and 
system complexity,(8) making them difficult to deploy in public or rural pools.
	 In contrast, computer vision (CV)-based systems utilize surveillance cameras (CCTV) 
installed in and around the pool, with AI utilized for analyzing the footage in real time to detect 
dangerous situations.(9) This method allows for nonintrusive monitoring without requiring user-
worn devices, offering great potential in terms of scalability. However, CV-based approaches 
also face serious technical challenges that need to be resolved to enable practical application.(6)

	 For a CV-based drowning detection system to operate effectively in a real-world environment, 
it must overcome the following complex challenges:(6)

•	 Environmental Factors: The swimming pool is an extremely harsh environment for CV 
models. Irregular light reflections on the water’s surface, splashing from swimmers, water 
turbidity,(10) and rapid changes in indoor or outdoor lighting conditions are major factors that 
severely degrade the accuracy of object detection algorithms.

•	 Data Scarcity: The performance of deep learning models is dictated by the quality and 
quantity of training data. However, large-scale, high-quality public datasets depicting actual 
drowning incidents are virtually nonexistent owing to ethical issues and the difficulty of 
collection.(11) This has been the biggest bottleneck in training a model to learn real-world risk 
situations.

•	 High False Alarm Rate: Compounding the data scarcity problem, the initial response to 
drowning often looks visually similar to ‘normal’ playful behavior, such as vigorous 
splashing.(6) This causes the system to frequently misidentify normal activity as a risk (False 
Positive),(6) which degrades the system’s reliability. Data imbalance(9) also biases the model 
toward the majority (normal) class.

•	 Privacy Concerns: The use of cameras for continuous video monitoring, especially in a space 
like a swimming pool where swimwear is worn, could raise serious privacy issues.(9) This has 
been a significant barrier to the social acceptance of the technology.

	 In this study, we focus primarily on the challenges of data scarcity and real-time detection 
accuracy in CV-based swimming pool surveillance systems. Although a two-stage AI 
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framework—comprising swimmer detection (Stage 1) and risk behavior classification (Stage 
2)—is conceptually proposed, the experimental scope of this paper is explicitly limited to the 
design, implementation, and validation of the Stage 1 “person” detection module processing 
video data captured by camera sensors. The performance of Stage 2 behavior classification 
models will be discussed in future work rather than being experimentally evaluated in this study. 
This paper is focused on the development and validation of the Stage 1 ‘person’ detection model. 
The specific academic and technical contributions of this research are as follows.
•	 	Real-time Detection Model Benchmarking: We applied the latest attention-centric real-time 

detection model (YOLOv12) and a Transformer-based real-time detection model 
(RT-DETR)(9) to the “swimming pool safety” domain for the Stage 1 person detection 
module. We quantitatively compared the real-time performance (detection time) and detection 
accuracy (mAP) of both models to identify the optimal architecture for this specific domain.(9)

•	 	Proposal of a 2-stage Risk Classification Framework: We proposed a 2-stage framework that 
rapidly detects ‘person’ objects in Stage 1 and classifies their behavior as ‘Normal’ or ‘Risk’ 
in Stage 2. We experimentally validated the performance of Stage 1.

•	 	Hybrid Dataset Strategy Validation: To maximize the performance of the Stage 1 detector, we 
empirically verified the impact of a ‘hybrid training strategy’—in which public datasets are 
combined with a custom-simulated dataset—on model generalization and ‘person’ detection 
accuracy (mAP) through a systematic ablation study.

2.	 Related Work

2.1	 Object detection in aquatic and underwater environments

	 Object detection in aquatic and underwater environments presents fundamentally different 
challenges from standard terrestrial object detection. In a recent comprehensive survey on AI-
based underwater object detection (UOD),(10) optical distortion from light absorption and 
scattering, blurriness from water turbidity,(12) and irregular, rapidly changing illumination were 
named as the core challenges of UOD.
	 Early drowning detection research has relied on traditional machine learning (ML) 
algorithms(10) or classic image processing techniques like background subtraction and contour 
detection.(1) However, these methods are highly vulnerable to the aforementioned environmental 
factors and lack robustness.
	 In recent years, the rapid advancement of deep learning (DL) technology, particularly 
convolutional neural networks (CNNs), has changed the paradigm. In many modern drowning 
detection systems, the use of DL models such as YOLO, Faster R-CNN, and ResNet(12) to detect 
human objects and analyze their behavior has been attempted. However, the performance of 
these DL-based systems is entirely dependent on the quality and quantity of training data,(13) and 
most prior research faced a common limitation: an absolute shortage of real-world drowning 
data.(8)
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2.2	 Real-time object detection models: CNN/attention vs Transformer

	 As requested, in this study, we selected two state-of-the-art (SOTA) model architectures 
suitable for the time-critical task of swimming pool surveillance, YOLOv12 and RT-DETR, as 
candidates for the Stage 1 detector.
•	 YOLOv12 (Attention-centric)(14)

	 The You Only Look Once (YOLO) series has long been synonymous with 1-stage object 
detectors,(15) consistently offering an excellent balance of speed and accuracy. YOLOv12, 
announced in February 2025, diverges from previous CNN-focused frameworks by 
integrating ‘attention-centric’ mechanisms to maximize performance. This model was 
designed to leverage the performance benefits of attention mechanisms while maintaining 
the speed of CNN-based models. YOLOv12 is already being evaluated for applications in 
real-time video surveillance and human activity recognition. Figure 1 shows the architectures 
of YOLOv12.

•	 RT-DETR (Transformer-based)
	 DETR (detection Transformer) was the first model to successfully introduce the Transformer 

architecture to object detection, creating a complete end-to-end pipeline that did not require 
complex post-processing (like NMS).(15) Real-time DETR (RT-DETR)(16) has maintained this 
structural advantage while being equipped with an efficient hybrid encoder and IoU-aware 
query selection(15) to achieve real-time performance. Transformer-based models show 
strength in understanding global image context via self-attention mechanisms.(17) This 
characteristic holds potential for more robustly distinguishing objects from complex, 
cluttered backgrounds (e.g., water splashes and other swimmers) in a pool environment.(17) Its 
applicability has already been explored in aquatic(17) and coastal debris(18) environments. 
Figure 2 shows the overview of TR-DETR.

•	 Performance Debate (YOLO vs DETR)
	 The comparison of the performances of these two architectures is a current topic of academic 

debate. In the 2024 CVPR paper “DETRs Beat YOLOs on Real-time Object Detection”,(15) it 
was reported that on the standard COCO benchmark, the RT-DETR-R50 model achieved 
both higher accuracy (AP) and faster speed (FPS) than the YOLOv8-L model.(15) However, 
this claim did not apply universally to all domains. For example, a 2023 Korean study on 

Fig. 1.	 (Color online) Architectures of popular modules (YOLOv12).
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coastal debris detection(18) reached the opposite conclusion: YOLOv8 consistently 
outperformed RT-DETR in both mAP and FPS.(18) Similar findings(17) suggest that model 
superiority is domain-dependent.

	 YOLOv12 extends conventional one-stage detectors by incorporating optimized attention 
mechanisms into the backbone and neck structures, allowing enhanced feature aggregation 
under complex visual conditions such as water reflections and partial occlusions. RT-DETR, in 
contrast, adopts a Transformer-based end-to-end formulation that removes the need for post-
processing steps such as non-maximum suppression (NMS), enabling more stable inference 
latency. These architectural differences motivate their comparative evaluation in time-critical 
swimming pool safety applications.

2.3	 Drowning behavior classification and dataset limitations

	 The goal of the 2-stage framework proposed in this study was to move beyond simple person 
detection to accurately distinguish between ‘normal’ swimming and ‘abnormal’ drowning 
behaviors. Influential research specifically defined the typical behavioral patterns of a drowning 
person.(19) These included (1) the instinctive drowning response (IDR), (2) a “climbing ladder 
motion”, and (3) a “backward stroke”.(19)

	 To accurately detect these ‘risk’ behaviors (positive samples), a model must inevitably be 
trained on a wide variety of ‘safe’ behaviors as ‘negative samples’.(7) These negative samples 
must include not only standard strokes but also idling(13) and even vigorous splashing.
	 The problem was the absence of a standardized, large-scale benchmark dataset that 
encompassed these diverse and fine-grained behaviors. Currently accessible public datasets 
might focus only on specific environments (e.g., underwater views(20)) or include limited 
behavioral scenarios. Consequently, many prior studies, like the one proposed here, required the 
construction of custom, simulated datasets, which supported the necessity of our ‘custom-
collected dataset’ methodology.

Fig. 2.	 (Color online) Overview of RT-DETR.
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3.	 Two-stage Framework for Risk Prediction to Enhance Swimming Pool Safety

	 We proposed a two-stage approach to achieve both real-time performance and, ultimately, 
classification accuracy in the swimming pool environment. Stage 1 was the ‘detection stage,’ 
where a high-speed object detector identified all individuals in the pool. Stage 2 was the 
‘classification stage,’ where the detected objects were classified as ‘normal’ or ‘risk’. Figure 3 
shows the structure of proposed frameworks. This paper is focused on the design and 
experimental validation of the Stage 1 ‘swimmer detection’ model.

3.1	 Proposed framework overview

	 The proposed end-to-end system architecture consists of the following four modules:
1.	 Input: Real-time video streams (N frames per second) are received from multi-viewpoint 

CCTV cameras in the pool area.
2.	 Stage 1: Swimmer Detection: A pretrained, real-time object detection model (verified in this 
study: YOLOv12 or RT-DETR) processes each incoming frame (t). The output of this stage is the 
bounding box coordinates x y z h, , ,�� �� for all detected ‘swimmer’ objects within the image.
3.	 Stage 2: Risk Classification (Proposed)

•	 The bounding box area for each ‘person’ detected in Stage 1 is passed as input to a Stage 2 
classification model.

•	 This Stage 2 model (e.g., a spatiotemporal model(21)) analyzes the temporal movement or 
pose(11) of the object to classify its behavior as ‘normal’ or ‘risk’. (This stage was not part 
of this paper’s experimental scope.)

4.	 Output and Alerting: If a specific object is classified as ‘risk’ by the Stage 2 model for k  
consecutive frames (e.g., 3 s), it is considered a real risk situation, not a temporary false 
alarm. The system then immediately transmits an alert to lifeguards or managers via 
smartwatches or alarm systems,(1) prompting swift intervention.

3.2	 Stage 1: Swimmer Detection Module Design

	 The Stage 1 (‘person’ detection) component is the core element determining the speed and 
efficiency of the entire system. If this detector misses a person (False Negative) or detects the 

Fig. 3.	 Structure of proposed framework.
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wrong area (False Positive), the Stage 2 classification model cannot even begin to function. 
Therefore, we focus on validating the Stage 1 detector’s performance, setting two SOTA models 
as candidates.
•	 Candidate Model 1: YOLOv12

○	 YOLOv12 is based on the ‘attention-centric’ architecture. This design incorporates 
optimized attention modules to improve object recognition without unnecessarily 
increasing computational cost (latency).

○	 A key challenge in the pool environment is the varying scale of objects and partial 
occlusion from splashes or other swimmers.(12)

○	 YOLOv12’s attention mechanism is designed to efficiently process key features within 
this complex visual information, allowing it to robustly detect ‘person’ objects of various 
scales.

•	 Candidate Model 2: RT-DETR
○	 RT-DETR is an end-to-end Transformer-based model offering the advantage of a 

simplified pipeline by eliminating the need for post-processing steps like NMS.(15)

○	 The self-attention mechanism(22) of its hybrid encoder considers the global context of the 
entire image.(23) This provides the potential to more clearly distinguish the target object 
(‘person’) from complex, noisy backgrounds (e.g., waves and light reflections).(17)

4.	 Datasets and Experimental Design

	 We designed a systematic experiment to analyze how the performance of the Stage 1 
‘Swimmer Detection’ model is affected by the composition of the training dataset.

4.1	 Public dataset aggregation and reprocessing

	 To ensure the model’s generalization performance, we collected, refined, and consolidated 
several publicly accessible datasets to build a Public-Set.

•	 Key Included Datasets:
1.	 Drowning Detection Dataset:  A self-made dataset published on GitHub by Wang(24) was 

utilized in a 2024 study on improved YOLOv5 algorithms. It contains 8,572 images 
simulating drowning and swimming positions from drone perspectives.

2.	 Roboflow Datasets:  A collection of datasets aggregated from the Roboflow Universe by 
searching for the ‘swim’ keyword.(25) This includes several open-source projects focused on 
detecting ‘swimming’, ‘drowning’, or ‘person’ objects in various pool environments.

•	 Data Reprocessing (Single-Class Consolidation):  A total of  9,500 images  were aggregated 
from these public sources for the ‹Public-Set›. The goal of this Stage 1 detection experiment 
was not to classify risk, but to detect the ‘person’ object itself. Therefore, for this experiment, 
all related class labels (e.g., ‹swimming’, ‘struggling’, ‘drowning’, and ‘idle’) were remapped 
and consolidated into a single ‘person’ class.
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4.2	 Custom dataset curation methodology

	 To address the domain mismatch problem and develop a detector specialized for the actual 
target environment, a ‘Custom-Set’ was constructed.
•	 Data Acquisition:
1.	 Location: Data was collected at an indoor swimming pool.
2.	 Participants:  One professional swimmer  simulated both normal swimming and abnormal 

behaviors.
3.	 Filming: A 1080p camera was used to capture video from surface and underwater perspectives.   
•	 Data Processing and Annotation:
1.	 Unique images were extracted from the video at a rate of 1 frame per second.
2.	 This process yielded a total of 1986 unique images for the ‹Custom-Set›.
3.	 To fit the purpose of this Stage 1 detection experiment, professional annotators performed 

bounding box labeling (YOLO/COCO format) for all human objects in every image using the 
single ‘person’ class.

4.	 No data augmentation techniques were applied to this dataset.
	 All video data used for the custom dataset were collected in compliance with local ethical 
guidelines and privacy regulations. Informed consent was obtained from all participants prior to 
data collection, and the recorded data were used solely for research purposes. No personally 
identifiable information was retained, and all annotations were limited to bounding box 
coordinates without facial or biometric identification.

4.3	 Experimental scenarios

	 We designed an ablation study with the following three scenarios to systematically analyze 
the effect of dataset composition on the Stage 1 ‘person’ detector’s performance. This design was 
based on the results of prior research indicating that mixing real and simulated data was 
beneficial to model performance. Each of the three datasets was split into training, validation, 
and test partitions in a 60/20/20 ratio. The specific image counts for each split are detailed in 
Table 1.
•	 Scenario 1: Public-Set Only

○	 Training: Models (YOLOv12 and RT-DETR) were trained only on the ‘Public-Set’ (9,500 
images) (single ‘person’ class).

○	 Hypothesis: The model should have basic detection capabilities but might suffer from 
domain mismatch.

Table 1
Dataset splits for training, validation, and testing.
Dataset Train Val Test Total
Hybrid set 6892 2297 2297 11486
Custom dataset 1192  397  397  1986
Public dataset 5700 1900 1900  9500
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•	 Scenario 2: Custom-Set Only
○	 Training: Models were trained only on the ‘Custom-Set’ (1,986 images) (single ‘person’ 

class).
○	 Hypothesis: The model should show high performance on the test set because it is highly 

specialized for the target domain,(13) but there are the risk of overfitting and poor 
generalization.

•	 Scenario 3: Hybrid-Set (Public + Custom)
○	 Training: The ‘Public-Set’ (9500 images) and ‘Custom-Set’ (1986 images) were combined. 

Models were trained on the resulting ‘Hybrid-Set’ (11486 images) (single ‘person’ class).
○	 Hypothesis: By learning from both the broad diversity of the Public-Set and the domain 

specificity of the Custom-Set, this model should achieve the best overall performance.
•	 Evaluation Metrics:

○	 Object Detection Performance: mAP@0.5, mAP@0.5:0.95.(18)

○	 Real-time Performance: Detection time (s).

5.	 Experimental Results and Analysis

5.1	 Stage 1: Comparison of ‘person’ object detection performance 

	 All experiments were conducted on an NVIDIA RTX 3090 Ti. For each of the three 
scenarios, the YOLOv12-m and RT-DETR models were trained, validated, and tested using the 
respective 60/20/20 dataset splits defined in Table 1. For example, the models in Scenario 1 were 
trained on 5700 images and tested on 1900 images, while models in Scenario 3 were trained on 
6892 images and tested on 2297 images. The performance of each model against its 
corresponding test set is detailed in Table 2.

5.2	 Analysis of experimental results

	 First, the results of the comparative analysis of the models (YOLOv12 vs RT-DETR) are 
given below. Figures 4 and 5 show the detection visualization results of each model using the 
public dataset.

○	 Speed (Detection Time): The experimental results indicate that both RT-DETR-R50 and 
YOLOv12 achieved inference times within the real-time operational range. RT-DETR-R50 

Table 2
Performance of 'person' object detection for each training scenario and model.

Training Scenario Model mAP@.5 
(Accuracy)

mAP@.5:.95 
(Precision)

Detection time 
(ms)

Scenario 1 
(Public-Set)

YOLOv12 0.9777 0.7432 5.01
RT-DETR 0.9730 0.6930 7.2

Scenario 2
 (Custom-Set)

YOLOv12 0.9717 0.8704 4.82
RT-DETR 0.9290 0.7890 7.1

Scenario 3
 (Hybrid-Set)

YOLOv12 0.9725 0.7493 5.09
RT-DETR 0.9680 0.7090 6.9
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Fig. 4.	 (Color online) YOLOv12 detection result (public dataset).

Fig. 5.	 (Color online) RT-DETR detection result (public dataset).
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processed frames at approximately 7.2 ms (≈139 FPS), while YOLOv12 achieved a shorter 
inference time of about 5.1 ms (≈196 FPS). These findings confirm that both models are 
suitable for real-time detection and analysis in swimming pool surveillance applications. 

○	 Accuracy (mAP@.5): In terms of general accuracy (a loose IoU threshold), YOLOv12 
consistently outperformed RT-DETR in all three scenarios. The highest mAP@.5 (0.9777) 
was achieved by YOLOv12 trained on the Public-Set (Scenario 1).

○	 Precision (mAP@.5:.95): For strict localization precision, YOLOv12 was again superior in 
all scenarios. It achieved its highest performance (0.8704) when trained only on the 
Custom-Set (Scenario 2). This suggested that the custom dataset, though small, contained 
very high-quality and precise bounding box annotations.

	 Second, the analysis of the results for each of the dataset configuration scenarios is as 
follows.

○	 The hypothesis that the Hybrid-Set (Scenario 3) would yield the best performance was not 
supported by the results. Instead, the dataset strategy presented a clear trade-off.

○	 Scenario 1 (Public-Set Only): This scenario produced the highest overall general accuracy 
(mAP@.5 of 0.9777) with the YOLOv12 model. This indicated that the large, diverse 
public dataset was excellent for training the model to detect the presence of a person.

○	 Scenario 2 (Custom-Set Only): This scenario produced the highest precision (mAP@.5:.95 
of 0.8704) with the YOLOv12 model. This significant lead in precision, despite the small 
dataset size (1986 images), strongly implied that the custom data’s annotations were of 
exceptionally high quality, resulting in training the model for superior localization. 
Figures 6 and 7 show the detection visualization results of each model using the public 
dataset.

○	 Scenario 3 (Hybrid-Set): This scenario seemed to present a compromise but did not top 
any category. Its performance (e.g., 0.9725 mAP@.5) was slightly lower than the Public-
Set in general accuracy and significantly lower than the Custom-Set in precision. Figures 
8 and 9 show the detection visualization results of each model using the public dataset.

	 Lastly, a significant trade-off exists between speed and accuracy. RT-DETR-R50 is the only 
model suitable for real-time (140+ FPS) applications. YOLOv12 is vastly superior in both general 
accuracy (mAP@.5) and localization precision (mAP@.5:.95), but its ~5 s detection time makes it 
completely unsuitable for real-time use. It would only be viable for offline, post-event analysis. 
Dataset strategy is also key: the Public-Set was best for general detection, while the Custom-Set 
was superior for high-precision localization.

6.	 Conclusions

6.1	 Research summary and conclusion

	 We proposed a 2-stage AI framework for ensuring swimming pool safety and empirically 
validated the performance of the Stage 1 ‘person’ detection module. To accomplish this, we 
benchmarked the latest deep learning detectors, YOLOv12 and RT-DETR, on a single-class 
‘person’ detection task.
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Fig. 6.	 (Color online) YOLOv12 detection result (custom dataset).

Fig. 7.	 (Color online) RT-DETR detection result (custom dataset).

	 The main conclusions were as follows.
•	 Sensor-Based Monitoring: This study successfully established a robust model for object 

detection and risk analysis by utilizing the video data collected through camera sensors in a 
swimming pool environment. The integration of high-resolution visual sensors with deep 
learning architectures proved to be an effective foundation for automated safety surveillance.
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Fig. 8.	 (Color online) YOLOv12 detection result (hybrid dataset).

Fig. 9.	 (Color online) RT-DETR detection result (hybrid dataset).

•	 Model Performance: A critical trade-off between speed and accuracy was identified. RT-
DETR-R50 was the only real-time viable model (approximately 140 FPS). YOLOv12-L, 
while extremely slow (approximately 0.2 FPS), provided far superior accuracy in both general 
(mAP@.5) and precise (mAP@.5:.95) metrics.
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•	 Data Strategy: The hypothesis that the Hybrid-Set would be optimal was not supported. 
Instead, the Public-Set (9,500 images) proved to be best for general accuracy (0.9777 
mAP@.5 with YOLOv12-L), while the Custom-Set (1,986 images) was best for high-precision 
localization (0.8704 mAP@.5:.95 with YOLOv12-L).

•	 1-Step Performance: For a real-time framework, the RT-DETR-R50 trained on the Public-Set 
(Scenario 1) provides the best balance of high speed (0.0072s) and high general accuracy 
(0.9730 mAP@.5). For offline analysis where accuracy is paramount, YOLOv12-L trained on 
the Custom-Set (Scenario 2) provides the best precision.

•	 Real-Time System: From a real-time performance perspective, both RT-DETR-R50 and 
YOLOv12 demonstrated inference speeds sufficient for deployment in time-critical 
swimming pool safety systems. With detection times of 7.2 and 5.1 ms per frame, respectively, 
the experimental results confirm that the proposed Stage 1 detection module can operate in 
real time, enabling continuous monitoring and timely risk assessment within the envisioned 
two-stage safety framework.

6.2	 Limitations of the study

	 We successfully validated the Stage 1 ‘person’ detection model, but it had clear limitations.
•	 Detection-Only Study: This research was focused only on Stage 1 ‘person’ detection. While 

the model succeeded in finding the location of swimmers rapidly and accurately, the core 
task of classifying whether that person’s behavior was ‘normal’ or ‘risk’ (Stage 2) was not 
performed.

•	 Custom Dataset Limitations: The ‘Custom-Set’ (1,986 images) was effective for improving 
precision but was collected from a single professional swimmer in a single indoor pool. This 
lacks the diversity to build a robust behavior classification model for Stage 2.

6.3	 Future works

	 We successfully validated the Stage 1 ‘person’ detection model. Future research must now 
focus on implementing the ‘Stage 2 precise risk behavior classification’ module proposed in 
Sect. 3.1, on the basis of this validated detector.
•	 Dataset Re-labeling for Stage 2 Classification:
	 Future work must first expand and re-label the custom dataset. Instead of the Stage 1 single-

class ‘person’, it must be annotated for 2-class classification: ‘Normal’ and ‘Risk’.
○	 Positive Samples (‘Risk’): This class must include behaviors defined in prior research,(19) 

such as instinctive drowning response (IDR), struggling, and climbing ladder motion.(19)

○	 Negative Samples (‘Normal’): This class is critical for reducing false alarms.(6) It must 
therefore include not only common swimming behaviors(7) but also intentionally include 
abundant ‘Hard Negative Samples’—behaviors that look visually similar to ‘Risk’—such 
as vigorous splashing, breath-holding dives, and vertical entry dives.(19)

•	 Application of Stage 2 Classification Models:
	 This stage must take the bounding box of the ‘person’ from Stage 1 (RT-DETR) as input. To 
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overcome the limitations of static frames, it must incorporate ‘Temporal Context’ using 
spatiotemporal models.(11)

○	 Proposal 1: Pose Estimation + Time-Series Classification: Apply a high-speed pose 
estimator (e.g., RTMPose(26)) within the detected bounding box to extract 2D/3D skeleton 
keypoints. The resulting time-series (sequence) data of these keypoints would be fed into 
a lightweight time-series classifier (e.g., LSTM, GRU(21), or LightGBM(26)) to classify the 
temporal patterns of ‘normal swimming’ vs ‘risk’.(27)

○	 Proposal 2: End-to-End Spatiotemporal Models: Directly combine the Stage 1 detector 
with a 3D-CNN(28) or LSTM.(21) For instance, a YOLO-LSTM(21) architecture would pass 
the spatial features extracted by YOLO to an LSTM to model temporal dependences.(21) A 
3D-CNN+LSTM combination(28) is a powerful structure already validated in analogous 
safety fields, such as ‘Fall Detection’,(28) where analyzing sudden changes in motion is 
critical.
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