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	 Passenger terminals are evolving into complex nodes where land and sea transport intersect. 
However, the safety and convenience of pedestrian environments in access roads are often 
compromised owing to the development of surrounding commercial areas and inadequate safety 
facilities. Existing safety assessments for pedestrian environments have primarily relied on 
qualitative or post-incident analyses centered on static structures, and thus possess fundamental 
limitations in quantifying real-time risks posed by dynamic obstruction elements. To address 
these issues, in this study, we propose an AI-based pedestrian obstruction analysis framework. 
To ensure high-fidelity data acquisition for safety assessment, we utilized optical sensors (action 
cameras) as wearable sensing units to capture real-time pedestrian dynamics in complex 
terminal environments. We constructed a dataset of pedestrian obstruction objects based on 
first-person walking videos recorded with an action camera worn by a pedestrian along the 
access roads of the Mokpo Port Passenger Terminal. In particular, we adopted the Swin 
Transformer architecture as the backbone for the mask region-based convolutional neural 
network (Mask R-CNN) instance segmentation model in order to leverage its previously 
reported strengths in multiscale object recognition and generalization in complex scenes. 
Furthermore, we developed the obstruction rate (OBR) measurement algorithm, which utilizes 
pixel-level mask information of identified objects to calculate their occupancy within designated 
walking areas. The OBR algorithm was applied to two distinct zones near the terminal, 
capturing structural differences between sidewalks and mixed pedestrian–vehicle areas. The 
resulting zone-wise OBR distributions provide a quantitative basis for comparing pedestrian 
safety conditions and identifying high-risk segments along terminal access routes. In this study, 
we demonstrate the feasibility of AI-based pedestrian obstruction analysis as a quantitative 
safety assessment tool and suggest future directions for its integration into real-time monitoring 
systems and policy decision-making.
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1.	 Introduction

1.1	 Characteristics and problems of pedestrian environments in ports and passenger 
terminals

	 Drowning ports are transforming into complex nodal points where human activities are 
intensifying, expanding beyond traditional logistics functions to include tourism and waterfront 
spaces. Passenger terminals serve as critical national infrastructure that connect islands with 
mainland urban centers and are typically constructed in locations with excellent accessibility to 
city centers.(1,2) However, such high accessibility and the development of surrounding 
commercial districts pose complex safety risks to the pedestrian environment of terminal access 
roads. These roads are often characterized by a mix of mobile transportation means such as cars, 
buses, and motorcycles. Additionally, temporary or fixed obstacles originating from nearby 
commercial facilities—such as street stalls, signboards, fish tanks, and trash bins—frequently 
encroach upon pedestrian paths indiscriminately, and in this study, they are collectively labeled 
under the “obstacle” class in the instance segmentation taxonomy. When the function of 
walkways is compromised in this manner, the safety and walkability for users are significantly 
degraded, and the risk of collision accidents increases, which is consistent with previous findings 
that sidewalk obstructions and narrow effective widths reduce safety and accessibility for 
pedestrians.(1,3,4)

1.2	 Necessity of quantitative assessment of pedestrian safety

	 Previous research on pedestrian environments at coastal passenger terminals has mainly 
focused on the static characteristics of facilities, such as the width and condition of walkways, 
the placement of amenities, and the level of satisfaction reported by users in surveys or complaint 
records.(1,2) While these approaches are useful for identifying structural deficiencies and 
perception gaps, they are limited in their ability to capture how dynamic obstruction elements—
such as temporarily parked vehicles, informal street stalls, or transient pedestrian clusters—
interfere with walking flows over time. In particular, most existing studies either rely on 
snapshot field surveys or on aggregated indices that do not explicitly represent frame-by-frame 
changes in the effective width available to pedestrians.(3–7)

	 In complex transfer environments such as passenger terminals, however, safety risks often 
arise from instantaneous or short-lived obstructions that may not be visible in static surveys. For 
example, an illegally parked vehicle or a temporary luggage cart can momentarily block a 
critical bottleneck segment, creating local crowding and increasing the likelihood of conflicts 
between pedestrians and vehicles.(3) Capturing such phenomena requires an analysis framework 
that can link object-level obstruction information from video to quantitative measures of 
walking-area occupancy. At the same time, the recent development of deep-learning-based 
instance segmentation models has made it possible to obtain pixel-level masks for pedestrians, 
vehicles, and fixed facilities directly from video footage, including fixed closed-circuit television 



Sensors and Materials, Vol. 38, No. 1 (2026)	 313

(CCTV) streams and first-person recordings.(8–16) Nevertheless, there is still a methodological 
gap between these detailed recognition capabilities and the development of interpretable safety 
indicators that can be used by terminal operators. Most prior works have focused on improving 
detection accuracy or proposing new network architectures, rather than on defining safety 
metrics that explicitly quantify the instantaneous loss of effective width owing to obstruction 
objects.(3,17)

	 In this context, our aim in this study is to bridge this gap by (1) constructing a passenger-
terminal-specific instance segmentation dataset targeting obstruction elements on access 
walkways(1,18,19) and (2) developing an obstruction rate (OBR) indicator that converts pixel-level 
mask areas into a quantitative measure of pedestrian-space loss. The proposed framework is 
applied to first-person walking videos recorded with an action camera along the access roads of 
the terminal in an offline, frame-by-frame manner to demonstrate how obstruction-induced risk 
patterns differ across zones with distinct structural and operational characteristics, laying the 
foundation for future extensions toward real-time monitoring and integrated safety 
assessment.(2,4–6,13–16) By integrating advanced vision sensors with deep-learning-based spatial 
analysis, this framework contributes to the development of sensor-based safety monitoring 
systems within the digital twin environment of passenger terminals.

1.3	 Structure and contribution of this paper

	 Reflecting these requirements, in this paper, we propose an algorithm to calculate the OBR 
on the basis of the results of an advanced deep-learning-based pedestrian obstruction recognition 
model. The remainder of this paper is organized as follows: In Sect. 2, we review related work on 
pedestrian environment analysis and trends in deep-learning-based object recognition. In Sect. 
3, we define pedestrian obstruction elements specific to passenger terminals and describe in 
detail the dataset construction process. In Sect. 4, we present the structure and training 
environment of the mask region-based convolutional neural network (Mask R-CNN) model 
applying the Swin Transformer (Swin-T) backbone, focusing on the technical advantages of 
Swin-T. In Sect. 5, we quantitatively present the concept and calculation logic of the developed 
OBR algorithm. In Sect. 6, we present the quantitative OBR measurement results applied to 
actual video data and discuss their significance and limitations in depth. Finally, in Sect. 7, we 
conclude the paper and outline future research plans.
	 The main contributions of this study are as follows: First, we constructed a pedestrian 
obstruction dataset from first-person walking videos recorded with an action camera along the 
access road to the Mokpo Port Passenger Terminal, explicitly labeling both fixed facilities and 
dynamic entities that interfere with pedestrian movement. Second, on the basis of this dataset, 
we adopted a Mask R-CNN instance segmentation model with a Swin-T backbone and verified 
its applicability to complex pedestrian environments around coastal terminals. Third, we 
developed the OBR algorithm, which measures obstruction intensity by computing the ratio of 
obstruction mask areas to predefined walking areas, and applied it to two structurally different 
zones to demonstrate how OBR can serve as a quantitative safety index for pedestrian 
environments.
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2.	 Related Work

2.1	 Pedestrian environment assessment and obstruction analysis

	 Research on pedestrian environments has a long history in urban planning, transportation 
engineering, and public health, addressing topics such as walkability, level of service, and 
accessibility.(1–6) Traditional approaches often focus on physical infrastructure characteristics 
(e.g., sidewalk width, surface condition, and presence of crosswalks and signals), land use 
patterns (e.g., residential density and proximity to destinations), and subjective assessments of 
safety and comfort gathered through surveys or interviews.(3,4) In the context of coastal 
passenger terminals, some groups have examined user satisfaction and facility adequacy using 
methods such as Importance–Performance Analysis (IPA).(1,2) These works have identified 
issues such as insufficient guidance signage, inadequate waiting spaces, and conflicts between 
pedestrian and vehicular flows near terminal entrances.
	 However, these conventional assessments generally treat obstructions as static elements or as 
qualitative concerns raised in interviews and complaint records. They rarely quantify how 
specific obstruction objects occupy pedestrian space over time or how such occupancy translates 
into collision risk or discomfort. In particular, the dynamic interplay among pedestrians, 
vehicles, and temporary facilities (e.g., street vendors, luggage carts, and informal seating) is 
challenging to capture using static surveys or periodic field observations alone. As a result, there 
is a gap between the subjective experience of pedestrians, who often perceive certain segments 
or time periods as particularly congested or unsafe, and the objective indicators used in facility 
planning and safety management.
	 To address these limitations, some researchers have begun to integrate sensor data and 
computer vision techniques into pedestrian environment analysis. For example, CCTV-based 
pedestrian counting, density estimation, and trajectory tracking have been used to analyze 
crowding patterns and evacuation dynamics.(13–16) In urban open spaces and large facilities, such 
approaches enable the identification of high-density regions and bottleneck points that may be 
prone to accidents. Nevertheless, most of these studies focus on the pedestrian flow itself rather 
than on obstruction objects that reduce the effective walking area. While high pedestrian density 
is certainly a risk factor, situations where fixed or movable objects protrude into walkways, 
forcing people to detour or squeeze through narrow gaps, also require attention from a safety 
perspective.
	 From the viewpoint of passenger terminals, where access roads are often shared among 
pedestrians, passenger vehicles, and freight operations, the ability to quantitatively evaluate 
obstruction-induced narrowing of walking space is particularly critical. For example, shuttle 
buses or taxis may temporarily stop in front of the terminal, and delivery vehicles may occupy 
parts of the sidewalk during loading and unloading. Meanwhile, commercial facilities and 
vendors may place signboards, goods, or tables on the sidewalk, further reducing the usable 
width for pedestrians. When these conditions coincide with peak arrival or departure times, the 
risk of collision accidents increases, which is consistent with prior findings that sidewalk 
obstructions and narrow effective widths reduce safety and accessibility for pedestrians.(1,3,4)
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2.2	 Trends in deep-learning-based instance segmentation

	 Since the advent of deep learning, AI-based object recognition technology has evolved on the 
basis of convolutional neural networks (CNNs) and has recently achieved significant 
advancements in computer vision with the emergence of Transformer architectures.(8) In 
particular, instance segmentation technology, which classifies objects down to the pixel level, 
has been actively studied because it can simultaneously provide object category, location, and 
shape information.(10,17) Mask R-CNN(10) is a representative instance segmentation model 
capable of precisely identifying object contours by adding a segmentation branch to the 
bounding-box-based detection framework of Faster R-CNN.(9)

	 In the field of pedestrian environment analysis, instance segmentation can be used to detect 
both pedestrians and obstruction objects such as signposts, vehicles, and temporary facilities in 
CCTV footage.(17) By generating pixel-level masks, the model can distinguish overlapping 
objects and accurately estimate the area of each element. This is particularly advantageous for 
quantifying obstruction intensity, as it allows the computation of ratios between obstruction 
areas and predefined walking areas.
	 Meanwhile, the introduction of Vision Transformers (ViTs) and related architectures has 
further improved the performance and flexibility of image recognition models.(8,11,20) Unlike 
CNNs, which primarily rely on local convolution operations, Transformer-based models capture 
long-range dependences through self-attention mechanisms. Swin-T, for example, divides 
images into non-overlapping windows and applies self-attention within each window, 
periodically shifting the windows to exchange information across regions.(11) This hierarchical 
design enables Swin-T to achieve high recognition accuracy on various computer vision 
benchmarks while maintaining computational efficiency.
	 Recent studies have also explored the integration of Swin-T backbones into object detection 
and segmentation frameworks. On benchmarks such as MS COCO, models using Swin-T 
backbones have demonstrated improvements in both box-level and mask-level performance 
compared with ResNet-based counterparts under similar computational budgets.(11) These 
results suggest that Swin-T is suitable for complex scenes where objects of various sizes and 
shapes coexist, such as pedestrian environments around passenger terminals.
	 Most prior research applying deep learning to pedestrian environments has examined topics 
such as pedestrian detection, crowd counting, and abnormal behavior recognition.(13–16) While 
these studies have significantly advanced our ability to monitor and analyze pedestrian flows, 
they have not fully explored how pixel-level segmentation outputs can be converted into 
quantitative safety indices. In particular, research that treats “obstruction” as an integrated 
concept encompassing both fixed and dynamic elements and that defines a metric such as OBR 
on the basis of the area occupied by these elements within walking areas is still scarce. Therefore, 
in this study, we focus on the following: (1) establishing a domain-specific obstruction taxonomy 
for passenger terminal access roads; (2) constructing a corresponding instance segmentation 
dataset; (3) selecting and applying an advanced backbone (Swin-T) for Mask R-CNN; and (4) 
developing and validating an OBR algorithm that quantifies obstruction intensity from a 
pedestrian’s perspective.
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3.	 Definition of Obstruction Elements and Dataset Construction

3.1	 Taxonomy of obstruction elements on passenger terminal access roads

	 From the viewpoint of pedestrian safety and convenience, an obstruction element is defined 
as any object that occupies part of the walking area, thereby reducing the effective width 
available for safe movement. In the context of passenger terminals, such obstruction elements 
include both fixed facilities (e.g., street trees, benches, and signposts) and dynamic entities (e.g., 
pedestrians, vehicles, luggage, and personal mobility devices). On the basis of field surveys 
around the Mokpo Port Passenger Terminal and prior studies on pedestrian environment and 
obstruction analysis,(1,18,19) in this study, we define the obstruction taxonomy as shown in Table 
1.

3.2	 Construction of instance segmentation-based dataset

	 On the basis of the 11-class obstruction taxonomy defined in Sect. 3.1,(1,19) first-person 
walking videos were recorded using an action camera worn by a pedestrian along the main 
access road to the Mokpo Port Passenger Terminal, covering both the sidewalk section in front 
of the terminal (Zone A) and the mixed pedestrian–vehicle exit area after disembarkation (Zone 
B).(2) From these videos, frames were sampled at a fixed interval to capture a wide range of 
temporal situations, including normal states with minimal obstructions, transient events such as 
vehicle stopping or boarding, and crowded conditions near peak passenger demand. The exact 
sampling interval is not critical here, as OBR is computed independently for each sampled frame 
and the analysis focuses on relative frame-wise patterns rather than absolute time scaling.
	 Pixel-level instance masks for pedestrians and obstruction elements were annotated using the 
LabelMe tool.(13–16) All annotations were then converted into the MS COCO dataset format to 
ensure compatibility with standard instance segmentation frameworks such as Mask 
R-CNN.(10–12) In this conversion, each object instance was assigned one of the 11 classes, and its 
segmentation polygons was stored as part of the COCO-style annotation file. This structure 
enables the direct computation of obstruction areas and supports the training of models that 
output both bounding boxes and segmentation masks.
	 During dataset construction, particular attention was paid to correctly labeling pedestrians 
and vehicles that partially overlap with fixed facilities or with each other. Since OBR is defined 

Table 1
Taxonomy of pedestrian obstruction elements around passenger terminal access roads.
Category Subcategory (Class name) Description

Mobile objects
person, car, bicycle, 

motorcycle, mobility_
scooter, handcart

- Dynamic objects with collision potential.
- �Port-specific objects: Handcart (for luggage) and mobility_scooter 

(for the elderly) defined as separate classes to enhance detection.

Fixed objects tree, bench, chair, signboard - �Facilities fixed to the walkway that impede traffic flow or reduce 
effective width.

Others obstacle - �Unspecified piled objects or barriers not belonging to the above 
categories but hindering walking.
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on the basis of the area occupied by obstruction elements within the walking area, it is essential 
to accurately distinguish overlapping masks in crowded scenes. When two or more objects 
overlap in the image, each object’s mask retains its own area, and the overlapping regions are 
later handled at the algorithmic stage of OBR calculation. This approach allows the algorithm to 
represent multilayered obstruction situations, which are common near terminal entrances and 
exits.
	 Finally, the labeled data were divided into training and validation sets in accordance with 
standard machine learning practice. The training set was used to optimize the parameters of the 
Mask R-CNN model with a Swin-T backbone, while the validation set was used to monitor 
performance and prevent overfitting. Frames not used for training were reserved for the 
qualitative confirmation of segmentation results in the case study.

4.	 Mask R-CNN with Swin-T Backbone

4.1	 Overview of Mask R-CNN

	 Mask R-CNN is a widely used instance segmentation framework that extends the Faster 
R-CNN object detection model by adding a branch for predicting pixel-level masks.(10) The 
model consists of three main components: (1) a backbone network for feature extraction, (2) a 
region proposal network (RPN) that generates candidate object regions, and (3) classification, 
regression, and mask branches that operate on region of interest (RoI) features.
	 In the backbone stage, an input image is processed through a deep neural network (e.g., 
ResNet and Swin-T) to produce multiscale feature maps. The RPN then slides small 
convolutional filters over these feature maps to propose candidate bounding boxes (anchors) that 
may contain objects.(9,10) For each proposed region, RoIAlign is used to extract a fixed-size 
feature representation that preserves spatial alignment. Finally, the classification branch predicts 
object categories, the regression branch refines bounding box coordinates, and the mask branch 
outputs a binary mask for each object–instance pair.
	 Mask R-CNN has several advantages for pedestrian obstruction analysis. First, its instance-
level segmentation capability allows the separation of individual obstruction elements even 
when they overlap in the image. Second, the combination of bounding box and mask outputs 
facilitates the calculation of both object counts and areas, which are essential for defining 
indicators such as OBR. Third, the modular architecture of Mask R-CNN makes it 
straightforward to swap backbone networks, enabling the use of advanced feature extractors 
such as the Swin-T without changing the overall detection and segmentation pipeline.(10,11)

4.2	 Swin-T backbone

	 Swin-T is a hierarchical Vision Transformer that applies self-attention within local windows, 
which are periodically shifted to allow cross-window information exchange.(11) This design 
addresses the computational inefficiency of global self-attention in standard ViT while 
preserving the ability to model long-range dependences. In Swin-T, an image is first partitioned 
into non-overlapping patches that are linearly embedded and passed through a sequence of 
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Swin-T blocks. Each block consists of a window multihead self-attention (W-MSA) layer and a 
shifted window multihead self-attention (SW-MSA) layer, enabling the model to capture both 
local and global contexts.
	 When used as a backbone for object detection and instance segmentation, Swin-T replaces 
the convolution-based feature extractor (e.g., ResNet) with a Transformer-based one. Feature 
maps of different resolutions are generated at multiple stages, which can be fed into feature 
pyramid networks (FPNs) and subsequent detection heads. Prior studies have revealed that 
Swin-T backbones achieve higher detection and segmentation accuracy than ResNet-based 
backbones on benchmarks such as COCO and ADE20K under comparable computational 
conditions.(11)

	 In this study, Swin-T is adopted as the backbone of Mask R-CNN to enhance the recognition 
of pedestrian obstruction elements in the complex environment of the Mokpo Port Passenger 
Terminal. The access road scenes include objects of diverse scales, shapes, and textures, ranging 
from small signboards and personal mobility devices to large vehicles and groups of pedestrians. 
Swin-T’s ability to capture multiscale features and long-range dependences is expected to 
improve the segmentation of such varied objects, especially in scenes where multiple obstruction 
elements overlap or are partially occluded.
	 In addition, Swin-T’s hierarchical feature maps are well suited for integration with the FPN 
module in Mask R-CNN, allowing the effective use of both shallow and deep features. Shallow 
features provide detailed local information useful for delineating object boundaries, whereas 
deep features encapsulate high-level semantic context that helps distinguish between similar-
looking objects (e.g., bicycles vs motorcycles and signboards vs other fixed facilities). This 
multiscale representation is crucial for accurately identifying and segmenting obstruction 
elements that directly affect pedestrian walking space, and its advantages are illustrated in Table 
2, which summarizes reference instance segmentation results reproduced from Ref. 11 on the 
COCO dataset and motivated our choice of Swin-T as the backbone in this study.

4.3	 Training settings and hyperparameters

	 The model used for training was Mask R-CNN with a Swin-T backbone. The detailed 
training hyperparameters are listed in Table 3. To verify the reliability of the OBR metric, we 
evaluated the model’s quantitative performance on the validation set of the Mokpo Port dataset. 
Unlike previous exploratory stages, we conducted a rigorous performance evaluation using 
mean average precision (mAP) to ensure the accuracy of the segmentation masks.
	 As shown in Table 4, the trained model achieved a mAPsegm (Mask AP) of 0.488 and a mAP50 
of 0.897. The high mAP50 value indicates that the model is exceptionally robust in extracting the 

Table 2
Example of COCO instance segmentation results for cascade Mask R-CNN with different backbones (reproduced 
from Ref. 11).
Backbone AP_box AP_mask
ResNet-50 46.3 40.1
Swin-T 50.5 43.7
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contours of pedestrians and obstacles within the complex terminal environment. These 
quantitative results provide a solid foundation for the subsequent OBR-based safety analysis, 
ensuring that the spatial occupancy measurements are derived from highly accurate instance 
masks.

5.	 Development of Quantitative Obstruction Rate Measurement Algorithm

5.1	 Concept of pedestrian obstruction and definition of OBR

	 Pedestrian obstruction in this study is defined as a phenomenon in which an obstruction 
object recognized by AI—including both structural obstacles (e.g., signboards, fish tanks, and 
benches) and dynamic instances such as pedestrians and vehicles—occupies a preset walking 
area, thereby reducing the effective width available for safe and smooth pedestrian movement.(1–3) 
On the basis of this concept, the OBR is introduced as a quantitative indicator that measures how 
much of the designated walking area is effectively taken up by obstruction objects at a given 
moment.
	 Unlike indicators that simply count the number of objects, OBR is defined in terms of area: it 
is computed using the pixel-level masks output by the instance segmentation model and 
represents the ratio between the occupied area and the total area of the walking region.(10–12,17) 
In this formulation, all obstruction masks that intersect the walking area are considered, and 
their overlapping regions are summed. Therefore, when multiple obstruction masks overlap in 
the image (e.g., a pedestrian standing in front of a large signboard), the same pixel can be 
counted several times. As a result, OBR is not mathematically bounded by 100%; values 
exceeding 100% are possible and are intentionally interpreted as indicating multilayered 
obstruction severity, where several obstruction elements are stacked in depth from the camera’s 
viewpoint.
	 In this study, OBR is thus treated as an obstruction intensity index that directly quantifies the 
instantaneous loss of effective width, rather than as a simple percentage bounded between 0 and 

Table 3
Training model hyperparameters.
Parameter Value
Backbone Swin-T
Batch size 2
Learning rate 0.001
Weight decay 0.05
Device CPU

Table 4
Quantitative performance of Mask R-CNN (Swin-T) on the Mokpo Port dataset.
Metric Value
mAPbbox 0.485
mAPsegm(Mask) 0.488
mAPsegm@50 0.897
mAPsegm@75 0.545
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100. High OBRs, including outliers above 100%, signal situations in which pedestrians are likely 
to experience a combination of structural blind spots and crowding.(3,13–16) Once embedded in an 
operational monitoring system, such values can be used by terminal managers to identify high-
risk segments or time periods and to trigger environmental improvements or management 
actions when OBR exceeds predefined thresholds. In this work, however, OBR is primarily used 
as a second-stage analysis tool that translates detailed instance segmentation outputs into an 
interpretable safety indicator for specific segments of the terminal access road.

5.2	 Frame-based OBR calculation logic

	 The calculation of OBR begins with the output of the Mask R-CNN model with the Swin-T 
backbone. For each input frame, the model produces a set of predicted instances, each with a 
class label, bounding box, and binary segmentation mask. Among these instances, those that 
belong to the obstruction classes defined in Sect. 3.1 (e.g., person, car, motorcycle, signboard, 
and obstacle) are selected. Non-obstruction categories, if any, are excluded from the subsequent 
OBR computation; however, in this study, all defined classes within the modeled scene are 
treated as obstruction elements since they occupy potential walking space from the pedestrian’s 
perspective.
	 Next, a walking area mask is defined for each zone of interest (Table 5). In Zone A (the 
sidewalk in front of the terminal), the walking area is defined as the region that pedestrians are 
expected to use under normal conditions, excluding roadways for vehicles and areas outside the 
formal pedestrian path. In Zone B (the mixed pedestrian–vehicle area used after disembarkation), 
the entire corridor connecting the ship to the terminal is treated as a walking area because 
pedestrians and vehicles share the same physical space without a clearly segregated sidewalk. 
This distinction reflects the structural difference between the two zones: Zone A has a relatively 
clear separation between sidewalk and roadway, whereas Zone B does not.
	 For each frame and each zone, the OBR (Table 6) is computed by intersecting the obstruction 
masks with the predefined walking area mask, summing the overlapping pixel counts, and 
dividing the result by the total number of pixels in the walking area [Eq. (1)].
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Here, the intersection areas are summed over all obstruction masks. When masks overlap, pixels 
in the overlapping region contribute to multiple Area(Objecti ∩ WalkingArea) terms, which leads 

Table 5
Structure of instance segmentation dataset for case study zones.

Zone #Video 
clips

#Annotated 
frames 
(total)

#Person 
instances

#Vehicle 
instances

#Fixed-object instances 
(tree/bench/chair/signboard/

obstacle)

Train 
frames Val. frames

A 1 166 15 76 332 131 35
B 1 85 341 97 0 69 16
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to the possibility that the numerator exceeds the walking-area denominator. Rather than 
removing this effect, the algorithm preserves it so that situations with multilayered obstruction 
(e.g., overlapping pedestrians and facilities) are reflected as higher OBRs.(3) This design choice 
aligns with the study’s goal of capturing the intensity of obstruction as experienced by 
pedestrians walking through a corridor with stacked obstacles.
	 Once per-frame OBRs are computed for each zone, additional statistics such as mean, 
median, variance, and histogram distributions can be derived. These derived indicators help to 
characterize the overall obstruction profile of each zone and to compare zones with different 
structural features and usage patterns. For example, a zone with a consistently high OBR may be 
considered structurally constrained, whereas a zone with a highly variable OBR may be subject 
to intermittent but severe obstruction events.

6.	 Case Study: OBR-based Safety Assessment of Terminal Access Zones

6.1	 Overview of study site and zone definition

	 The proposed OBR framework was applied to the access road of the Mokpo Port Passenger 
Terminal, a major coastal passenger terminal that serves both local residents and tourists. The 
analysis focused on two representative zones: Zone A, the sidewalk in front of the terminal 
entrance, and Zone B, the mixed pedestrian–vehicle corridor used by disembarking passengers.
	 Zone A is characterized by a designated sidewalk separated from the roadway, with 
commercial facilities and street furniture located along the side. Under ideal conditions, 
pedestrians can use the full width of the sidewalk without entering the road. However, in 
practice, various obstruction elements such as signboards, benches, street trees, and temporarily 
parked vehicles frequently encroach upon the walking area, forcing pedestrians to detour or 
move closer to the roadway. In addition, groups of pedestrians often congregate near entrances 
to shops or waiting areas, creating local congestion despite the nominal existence of a separate 
sidewalk.
	 Zone B, by contrast, is a corridor that connects the ship to the terminal, where pedestrians, 
vehicles, and luggage flows are not clearly separated. In this area, passengers disembark from 

Table 6
Definition of key symbols for AI-based OBR formula.
Symbol Definition Description

OBR (%) Pedestrian obstruction rate Ratio of the area actually occupied by obstruction objects 
relative to the designated walking area.

N Number of detected objects
Total number of object instances classified as obstruction 

elements among AI detection results, including both 
structural obstacles and the person class.

Area(WalkingArea) Total walking area Total pixel area of the pedestrian path set as ROI in 
advance.

Objecti ith detected object Instance mask area of the ith detected obstruction object.

∩ Intersection An operation that extracts only the overlapping part 
between the object mask and the walking area.
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the ship and walk toward the terminal while vehicles such as passenger cars, buses, and freight 
trucks use the same physical space to enter or leave the port. Temporary guide lines or barriers 
may be installed, but they do not create a permanent sidewalk-like structure. As a result, the 
walking area in Zone B is defined as the entire corridor, and any object that occupies this 
space—including vehicles and groups of passengers—is treated as an obstruction element from 
the perspective of pedestrians. In the annotated clips used in this study, no fixed obstacles such 
as piled luggage were actually observed in Zone B, which is reflected in the zero count for fixed-
object instances in Table 7. In Zone B, where vehicles and pedestrians coexist, all detected 
vehicles within the designated walking area were initially categorized as obstruction elements to 
assess the maximum potential risk. However, this approach may lead to an overestimation of risk 
by including normal traffic flow. Further refinement to distinguish between moving traffic and 
hazardous encroachment will be addressed in future studies.

6.2.	 OBR measurement results and comparative analysis between zones

	 Using the trained Mask R-CNN with the Swin-T backbone, we performed instance 
segmentation on first-person walking videos recorded with an action camera covering multiple 
time periods in Zones A and B. For each frame, obstruction masks were identified, and OBRs 
were calculated following the logic described in Sect. 5.2. The resulting per-frame OBRs were 
then aggregated into histograms and summary statistics for each zone.
	 In Zone B, the OBR distribution was generally shifted toward higher values and exhibited a 
longer tail than in Zone A. This pattern reflects the structural characteristics of Zone B, where 
the walking area is shared with vehicles and where disembarking passengers often move in 
dense groups. In particular, frames with OBRs exceeding 100% were more frequently observed 
in Zone B, indicating situations where multiple layers of obstruction elements (e.g., overlapping 
pedestrians and vehicles) are stacked within the walking area. These high-OBR frames 
correspond to conditions in which pedestrians may experience significant difficulty in finding 
safe paths through the corridor, with increased potential for close-contact interactions and 
limited visibility around large vehicles.
	 When comparing Zones A and B, the mean and median OBRs, as well as the proportion of 
frames falling into high-OBR ranges, provide a quantitative basis for assessing relative safety 

Table 7
Example of frame-level OBR statistics for representative situations in Zones A and B.

Frame ID Zone #Persons #Vehicles #Fixed 
obstacles

ΣArea(Objecti 
∩ WalkingArea) 

(pixels)

Area(WalkingArea) 
(pixels) OBR (%)

f_A1 
(A_frame_0219) A 0 1 0 119092 1708641 ≈6.97

f_A2 
(A_frame_0031) A 0 0 7 9316707 1708641 ≈545.27

f_B1 
(B_frame_0126) B 4 1 0 4080845 8294400 ≈49.20

f_B2 
(B_frame_0137) B 6 0 0 6697728 8294400 ≈80.75
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conditions. In this paper, we mainly illustrate these tendencies using the time-series and 
histogram plots in Figs. 1–3, and detailed numerical tables for these summary statistics are 
omitted for brevity. Zone A, despite having a designated sidewalk, occasionally exhibits elevated 
OBR due to the encroachment of commercial facilities and temporary parking, suggesting that 
better management of fixed and movable facilities is necessary. Zone B, lacking clear separation 
between pedestrians and vehicles, consistently shows higher obstruction intensity, implying that 
structural measures (e.g., dedicated pedestrian lanes AND physical barriers) may be required to 
ensure safety.

Fig. 1.	 (Color online) OBR time-series trends (Zone A and Zone B).

Fig. 2.	 (Color online) OBR frequency distribution in Zone A (sidewalk in front of terminal).
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	 Representative frames from each zone were also examined to qualitatively interpret OBRs in 
relation to specific obstruction configurations. For example, frames with low OBRs in Zone A 
typically showed a relatively clear sidewalk with only a few pedestrians and properly placed 
street furniture. In contrast, frames with high OBR in Zone B often depicted situations where 
large vehicles occupied a substantial portion of the corridor while groups of passengers and 
luggage were clustered around them. These examples confirm that OBR effectively captures the 
instantaneous obstruction intensity in a manner consistent with intuitive perceptions of safety 
and comfort.

6.3.	 OBR frequency distribution and cause analysis by zone

	 To support the previous time-series analysis, we analyzed in detail how OBRs are distributed 
in each zone using histograms.

6.3.1	 Zone A: Occurrence of outliers owing to structural occlusion

	 In Zone A, the histogram shows that most frames fall within the 0–10% OBR range, 
indicating that obstruction elements are minimal under normal conditions. However, a small 
number of outlier frames exhibit values exceeding 100%. These outliers correspond to time 
intervals in which large structural elements, such as fish tanks or signboards located in front of 
shops, completely cover the walking area from the camera’s perspective, sometimes with 
pedestrians standing in front of them. In such cases, overlapping masks cause the same pixels to 
be counted multiple times in the numerator, leading to OBRs above 100%. These extreme values 
should therefore be interpreted as flags indicating highly cluttered or structurally occluded 

Fig. 3.	 (Color online) OBR frequency distribution in Zone B (exit after disembarkation).
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frames, rather than as physically exact ratios of occupied walking width. In this study, we 
interpret these over-100% values not as errors but as indicators of multilayered obstruction 
severity that quantitatively reveal the risk of structural blind spots where pedestrians’ fields of 
view are heavily blocked.(2,3) While traditional metrics such as level of service (LOS) focus 
primarily on pedestrian density, the proposed OBR specifically quantifies the space occupied by 
physical obstacles. This provides a more direct measure of “walkability” and “safety hazards” 
from a facility management perspective. Qualitative observations of high-OBR frames 
confirmed that these values correlate with actual blockages, such as illegally parked vehicles or 
stacked cargo, which significantly impede pedestrian flow.

6.3.2	 Zone B: Continuous congestion in mixed pedestrian environment

	 On the other hand, the distribution of Zone B shown in Fig. 3 displays a markedly different 
aspect from Zone A. It forms a relatively broad distribution over the 20–80% range, indicating 
that OBRs are widely spread rather than concentrated in very low obstruction intervals. This 
reflects the characteristics of a shared-space environment where disembarking crowds and pick-
up vehicles are intermingled, rather than being temporary obstructions. The extremely low 
frequency of 0% on the graph implies that the area rarely provides a “completely safe time” for 
pedestrians, statistically indicating that it functions as a high-risk zone requiring constant safety 
management.

7.	 Conclusions and Future Work

	 In this study, we proposed an AI-based pedestrian obstruction analysis framework for the 
safety assessment of passenger terminal access roads. By constructing a domain-specific 
instance segmentation dataset for the Mokpo Port Passenger Terminal and adopting a Mask 
R-CNN model with the Swin-T backbone, we demonstrated the feasibility of accurately 
recognizing both fixed and dynamic obstruction elements in complex pedestrian environments. 
On the basis of the segmentation results, we developed the OBR algorithm, which quantifies the 
area occupied by obstruction elements within predefined walking areas. Applying this algorithm 
to two structurally distinct zones around the terminal revealed clear differences in obstruction 
intensity and distribution, highlighting the potential of OBR as a quantitative safety indicator. 
The proposed framework demonstrates the potential of integrating high-resolution vision sensors 
with AI to provide a scalable sensing solution for quantifying spatial risks in terminal safety 
management. However, in this study, OBR is not directly validated against accident records and 
is therefore used as an exploratory proxy of obstruction intensity, leaving the quantitative 
linkage to incident risk as future work. However, the current OBR algorithm calculates area on 
the basis of 2D pixel counts, which may involve perspective distortion where objects closer to 
the camera appear larger than distant ones. To improve spatial accuracy, incorporating depth-
sensing technology or perspective correction algorithms will be considered in future studies.
	 The main findings of this study can be summarized as follows. First, the integration of 
Swin-T backbones into Mask R-CNN enabled robust instance segmentation performance in the 
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complex scenes of passenger terminal access roads, where objects of various scales and types 
coexist. Second, the proposed OBR algorithm successfully translated pixel-level segmentation 
outputs into an interpretable index of obstruction intensity from the pedestrian’s perspective, 
capturing both fixed facilities and dynamic entities such as pedestrians and vehicles. Third, the 
comparative analysis of Zones A and B demonstrated that OBR values reflect structural 
differences in pedestrian environments, with the mixed pedestrian–vehicle corridor (Zone B) 
exhibiting higher and more variable obstruction intensity than the designated sidewalk zone 
(Zone A).
	 From a practical standpoint, OBR provides terminal managers and policymakers with a 
quantitative tool to identify high-risk segments and time periods along access routes. By 
monitoring OBR distributions over time, it becomes possible to evaluate the effectiveness of 
interventions such as relocating facilities, regulating temporary parking, or installing physical 
barriers between pedestrians and vehicles. In addition, the OBR framework can be extended to 
other types of transfer facility, such as subway stations, bus terminals, and airports, where 
complex interactions between pedestrians and obstruction elements similarly affect safety and 
comfort.
	 Future research directions include expanding the dataset—which, in the present study, 
consists of two representative clips and a small number of annotated frames—to cover a wider 
variety of weather and lighting conditions and to include additional obstruction classes relevant 
to different terminal types and operational scenarios, thereby enabling more statistically 
generalizable analyses and direct validation against safety outcomes. Moreover, while we 
applied OBR analysis to first-person walking videos recorded with an action camera in an 
offline manner in this study, in future work the framework can be integrated into real-time 
monitoring systems based on live CCTV streams, enabling automated alerts when OBR exceeds 
predefined thresholds. Finally, the combination of OBR with other pedestrian safety metrics, 
such as crowd density, walking speed, and near-miss detection, may yield a more comprehensive 
assessment of risks in passenger terminal environments. This study serves as an exploratory 
analysis focusing on the technical feasibility of the OBR framework. Consequently, temporal 
factors such as peak-hour congestion or seasonal variations were not fully integrated in this 
initial stage. Future research will involve long-term data collection across various time slots and 
diverse terminal environments to enhance the generalizability and predictive reliability of the 
proposed safety assessment model.
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