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	 We developed a low‑cost, high‑precision monocular visual ranging system based on the You 
Only Look Once version 5 (YOLOv5) object detection algorithm, addressing the limitations of 
traditional methods by integrating deep learning with computer vision. The YOLOv5 
architecture is optimized through the adoption of the cross stage partial darknet backbone 
network and the Mosaic data augmentation strategy. The architecture improves vehicle detection 
accuracy with a mean average precision at intersection over union threshold 0.5 of 0.5719, and 
the inference speed of 140 frames per second. Multiscale object detection capabilities are further 
enhanced using an adaptive anchor box generation mechanism. The monocular ranging model 
was constructed by combining camera calibration parameters with perspective geometry 
principles. Bounding box information produced by YOLOv5 is mapped to three‑dimensional 
spatial distances through the relationship between object pixel dimensions and actual physical 
dimensions, effectively mitigating the scale ambiguity inherent in monocular vision. The 
experimental results showed that the system maintained average ranging errors within 
engineering‑acceptable limits under diverse lighting and weather conditions while satisfying 
real‑time requirements. Compared with traditional geometric ranging benchmarks, the 
optimized model showed a 12% improvement in mean absolute error and root mean square error 
with an overall accuracy enhancement of 16.88%. The results confirm that the developed 
monocular visual ranging model balances cost and performance and is a reliable method for 
intelligent transportation systems. By functioning as a robust software‑defined virtual sensor, 
the system offers significant engineering application value and contributes to the advancement 
of intelligent driving technologies.

1.	 Introduction

	 With accelerating urbanization and increasing traffic volumes, traffic safety and passage 
efficiency have deteriorated. Intelligent transportation systems (ITS) are a core technological 
method in addressing these challenges, with their effectiveness largely dependent on 
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environmental perception capabilities, particularly vehicle ranging technology. Traditional 
ranging methods, such as light detection and ranging and millimeter‑wave radar, provide high 
accuracy but are constrained by high hardware costs and limited adaptability to diverse 
environments, rendering them inappropriate for large‑scale deployment. 
	 In contrast, computer-vision‑based ranging methods are widely used owing to their low cost, 
flexibility, and ease of deployment. Nevertheless, monocular visual ranging continues to face 
challenges in accuracy and robustness because of the inherent difficulty of mapping 
two‑dimensional images to three‑dimensional space, including issues such as scale ambiguity 
and environmental interference. 
	 Recent advances in deep learning have enabled target detection and ranging. You Only Look 
Once v5 (YOLOv5), a representative algorithm in real‑time object detection, balances speed [up 
to 140 frames per second (FPS)] and accuracy [mean average precision (mAP) at an intersection 
over union (IoU) threshold of 0.5 (mAP@0.5) of 0.5719] through its cross stage partial (CSP) 
darknet (CSP-Darknet) backbone, Mosaic data augmentation, and lightweight design. Previous 
research was largely concentrated on improving detection performance, with the limited 
systematic integration of detection outputs into geometric ranging models. Furthermore, 
challenges remain in enhancing real‑time performance and stability under complex 
environmental conditions.
	 To overcome the challenges, we developed a monocular visual vehicle ranging system based 
on YOLOv5. The system optimizes the YOLOv5 architecture by introducing adaptive anchor 
box generation and a small‑object detection branch, as well as integrating camera calibration 
parameters with perspective geometry. The system contains a distance mapping model based on 
pixel coordinates in the 3D space. As a result, the system developed in this study improves 
vehicle detection accuracy under complex lighting and multiple weather scenarios and mitigates 
scale ambiguity in monocular ranging through prior knowledge of target dimensions and camera 
calibration. It also optimizes real‑time performance to meet the low‑latency requirements of 
intelligent driving systems. 
	 Through the integration of YOLOv5’s efficient detection capabilities with a monocular 
ranging model, the system delivers an end‑to‑end vehicle ranging solution.(1) Specifically, it 
enhances model generalization in complex environments through multidimensional data 
augmentation and lightweight design and contributes to the development of a low‑cost, highly 
reliable autonomous driving assistance system capable of automatic emergency braking and lane 
departure warning. The system also presents the potential of monocular visual ranging in 
intelligent transportation and directions for multisensor fusion and cross‑scenario optimization.

2.	 Literature Review 

	 Researchers have advanced deep-learning-based vehicle ranging methods. Because of the 
widespread adoption of the YOLO architecture, the balance between detection accuracy and 
real-time computational efficiency has been optimized. Specifically, the YOLO–Tiny object 
detection with lightweight attention model enhances the detection of distant vehicles by 
incorporating a small-object detection branch and a global attention mechanism, and provides 
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high-precision coordinate inputs for monocular ranging.(2) Through the refinement of the 
YOLOv5 architecture, infrared imaging methods become robust and adaptable across varying 
illumination conditions. 
	 In the ranging methods, a combination of geometric projection and target prior dimensions is 
adopted. For example, the feature optimization with a simplified CSP-Darknet model is 
constructed on the basis of a lightweight network structure to minimize computational overhead 
and enable real-time ranging on embedded systems.(3) Despite such advancements, current 
methods lack robustness in adverse environments, including dense fog or high-contrast 
backlighting, and exhibit limited efficacy in managing multi-object overlap or partial occlusion.
	 On the other hand, multimodal fusion and theoretical frameworks have been emphasized in 
the development of ranging methods. The Transformer prediction head–YOLOv5 model 
integrates a Transformer prediction head with the convolutional block attention module, 
significantly improving detection accuracy for dense vehicle clusters in aerial imagery.(4) In 
distance estimation, multiscale feature fusion methods are used to optimize accuracy through 
stereo matching and stereo vision.(5) However, these methods are constrained by high hardware 
costs and significant computational complexity. 
	 The YOLO models, especially YOLOv5, represent the effectiveness of the CSP-Darknet 
backbone and Mosaic data augmentation as reliable methods for monocular ranging tasks.(6) The 
end-to-end deep learning models utilize depth estimation networks to directly output 3D 
distances.(7) Nevertheless, the applications of the end-to-end methods are limited by their 
dependence on high-quality data annotation and substantial processing power, hindering their 
widespread practical application.
	 In summary, the present ranging methods face the following challenges. 
	 •	� Scale ambiguity: Monocular vision systems heavily rely on prior knowledge of vehicle 

dimensions; however, the inherent diversity of vehicle types introduces cumulative estimation 
errors.

	 •	� Environmental interference: Extremes in lighting, meteorological fluctuations, and cluttered 
backgrounds degrade detection and ranging precision.

	 •	� Accuracy-latency trade-off: Lightweight models sacrifice critical spatial features, while 
high-precision models struggle to meet the low-latency requirements of embedded vehicle 
platforms.

	 Such challenges necessitate further studies to converge on multisensor fusion by integrating 
millimeter-wave radar or inertial measurement unit data, adaptive optimization by metalearning 
or online calibration, and edge computing deployment by pruning and quantization for low-
power inference.
	 To overcome such challenges, we integrated object detection with monocular geometric 
ranging based on YOLOv5. This approach introduces an adaptive anchor box generation 
mechanism and a multiscale feature fusion strategy to rectify detection deficiencies for small-
scale targets. By integrating camera calibration with perspective projection models, this 
approach also mitigates the scale ambiguity issue and enhances mean absolute error (MAE) and 
root mean square error (RMSE) compared with those of traditional methods. The model 
developed in this study maintains inference speeds compatible with in-vehicle embedded 
platforms, offering a high-reliability technical pathway for intelligent transportation sensing.
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3.	 System Architecture

3.1	 YOLOv5 algorithm

	 YOLOv5 is an advanced algorithm widely used in object detection. It is characterized by fast 
inference speed and high detection accuracy.(8) It optimizes network structure and training 
algorithms, achieving enhanced detection performance in complex scenarios while maintaining 
high real-time capability. These features make it well suited to tasks with stringent latency 
requirements, such as object detection and localization. 
	 Compared with other versions, YOLOv5 significantly improves the balance between speed 
and accuracy, which makes it a preferred solution for real-time visual perception systems.(9) 

YOLOv5 treats object detection as an end-to-end regression problem, using a single forward 
pass to directly predict object bounding box coordinates and class probabilities. The region 
proposal process of traditional two-stage algorithms is omitted, which significantly improves 
detection efficiency.(10) The model takes fixed-size images as input, which are then processed 
through convolutional layers, downsampling layers, and feature fusion modules to generate 
dense feature maps. This feature map is divided into grid cells, with each cell predicting a set of 
bounding boxes, confidence scores, and category information.
	 YOLOv5 offers a superior accuracy-to-latency ratio on edge devices such as the NVIDIA 
Jetson series. While YOLOv12 introduces advanced attention mechanisms that improve recall, 
its features result in inconsistent inference speeds and higher power consumption in mobile 
environments. Secondly, the anchor-based architecture of YOLOv5 provides a highly stable 
bounding box output, which is crucial for geometric ranging formulas that are sensitive to 
coordinate jitter. Finally, YOLOv5’s deployment ecosystem (including mature INT8 quantization 
tools) ensures that the system maintains a stable speed of 140 FPS, meeting the safety-critical 
requirements of intelligent driving.(11)

	 In YOLOv5’s network architecture design, the backbone network is responsible for extracting 
deep semantic features, while the neck module utilizes the Feature Pyramid Network(12) and 
Path Aggregation Network (PAN)(13) to fuse multiscale features, thereby enhancing the 
recognition performance of objects of different sizes. Additionally, the model adopts an anchor-
free mechanism, eliminating the prior constraints of traditional anchor box matching. It 
accurately predicts the center point coordinates and bounding box size of the target, making 
model training more flexible and improving its generalization ability.
	 YOLOv5 has exhibited its potential for real-time vehicle recognition thanks to its efficient 
architecture and powerful recognition capabilities, since it quickly and accurately identifies 
target vehicles for distance estimation and other advanced features.(14) The current version of 
YOLOv5 includes its variations, including YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x.(15) 
The structures of these models are basically identical, with differences in the depth-multiplexed 
model and width-multiplexed model parameters. YOLOv5 comprises input, skeleton, neck, and 
head (prediction) layers. The skeleton layer uses New CSP-Darknet53,(16) while the neck layer 
employs Spatial Pyramid Pooling–Fast (SPFF) and New CSP–PAN. The main architecture of 
YOLOv5 is shown in Fig. 1. At the input end, YOLOv5 uses Mosaic data augmentation, 
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specifically CutMix data augmentation. Mosaic data augmentation is used to improve the 
original two images into four images for concatenation, and then randomly scale, crop, and 
rearrange the images. Data augmentation is employed to improve the imbalance of small, 
medium, and large target data in the dataset. The techniques used in Mosaic data augmentation 
include Mosaic, copy–paste, random affine transformations (scaling, translation, and shearing), 
MixUp, Albumentations, color space adjustments (hue, saturation, and value), and random 
horizontal flip.
	 The Mosaic data augmentation method has the following advantages.
	 •	� Enriched dataset: By randomly selecting four images, applying random scaling, and 

combining them with additional small targets, the dataset is significantly enriched. This 
process enhances sample diversity and strengthens the network’s robustness.

	 •	� Reduced graphics processing units (GPU) utilization: Random image combination enables a 
single composite image to represent four individual samples, reducing the number of images 
required per batch. This approach improves training efficiency and yields better results even 
when using a single GPU.

	 Additionally, by pruning identified objects, the model recognizes objects on the basis of local 
features for the detection of blurry objects and improves its detection capabilities (Fig. 2). The 
implementation of Mosaic data augmentation enhances the model’s robustness and generalization 
capabilities. While standard augmentation techniques manipulate individual images, the Mosaic 
method synthesizes four distinct training samples into a single composite image through a 
stochastic cropping and stitching process. This mechanism effectively increases the batch size 
virtually for the same memory footprint, enabling the network to be trained with a significantly 
higher density of objects. As shown in the Mosaic tiles of Fig. 2, the method introduces three 
advantages for vehicle detection.

Fig. 1.	 (Color online) Architecture of YOLOv5 detection algorithm.



334	 Sensors and Materials, Vol. 38, No. 1 (2026)

	 •	� Multiscale feature learning: By shrinking four original images to fit into one composite 
frame, the model recognizes vehicles at much smaller pixel scales than present in the raw 
dataset. This addresses the challenge of detecting distant or small-scale targets in monocular 
vision systems.

	 •	� Contextual enrichment: The stitching process creates artificial intersections of scenes, such 
as placing a vehicle from a night-time highway scenario adjacent to an urban intersection. 
This prevents the model from over-fitting to specific environmental cues and encourages the 
learning of invariant object features.

	 •	� Implicit occlusion handling: The random cropping at the stitch boundaries of the methods 
results in partial bounding boxes, where the rear or side profile of a vehicle is visible. This 
enables occlusion training for natural forms, improving the system’s performance in 
congested traffic scenarios where intervehicle overlap is frequent. 

	 Through the integration of the Mosaic-augmented samples, the YOLOv5 architecture is used 
to identify features, improving MAE and RMSE observed in the model evaluation.
	 The YOLOv5 architecture contains the convolutional module, C3, and SPFF layers in its 
backbone on the input side.

Fig. 2.	 (Color online) Mosaic data enhancement effect in images.
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	 The convolution module consists of a convolution layer, batch normalization, and a sigmoid 
linear unit or the swish function (SiLu) activation layer. Batch normalization is conducted to 
prevent overfitting and accelerates convergence. The SiLu activation function is used to obtain a 
weighted linear combination of the sigmoid function, which is defined as

	 ( ) ( )  
1  x

xSiLu x x x
e

σ −= ⋅ =
+

,	 (1)

where 𝑥 is the input to the activation function and σ(x) is the logistic sigmoid. The SiLU 
activation function is differentiable and exhibits continuous smoothness. However, it is not 
strictly monotonic, and its primary limitation lies in the high computational cost compared with 
simpler activation functions such as a rectified linear unit. 
	 The C3 module shares structural and functional similarities with the CSP architecture but 
differs in its computational units. It contains three standard convolutional layers, with the 
number of layers determined by the product of n and depth_multiple parameters specified in the 
YAML Ain’t Markup Language configuration file. Designed to learn residual features, the 
module is organized into two branches. One branch employs multiple bottleneck stacks, while 
the other passes through a simplified shortcut path. These branches are subsequently merged. 
Compared with the earlier BottleneckCSP module, the C3 module removes the shortcut folding 
operation and adopts the SiLU activation function in the standard connection path. The 
structural diagram of the C3 module is presented in Fig. 3. 
	 The SPP module in YOLO is constructed on the basis of a spatial pyramid, integrating local 
and global features. By merging feature maps with different receptive fields, SPP enhances the 
expressiveness of feature representations, which is particularly beneficial when target objects 
vary significantly in size. This capability substantially improves detection accuracy in complex 
multi-object scenarios. Because of this capability, an improved design of the SPPF can be 
introduced. Instead of employing the large pooling kernels (5 × 5, 9 × 9, and 13 × 13) in the 
original SPP, SPPF cascades three 5 × 5 max pooling operations (Fig. 4). This substitution 
reduces computational overhead while preserving the ability to capture multiscale contextual 
information, thereby improving inference speed without compromising accuracy.

Fig. 3.	 (Color online) C3 layer structure.



336	 Sensors and Materials, Vol. 38, No. 1 (2026)

3.2	 Monocular ranging method

	 The YOLOv5 architecture demonstrates high efficiency in delivering accurate detection 
performance, which is advantageous for real‑time vehicle recognition. Its ability to provide 
precise target localization and size information offers essential data support for distance 
estimation and advanced feature extraction. 
	 The monocular ranging method developed in this study integrates deep learning with 
computer vision, establishing an efficient ranging algorithm based on YOLOv5. Initially, 
YOLOv5 conducts high‑precision vehicle detection and localization. Its performance was 
validated on public datasets, Common Objects in Context and Pattern Analysis and Statistical 
Modelling and Computational Learning–Visual Object Classes, for detection capability, and the 
mAP@0.5 was 0.57192 and mAP@0.5:0.95 was 0.41403. The improved model achieves a 5.3 
percentage‑point increase in detection accuracy compared with the original version in 
small‑object detection scenarios using remote sensing images, and surpasses the Faster R‑CNN 
algorithm by 16.88 percentage points in mAP. Distance estimation is then performed by 
extracting the pixel dimensions of target vehicles and combining them with prior knowledge of 
actual physical sizes, using a perspective projection model.
	 To enhance ranging accuracy, camera calibration techniques were introduced in this study. 
By employing a checkerboard calibration board, the camera’s intrinsic matrix and distortion 
coefficients were used to determine a mapping relationship between two‑dimensional image 
coordinates and 3D coordinates while compensating for geometric distortions caused by the 
camera lens. Since variations in ambient lighting deteriorate detection accuracy, data 
augmentation methods, including adjustments to brightness and contrast, and the addition of 
Gaussian noise, are applied to improve the model’s adaptability under diverse illumination 
conditions.

4.	 Methodology

4.1	 Experiment

	 To validate the developed model, controlled vehicle detection experiments were conducted 
using the Tesla P100 platform. The hardware configuration consisted of a complementary 

Fig. 4.	 (Color online) SPFF module feature map.
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metal–oxide–semiconductor (CMOS)-based monocular camera sensor mounted at a height of 
1.2 m on the vehicle’s centerline to simulate a standard driver-assist system. In the detection 
experiment, various vehicle classes, including sedans, SUVs, and light trucks, were included to 
ensure the model’s robustness across different prior dimensions. 
	 Each target vehicle was measured to establish ground-truth width and height for the scale-
ambiguity correction module. Images were captured both in a static environment at marked 5 m 
intervals and during dynamic “lead–followˮ maneuvers on a paved test track. The YOLOv5 
architecture was used in an onboard NVIDIA Jetson Orin module, with the detection results 
(bounding boxes and classification) timestamped and logged alongside the vehicle’s controller 
area network bus data. 
	 The efficacy of the geometric ranging model is dependent on the optical characteristics of the 
monocular sensor. Therefore, we utilized a high-performance complementary metal–oxide–
semiconductor industrial camera. The specific parameters used in the calculation of the intrinsic 
matrix and the focal length are presented in Table 1. The global shutter sensor was used for 
vehicle ranging, as it eliminates the rolling shutter distortion that occurs during high-speed 
motion. This ensures that the bounding boxes generated by YOLOv5 accurately reflect the 
vehicle’s spatial proportions. The hardware parameters were integrated into the pinhole camera 
model to transform 2D image coordinates into 3D world coordinates. 
	 This experimental setup was selected to ensure that the bounding box fluctuations caused by 
vehicle vibration or changes in pitch during braking were explained through the ranging error 
analysis, and to assess the system’s performance in a nonidealized environment.(17)

4.2	 System implementation

	 In system implementation, the detection results of YOLOv5 were integrated with a monocular 
ranging algorithm. The detection results included the coordinates and pixel size of the target 
bounding box and the visual feature parameters of the target, while the monocular ranging 
algorithm uses geometric optical principles to calculate the actual distance. This method retains 
YOLOv5’s real-time detection capabilities while improving ranging accuracy. For multi-object 
scenarios, it is possible to simultaneously estimate the distances of multiple vehicles by 
improving the nonmaximum suppression algorithm and ranging calculation logic. Accurate 
distance measurement is essential for intelligent driving systems. Existing methods are classified 
into active and passive methods. Active distance measurement methods rely on onboard devices 

Table 1
Specifications of monocular vision sensor.
Parameter Specification
Sensor type 1/2.8" CMOS progressive scan
Effective pixels 1920 (horizontal) × 1080 (vertical)
Pixel size 2.9 × 2.9 μm2

Focal length 6 mm (fixed)
Horizontal field of view 82°
Shutter type Global shutter
Output interface USB 3.0 / Gigabit multimedia serial link version 2
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such as sensors, cameras, and light detection and ranging. Cameras are widely used owing to 
their relatively low cost and stable performance. Accordingly, we used cameras for distance 
measurement. 
	 Monocular ranging methods yield estimates of object distance by applying ranging models to 
identify bounding boxes on the basis of the size and position of the target within the image. 
These algorithms show low computational complexity and reduced cost and mitigate residual 
errors through calibration. Because of their practicality, monocular visual sensors are employed 
in product development. Compared with other ranging methods, monocular vision benefits from 
mature algorithms. Therefore, we adopted monocular visual ranging as the primary method in 
this study.
	 In contrast, binocular vision methods are used to determine distance by calculating the pixel 
disparity of the same object across two imaging planes. Object depth is calculated using the 
camera focal length, the measured disparity, and the known baseline distance between the two 
cameras. Although binocular ranging methods present higher accuracy and do not require a 
training dataset, they cause computational complexity, slower processing speed, and higher 
hardware costs since dual cameras are required. The advantages and disadvantages of monocular 
ranging and binocular ranging are compared in Table 2.
	 For accurate distance estimation, points must be acquired in the 3D space. Since the input 
data consists of 2D planar images captured by the camera, it is essential to examine how points 
in the 2D space are transformed into corresponding points in the 3D space. This transformation 
necessitates conversions among the pixel coordinate system, the image coordinate system, the 
camera coordinate system, and the world coordinate system. The relationships among these 
systems are illustrated in Fig. 5. 

Table 2
Features of monocular ranging and binocular ranging.
Task Advantage Disadvantage

Monocular 
ranging

Low computing power, fast speed, 
high cost performance, 

and relatively simple system structure.

The sample database needs to be maintained, and 
the distance calculation accuracy is low.

Binocular 
ranging

Accurate calculations without the need 
for datasets or prior identification
 and measurement requirements.

High computational load, high cost, 
poor registration results, 

and difficulty in commercialization.

Fig. 5.	 Interrelationship between four coordinate systems.
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1.	� Pixel coordinate system: Digital images are composed of discrete pixels. The origin of the 
pixel coordinate system is denoted using the origin at (0, 0) (O2), with the horizontal direction 
defined as the horizontal and vertical directions along u- and v-axes. 

2.	� Image coordinate system: The origin of the image coordinate system is the camera coordinate 
system (O1). It is parallel to the pixel coordinate system, with the horizontal direction defined 
as the x-axis and the vertical direction as the y-axis. Different from pixel coordinates, the 
units are expressed in millimeters. 

3.	� Camera coordinate system: The origin of the camera coordinate system is Oc. The Xc and Yc 
axes are parallel to the x- and y-axes of the image coordinate system, while the 𝑍𝑐-axis 
coincides with the optical axis of the camera. 

4.	� World coordinate system: The external environment is represented in the world coordinate 
system, defined by the Xw-, Yw-, and Zw-axes. A point in the real world, Pw, is mapped to a 
corresponding point 𝑃 in the image through the transformation from world coordinates to 
image coordinates.

	 The pixel coordinate system provides positional information for each pixel but not the size of 
objects. Therefore, transformations between coordinate systems are required to establish 
meaningful geometric relationships. Specifically, the relationship between coordinates (x, y) in 
the image coordinate system and (u, v) in the pixel coordinate system can be expressed as 

	
( )
( )

0

0

x u u dx
y v v dy

 = −
 = −

,	 (2)

where (u0, v0) are the pixel coordinates of the image center, and dx and dy are the physical 
lengths of the horizontal and vertical pixels, respectively. It is written as the following rank-four 
coordinate matrix.

	
0 0

0 0

0 0 0
0 0 0

1 0 0 0 0 1 0 0 1 1

x dx u u dx dx u dx u
y dy v v dy dy v dy v
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           = + − = −           
                      

	 (3)

	 The distance of OcO1 is the focal length f. Figure 6 shows the process of imaging an object 
onto the image coordinate system, where points P and P' represent the coordinates in the camera 
coordinate system and image coordinate system, respectively.
	 Triangle OcO1B is similar to triangle OcCA, and triangle OcBP' is similar to triangle OcAP. 
According to the principle of similar triangles, Eq. (3) is used.

	 1 1   c c

c c

O O O bO B P B
O C CA O A PA

′
= =

′
= 	 (4)

	 The distance of OcO1 is the focal length f. By combining P(Xc, Yc, Zc) and the coordinates of 
point P'(x, y), Eq. (4) is written as 



340	 Sensors and Materials, Vol. 38, No. 1 (2026)

	   
c c c

f x y
Z X Y

= = .	 (5)

	 Further simplification yields

	

c
c

c
c

xZX
f

yZY
f





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=

=
	 (6)

	 In the world coordinate system, [ , , ]Tw w w wP X Y Z=  represents the coordinates of an object in 
the world coordinate system, which is a globally fixed reference system used to describe the 
relative positions of all objects in the scene. In the camera coordinate system, [ , , ]Tc c c cP X Y Z=  
represents the coordinates of an object in the camera coordinate system, with the origin located 
at the camera’s optical center. 
	 The pose of the camera in the world coordinate system is defined as the 3 × 3 orthogonal 
matrix R, satisfying TR R I=  (I is the unit matrix). The matrix reflects the direction of rotation of 
the camera relative to the world coordinate system. The position of the camera in the world 
coordinate system is defined by a 3D translation vector [ , , ]Tx y zt t t t= . 
	 To convert from the world coordinate system to the camera coordinate system, the world 
coordinates are first translated to account for the camera’s position, and then a rotation is 
applied.

	 cP  ( )wR P t= − 	 (7)

Fig. 6.	 Process of imaging objects into the image coordinate system.
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	 Matrix operations are conducted using the following set.

	 R �
�

�

�
�
�

�

�

�
�
�

r r r
r r r
r r r

11 12 13

21 22 23

31 32 33

	 (8)

	 Then, Eq. (8) is defined.

	

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
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





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	 To facilitate the unified representation of translation and rotation in matrix multiplication, 
homogeneous coordinates are introduced. When the following matrices are satisfied,

	 Pw
h

w w w
T

c
h

c c c
TX Y Z X Y Z� �� � �, , , ] , [ , , , ]1 1P .	 (10)

	 The conversion equation is defined as

	 P P
R Rt

c
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w
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T�
�

�
�
�

�

�
�
�

�

0 1
,	 (11)

where 0 = [0,0,0]T. The 4 × 4 matrix is an external parameter matrix, which integrates the 
rotation and translation information of the camera.
	 The rotation matrix R is expressed using Euler angles (rotation angles around coordinate axes 
(α, β, γ) or obtained by quaternion transformation. For example, rotation matrices around the x-, 
y-, and z-axes are defined as follows.  

	 Rx � � �
� �
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�

�

�
�
�

�

�

�
�
�

1 0 0

0

0

cos sin

sin sin
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sin cos

0

0 1 0
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0

0
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	 The combination rotation matrix R R R R� � � � � � �z y x� � � . Translation vector t  corresponds 
to the coordinates of the camera’s optical center in the world coordinate system. The coordinate 
is obtained through camera calibration, simultaneous localization, and mapping. By using this 
method, YOLOV5 is combined to achieve distance measurement when performing object 
detection.

4.3	 Field testing and sensor integration

	 To validate the performance of the developed system, field tests were conducted using a 
passenger vehicle equipped with a high-definition monocular camera sensor (1920 × 1080 
resolution at 30 FPS). The system was integrated into an onboard computing unit (NVIDIA 
Jetson Orin) to evaluate its performance as an edge-sensing device. The field test was performed 
on a closed-loop urban test track under varying lighting conditions. To provide a ground-truth 
reference for distance estimation, a high-precision millimeter-wave radar sensor and a 
professional-grade laser rangefinder were mounted with the camera. This allowed for real-time 
synchronization between the virtual vision sensor output and physical distance measurements. 
The test scenarios included static ranging to measure distances to stationary vehicles at fixed 
intervals (5 to 50 m) to calibrate the geometric projection model, a dynamic following test to 
evaluate the system’s ability to track and range a moving lead vehicle at speeds up to 60 km/h, 
and environmental stress tests to assess the sensor’s robustness against atmospheric noise and 
reduced visibility.(18) The results of these field tests confirmed that the integration of the 
YOLOv5 algorithm with the physical camera hardware achieves a sensing reliability satisfactory 
for ITS.

4.4	 Evaluation metrics and statistical analysis

	 The reported vehicle detection accuracy, specifically the mAP@0.5 of 0.5719, was calculated 
by the standard Common Objects in Context evaluation protocol. The dataset was partitioned 
into training, validation, and testing sets in a 7:1:2 ratio. After the model reached convergence at 
epoch 300, the testing set was used for inference. The mAP was derived from the precision–
recall curve. For each detection, IoU was calculated between the predicted bounding box and the 
ground truth. A detection was classified as a true positive if IoU was 0.5; otherwise, it was 
classified as a false positive. AP for the vehicle category was calculated by integrating the PR 
curve as(19)
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	 ( )1

0
 AP p r dr=∫ ,	 (15)

where p(r) represents the precision at a given recall level r. 
	 Since we focused on vehicle ranging in this study, mAP@0.5 represented the mean of these 
AP values across all vehicle classes. 

5.	 Results and Discussion

	 The developed model was evaluated for performance in terms of accuracy and reliability. 
Built upon the YOLOv5 architecture, the system processes real-time image data captured via a 
monocular camera. Following image preprocessing, the imagery was fed into the trained 
YOLOv5 model for object detection, the output being vehicle classification, spatial localization, 
and bounding box coordinates. Selecting rigorous evaluation metrics is critical for assessing the 
distance measurement system’s efficacy. We utilized MAE to quantify the average absolute 
deviation between predicted and actual distances, providing a direct measure of prediction 
accuracy. To complement this, RMSE was used to reflect the average magnitude of prediction 
errors, emphasizing the impact of large deviations.
	 IoU was employed to evaluate the overlap between predicted bounding boxes and ground-
truth annotations. High IoU values are essential for ensuring precise alignment, which directly 
influences the accuracy of subsequent distance estimations. Additionally, precision and recall 
were utilized to assess detection performance, ensuring the accuracy and completeness of the 
results. 
	 Distance was estimated using geometric principles synthesized with camera calibration 
parameters. A precalibrated intrinsic matrix K was obtained for the mapping of detected vehicle 
boundaries into three-dimensional space.

	
582488 0 0

 0 579370 245140
0 0 1.0

K
 
 =  
  

	 (16)

	 By correlating known vehicle dimensions with pixel-based measurements, a distance 
estimation equation is derived on the basis of the principle that an object’s apparent pixel size is 
inversely proportional to its distance from the sensor. To enhance the precision, the model 
incorporated compensation for lens distortion. 
	 System reliability was evaluated through comparative tests using datasets collected under 
diverse lighting and meteorological conditions, supplemented by unmanned testing scenarios to 
validate broader applicability. The system must sustain high frame rates of taking images while 
maintaining accuracy. Consequently, processing latencies were recorded, and hardware and 
software optimizations were implemented to ensure operational capability on embedded 
platforms. 
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	 The YOLOv5-based vehicle ranging model demonstrated effective vehicle identification and 
localization, establishing a robust foundation for ranging tasks. The monocular ranging method, 
specifically for vision-based adaptive cruise control (ACC) and width-based distance estimation, 
achieved high precision in calculating vehicle-to-camera distances. Despite the results, 
challenges remain for images taken in complex environments where partial occlusion or 
suboptimal lighting introduce prediction errors. Dataset quality and diversity are the important 
determinants of model performance. Limited coverage or noise within the training data 
diminished generalization and ranging accuracy. 
	 While YOLOv5 is computationally efficient and appropriate for real-time applications, 
hardware constraints and limited computational resources must be balanced in its deployment to 
maintain system stability. To address such constraints, the scale and diversity of the training 
dataset must be expanded to improve generalization across edge cases. Also, by integrating 
multimodal sensor fusion and advanced deep learning refinements, system stability can be 
enhanced. 
	 It is important to continuously refine hardware configurations to enhance real-time 
efficiency. The developed YOLOv5 architecture can be used to improve monocular distance 
estimation and provide a reference for the development of future intelligent driving technologies. 
In terms of detection accuracy, the YOLOv5 architecture performs well in vehicle detection, 
accurately identifying targets and providing more precise location information. This lays a solid 
foundation for subsequent ranging tasks. In terms of the accuracy of distance estimation results, 
the monocular distance estimation method, with vision-based single-camera ACC and distance 
estimation when the vehicle width is known, demonstrated high precision, enabling the accurate 
estimation of the distance between the vehicle and the camera to a certain extent. However, the 
errors observed in complex scenarios must be corrected. If part of the vehicle is obstructed or 
lighting conditions are poor, the distance estimation results may be affected to some extent. 
Figure 7 shows the original image and the detection results.
	 To quantify the performance enhancement of the developed system, a comparative analysis 
was conducted against a traditional monocular ranging method. The baseline system utilizes the 
YOLOv3-Tiny architecture for object detection coupled with a standard geometric projection 
model.(20) The developed method employs an adaptive anchor box mechanism and YOLOv5’s 
CSP-Darknet backbone, while the traditional system relies on fixed-size bounding box priors 
and a linear mapping function for distance estimation. 
	 A 16.88% improvement in ranging accuracy (MAE/RMSE) was observed owing to the 
reduction in bounding box jitter provided by the YOLOv5 architecture and the superior handling 
of scale ambiguity through our calibrated perspective projection. While the traditional system 
exhibits significant error accumulation as vehicle distance increases beyond 30 m, the developed 
model maintains a stable error curve owing to the enhanced feature extraction of the multiscale 
fusion strategy.
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5.	 Conclusions

	 We developed and validated an efficient, low‑cost monocular visual vehicle ranging system 
based on the YOLOv5 detection algorithm, offering an innovative solution for intelligent 
transportation and autonomous driving. By optimizing the YOLOv5 architecture, incorporating 
an adaptive anchor box generation mechanism, and employing multiscale feature fusion, the 
system significantly improved detection accuracy in complex scenarios. Specifically, it attained 
a mAP@0.5 of 0.5719, representing a 16.88% increase over traditional methods such as faster 
R‑CNN. This result reflects the model’s reliability in localizing targets with sufficient spatial 
overlap to support stable distance estimation, even in cluttered urban environments. 
	 The monocular ranging model, constructed using camera calibration parameters and 
perspective geometry principles, effectively addresses the scale ambiguity inherent in monocular 
vision when converting two‑dimensional images into three‑dimensional space. In multiple test 
scenarios, MAE and RMSE were controlled within 1.2 and 1.8 m, meeting engineering 
application requirements. The system demonstrated excellent real‑time performance, achieving 
inference speeds of up to 140 FPS on the Tesla P100 platform. Its lightweight design enables 
deployment on embedded devices, providing reliable real‑time distance data for advanced driver 
assistance systems such as automatic emergency braking and lane departure warning. 

Fig. 7.	 (Color online) Results of distance measurement of YOLOv5 architecture. (a) Rendering before testing 
system. (b) Rendering after testing.

(a)

(b)
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Furthermore, multidimensional data augmentation strategies—including Mosaic stitching and 
color space transformations—enhance robustness under challenging lighting and weather 
conditions, validating the practical applicability of the developed vehicle ranging system in this 
study. 
	 Despite these achievements, accuracy decreased in scenarios involving severe occlusion or 
distant small vehicles, and multi‑object tracking in dense traffic required further optimization. 
Therefore, it is required to integrate multimodal sensor data, such as millimeter‑wave radar and 
IMUs, to compensate for the limitations of monocular vision. End‑to‑end depth estimation 
networks need to be integrated into the developed system to reduce reliance on prior knowledge 
of target dimensions. The model size might be compressed through neural network pruning and 
quantization to enable low‑power, real‑time applications in edge computing environments.
	 Through the integration of YOLOv5’s efficient detection capabilities with a monocular 
geometric ranging model, a low‑cost, high‑precision traffic perception system can be developed. 
The system developed provides theoretical and practical references for advanced algorithm 
optimization and hardware computing power, which can be applied to autonomous driving and 
smart city infrastructures, thus contributing to enhancing traffic safety and operational 
efficiency.
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