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We developed a low-cost, high-precision monocular visual ranging system based on the You
Only Look Once version 5 (YOLOVS5) object detection algorithm, addressing the limitations of
traditional methods by integrating deep learning with computer vision. The YOLOv5
architecture is optimized through the adoption of the cross stage partial darknet backbone
network and the Mosaic data augmentation strategy. The architecture improves vehicle detection
accuracy with a mean average precision at intersection over union threshold 0.5 of 0.5719, and
the inference speed of 140 frames per second. Multiscale object detection capabilities are further
enhanced using an adaptive anchor box generation mechanism. The monocular ranging model
was constructed by combining camera calibration parameters with perspective geometry
principles. Bounding box information produced by YOLOvVS is mapped to three-dimensional
spatial distances through the relationship between object pixel dimensions and actual physical
dimensions, effectively mitigating the scale ambiguity inherent in monocular vision. The
experimental results showed that the system maintained average ranging errors within
engineering-acceptable limits under diverse lighting and weather conditions while satisfying
real-time requirements. Compared with traditional geometric ranging benchmarks, the
optimized model showed a 12% improvement in mean absolute error and root mean square error
with an overall accuracy enhancement of 16.88%. The results confirm that the developed
monocular visual ranging model balances cost and performance and is a reliable method for
intelligent transportation systems. By functioning as a robust software-defined virtual sensor,
the system offers significant engineering application value and contributes to the advancement
of intelligent driving technologies.

1. Introduction
With accelerating urbanization and increasing traffic volumes, traffic safety and passage

efficiency have deteriorated. Intelligent transportation systems (ITS) are a core technological
method in addressing these challenges, with their effectiveness largely dependent on
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environmental perception capabilities, particularly vehicle ranging technology. Traditional
ranging methods, such as light detection and ranging and millimeter-wave radar, provide high
accuracy but are constrained by high hardware costs and limited adaptability to diverse
environments, rendering them inappropriate for large-scale deployment.

In contrast, computer-vision-based ranging methods are widely used owing to their low cost,
flexibility, and ease of deployment. Nevertheless, monocular visual ranging continues to face
challenges in accuracy and robustness because of the inherent difficulty of mapping
two-dimensional images to three-dimensional space, including issues such as scale ambiguity
and environmental interference.

Recent advances in deep learning have enabled target detection and ranging. You Only Look
Once v5 (YOLOVS), a representative algorithm in real-time object detection, balances speed [up
to 140 frames per second (FPS)] and accuracy [mean average precision (mA4P) at an intersection
over union (IoU) threshold of 0.5 (mAP@0.5) of 0.5719] through its cross stage partial (CSP)
darknet (CSP-Darknet) backbone, Mosaic data augmentation, and lightweight design. Previous
research was largely concentrated on improving detection performance, with the limited
systematic integration of detection outputs into geometric ranging models. Furthermore,
challenges remain in enhancing real-time performance and stability under complex
environmental conditions.

To overcome the challenges, we developed a monocular visual vehicle ranging system based
on YOLOVS. The system optimizes the YOLOvVS architecture by introducing adaptive anchor
box generation and a small-object detection branch, as well as integrating camera calibration
parameters with perspective geometry. The system contains a distance mapping model based on
pixel coordinates in the 3D space. As a result, the system developed in this study improves
vehicle detection accuracy under complex lighting and multiple weather scenarios and mitigates
scale ambiguity in monocular ranging through prior knowledge of target dimensions and camera
calibration. It also optimizes real-time performance to meet the low-latency requirements of
intelligent driving systems.

Through the integration of YOLOVS’s efficient detection capabilities with a monocular
ranging model, the system delivers an end-to-end vehicle ranging solution.(!) Specifically, it
enhances model generalization in complex environments through multidimensional data
augmentation and lightweight design and contributes to the development of a low-cost, highly
reliable autonomous driving assistance system capable of automatic emergency braking and lane
departure warning. The system also presents the potential of monocular visual ranging in
intelligent transportation and directions for multisensor fusion and cross-scenario optimization.

2. Literature Review

Researchers have advanced deep-learning-based vehicle ranging methods. Because of the
widespread adoption of the YOLO architecture, the balance between detection accuracy and
real-time computational efficiency has been optimized. Specifically, the YOLO-Tiny object
detection with lightweight attention model enhances the detection of distant vehicles by
incorporating a small-object detection branch and a global attention mechanism, and provides
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high-precision coordinate inputs for monocular ranging.). Through the refinement of the
YOLOVS architecture, infrared imaging methods become robust and adaptable across varying
illumination conditions.

In the ranging methods, a combination of geometric projection and target prior dimensions is
adopted. For example, the feature optimization with a simplified CSP-Darknet model is
constructed on the basis of a lightweight network structure to minimize computational overhead
and enable real-time ranging on embedded systems.® Despite such advancements, current
methods lack robustness in adverse environments, including dense fog or high-contrast
backlighting, and exhibit limited efficacy in managing multi-object overlap or partial occlusion.

On the other hand, multimodal fusion and theoretical frameworks have been emphasized in
the development of ranging methods. The Transformer prediction head—YOLOv5 model
integrates a Transformer prediction head with the convolutional block attention module,
significantly improving detection accuracy for dense vehicle clusters in aerial imagery.® In
distance estimation, multiscale feature fusion methods are used to optimize accuracy through
stereo matching and stereo vision.®®) However, these methods are constrained by high hardware
costs and significant computational complexity.

The YOLO models, especially YOLOVS, represent the effectiveness of the CSP-Darknet
backbone and Mosaic data augmentation as reliable methods for monocular ranging tasks.© The
end-to-end deep learning models utilize depth estimation networks to directly output 3D
distances.”) Nevertheless, the applications of the end-to-end methods are limited by their
dependence on high-quality data annotation and substantial processing power, hindering their
widespread practical application.

In summary, the present ranging methods face the following challenges.

e Scale ambiguity: Monocular vision systems heavily rely on prior knowledge of vehicle
dimensions; however, the inherent diversity of vehicle types introduces cumulative estimation
errors.

» Environmental interference: Extremes in lighting, meteorological fluctuations, and cluttered
backgrounds degrade detection and ranging precision.

* Accuracy-latency trade-off: Lightweight models sacrifice critical spatial features, while
high-precision models struggle to meet the low-latency requirements of embedded vehicle
platforms.

Such challenges necessitate further studies to converge on multisensor fusion by integrating
millimeter-wave radar or inertial measurement unit data, adaptive optimization by metalearning
or online calibration, and edge computing deployment by pruning and quantization for low-
power inference.

To overcome such challenges, we integrated object detection with monocular geometric
ranging based on YOLOVS. This approach introduces an adaptive anchor box generation
mechanism and a multiscale feature fusion strategy to rectify detection deficiencies for small-
scale targets. By integrating camera calibration with perspective projection models, this
approach also mitigates the scale ambiguity issue and enhances mean absolute error (MAE) and
root mean square error (RMSE) compared with those of traditional methods. The model
developed in this study maintains inference speeds compatible with in-vehicle embedded
platforms, offering a high-reliability technical pathway for intelligent transportation sensing.
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3. System Architecture
3.1 YOLOVYS algorithm

YOLOVS is an advanced algorithm widely used in object detection. It is characterized by fast
inference speed and high detection accuracy.®) It optimizes network structure and training
algorithms, achieving enhanced detection performance in complex scenarios while maintaining
high real-time capability. These features make it well suited to tasks with stringent latency
requirements, such as object detection and localization.

Compared with other versions, YOLOVS significantly improves the balance between speed
and accuracy, which makes it a preferred solution for real-time visual perception systems.®)
YOLOVS5 treats object detection as an end-to-end regression problem, using a single forward
pass to directly predict object bounding box coordinates and class probabilities. The region
proposal process of traditional two-stage algorithms is omitted, which significantly improves
detection efficiency.!” The model takes fixed-size images as input, which are then processed
through convolutional layers, downsampling layers, and feature fusion modules to generate
dense feature maps. This feature map is divided into grid cells, with each cell predicting a set of
bounding boxes, confidence scores, and category information.

YOLOVS offers a superior accuracy-to-latency ratio on edge devices such as the NVIDIA
Jetson series. While YOLOVI2 introduces advanced attention mechanisms that improve recall,
its features result in inconsistent inference speeds and higher power consumption in mobile
environments. Secondly, the anchor-based architecture of YOLOvVS provides a highly stable
bounding box output, which is crucial for geometric ranging formulas that are sensitive to
coordinate jitter. Finally, YOLOv5’s deployment ecosystem (including mature INTS quantization
tools) ensures that the system maintains a stable speed of 140 FPS, meeting the safety-critical
requirements of intelligent driving.(!D

In YOLOVS5’s network architecture design, the backbone network is responsible for extracting
deep semantic features, while the neck module utilizes the Feature Pyramid Network(!? and
Path Aggregation Network (PAN)!3) to fuse multiscale features, thereby enhancing the
recognition performance of objects of different sizes. Additionally, the model adopts an anchor-
free mechanism, eliminating the prior constraints of traditional anchor box matching. It
accurately predicts the center point coordinates and bounding box size of the target, making
model training more flexible and improving its generalization ability.

YOLOVS has exhibited its potential for real-time vehicle recognition thanks to its efficient
architecture and powerful recognition capabilities, since it quickly and accurately identifies
target vehicles for distance estimation and other advanced features.(!¥) The current version of
YOLOVS includes its variations, including YOLOvSs, YOLOvS5m, YOLOVS5I, and YOLOv5x.(%)
The structures of these models are basically identical, with differences in the depth-multiplexed
model and width-multiplexed model parameters. YOLOvS comprises input, skeleton, neck, and
head (prediction) layers. The skeleton layer uses New CSP-Darknet53,(1®) while the neck layer
employs Spatial Pyramid Pooling—Fast (SPFF) and New CSP-PAN. The main architecture of

YOLOVS5 is shown in Fig. 1. At the input end, YOLOVS5 uses Mosaic data augmentation,
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Fig. 1. (Color online) Architecture of YOLOVS5 detection algorithm.

specifically CutMix data augmentation. Mosaic data augmentation is used to improve the
original two images into four images for concatenation, and then randomly scale, crop, and
rearrange the images. Data augmentation is employed to improve the imbalance of small,
medium, and large target data in the dataset. The techniques used in Mosaic data augmentation
include Mosaic, copy—paste, random affine transformations (scaling, translation, and shearing),
MixUp, Albumentations, color space adjustments (hue, saturation, and value), and random
horizontal flip.

The Mosaic data augmentation method has the following advantages.

* Enriched dataset: By randomly selecting four images, applying random scaling, and
combining them with additional small targets, the dataset is significantly enriched. This
process enhances sample diversity and strengthens the network’s robustness.

* Reduced graphics processing units (GPU) utilization: Random image combination enables a
single composite image to represent four individual samples, reducing the number of images
required per batch. This approach improves training efficiency and yields better results even
when using a single GPU.

Additionally, by pruning identified objects, the model recognizes objects on the basis of local
features for the detection of blurry objects and improves its detection capabilities (Fig. 2). The
implementation of Mosaic data augmentation enhances the model’s robustness and generalization
capabilities. While standard augmentation techniques manipulate individual images, the Mosaic
method synthesizes four distinct training samples into a single composite image through a
stochastic cropping and stitching process. This mechanism effectively increases the batch size
virtually for the same memory footprint, enabling the network to be trained with a significantly
higher density of objects. As shown in the Mosaic tiles of Fig. 2, the method introduces three
advantages for vehicle detection.
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Fig. 2.  (Color online) Mosaic data enhancement effect in images.

Multiscale feature learning: By shrinking four original images to fit into one composite
frame, the model recognizes vehicles at much smaller pixel scales than present in the raw
dataset. This addresses the challenge of detecting distant or small-scale targets in monocular
vision systems.

Contextual enrichment: The stitching process creates artificial intersections of scenes, such
as placing a vehicle from a night-time highway scenario adjacent to an urban intersection.
This prevents the model from over-fitting to specific environmental cues and encourages the
learning of invariant object features.

Implicit occlusion handling: The random cropping at the stitch boundaries of the methods
results in partial bounding boxes, where the rear or side profile of a vehicle is visible. This
enables occlusion training for natural forms, improving the system’s performance in
congested traffic scenarios where intervehicle overlap is frequent.

Through the integration of the Mosaic-augmented samples, the YOLOVS architecture is used

to identify features, improving MAE and RMSE observed in the model evaluation.

The YOLOVS architecture contains the convolutional module, C3, and SPFF layers in its

backbone on the input side.
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The convolution module consists of a convolution layer, batch normalization, and a sigmoid
linear unit or the swish function (SiLu) activation layer. Batch normalization is conducted to
prevent overfitting and accelerates convergence. The SilLu activation function is used to obtain a
weighted linear combination of the sigmoid function, which is defined as

SiLu(x) =x-0'(x) - *

, 1
1+e™”

where x is the input to the activation function and o(x) is the logistic sigmoid. The SiLU
activation function is differentiable and exhibits continuous smoothness. However, it is not
strictly monotonic, and its primary limitation lies in the high computational cost compared with
simpler activation functions such as a rectified linear unit.

The C3 module shares structural and functional similarities with the CSP architecture but
differs in its computational units. It contains three standard convolutional layers, with the
number of layers determined by the product of n and depth_multiple parameters specified in the
YAML Ain’t Markup Language configuration file. Designed to learn residual features, the
module is organized into two branches. One branch employs multiple bottleneck stacks, while
the other passes through a simplified shortcut path. These branches are subsequently merged.
Compared with the earlier BottleneckCSP module, the C3 module removes the shortcut folding
operation and adopts the SiLU activation function in the standard connection path. The
structural diagram of the C3 module is presented in Fig. 3.

The SPP module in YOLO is constructed on the basis of a spatial pyramid, integrating local
and global features. By merging feature maps with different receptive fields, SPP enhances the
expressiveness of feature representations, which is particularly beneficial when target objects
vary significantly in size. This capability substantially improves detection accuracy in complex
multi-object scenarios. Because of this capability, an improved design of the SPPF can be
introduced. Instead of employing the large pooling kernels (5 x 5, 9 x 9, and 13 x 13) in the
original SPP, SPPF cascades three 5 x 5 max pooling operations (Fig. 4). This substitution
reduces computational overhead while preserving the ability to capture multiscale contextual
information, thereby improving inference speed without compromising accuracy.

Bottleneck: True
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Fig. 3. (Color online) C3 layer structure.
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Fig. 4. (Color online) SPFF module feature map.

3.2 Monocular ranging method

The YOLOVS architecture demonstrates high efficiency in delivering accurate detection
performance, which is advantageous for real-time vehicle recognition. Its ability to provide
precise target localization and size information offers essential data support for distance
estimation and advanced feature extraction.

The monocular ranging method developed in this study integrates deep learning with
computer vision, establishing an efficient ranging algorithm based on YOLOVS. Initially,
YOLOVS conducts high-precision vehicle detection and localization. Its performance was
validated on public datasets, Common Objects in Context and Pattern Analysis and Statistical
Modelling and Computational Learning—Visual Object Classes, for detection capability, and the
mAP@0.5 was 0.57192 and mAP@0.5:0.95 was 0.41403. The improved model achieves a 5.3
percentage-point increase in detection accuracy compared with the original version in
small-object detection scenarios using remote sensing images, and surpasses the Faster R-CNN
algorithm by 16.88 percentage points in mAP. Distance estimation is then performed by
extracting the pixel dimensions of target vehicles and combining them with prior knowledge of
actual physical sizes, using a perspective projection model.

To enhance ranging accuracy, camera calibration techniques were introduced in this study.
By employing a checkerboard calibration board, the camera’s intrinsic matrix and distortion
coefficients were used to determine a mapping relationship between two-dimensional image
coordinates and 3D coordinates while compensating for geometric distortions caused by the
camera lens. Since variations in ambient lighting deteriorate detection accuracy, data
augmentation methods, including adjustments to brightness and contrast, and the addition of
Gaussian noise, are applied to improve the model’s adaptability under diverse illumination
conditions.

4. Methodology
4.1 Experiment

To validate the developed model, controlled vehicle detection experiments were conducted
using the Tesla P100 platform. The hardware configuration consisted of a complementary



Sensors and Materials, Vol. 38, No. 1 (2026) 337

metal—oxide—semiconductor (CMOS)-based monocular camera sensor mounted at a height of
1.2 m on the vehicle’s centerline to simulate a standard driver-assist system. In the detection
experiment, various vehicle classes, including sedans, SUVs, and light trucks, were included to
ensure the model’s robustness across different prior dimensions.

Each target vehicle was measured to establish ground-truth width and height for the scale-
ambiguity correction module. Images were captured both in a static environment at marked 5 m
intervals and during dynamic “lead—follow” maneuvers on a paved test track. The YOLOVS5
architecture was used in an onboard NVIDIA Jetson Orin module, with the detection results
(bounding boxes and classification) timestamped and logged alongside the vehicle’s controller
area network bus data.

The efficacy of the geometric ranging model is dependent on the optical characteristics of the
monocular sensor. Therefore, we utilized a high-performance complementary metal-oxide—
semiconductor industrial camera. The specific parameters used in the calculation of the intrinsic
matrix and the focal length are presented in Table 1. The global shutter sensor was used for
vehicle ranging, as it eliminates the rolling shutter distortion that occurs during high-speed
motion. This ensures that the bounding boxes generated by YOLOvVS accurately reflect the
vehicle’s spatial proportions. The hardware parameters were integrated into the pinhole camera
model to transform 2D image coordinates into 3D world coordinates.

This experimental setup was selected to ensure that the bounding box fluctuations caused by
vehicle vibration or changes in pitch during braking were explained through the ranging error
analysis, and to assess the system’s performance in a nonidealized environment.(17)

4.2 System implementation

In system implementation, the detection results of YOLOvS were integrated with a monocular
ranging algorithm. The detection results included the coordinates and pixel size of the target
bounding box and the visual feature parameters of the target, while the monocular ranging
algorithm uses geometric optical principles to calculate the actual distance. This method retains
YOLOvS5’s real-time detection capabilities while improving ranging accuracy. For multi-object
scenarios, it is possible to simultancously estimate the distances of multiple vehicles by
improving the nonmaximum suppression algorithm and ranging calculation logic. Accurate
distance measurement is essential for intelligent driving systems. Existing methods are classified
into active and passive methods. Active distance measurement methods rely on onboard devices

Table 1

Specifications of monocular vision sensor.

Parameter Specification

Sensor type 1/2.8" CMOS progressive scan
Effective pixels 1920 (horizontal) x 1080 (vertical)
Pixel size 2.9 %29 pm?

Focal length 6 mm (fixed)
Horizontal field of view 82°

Shutter type Global shutter

Output interface USB 3.0 / Gigabit multimedia serial link version 2
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such as sensors, cameras, and light detection and ranging. Cameras are widely used owing to
their relatively low cost and stable performance. Accordingly, we used cameras for distance
measurement.

Monocular ranging methods yield estimates of object distance by applying ranging models to
identify bounding boxes on the basis of the size and position of the target within the image.
These algorithms show low computational complexity and reduced cost and mitigate residual
errors through calibration. Because of their practicality, monocular visual sensors are employed
in product development. Compared with other ranging methods, monocular vision benefits from
mature algorithms. Therefore, we adopted monocular visual ranging as the primary method in
this study.

In contrast, binocular vision methods are used to determine distance by calculating the pixel
disparity of the same object across two imaging planes. Object depth is calculated using the
camera focal length, the measured disparity, and the known baseline distance between the two
cameras. Although binocular ranging methods present higher accuracy and do not require a
training dataset, they cause computational complexity, slower processing speed, and higher
hardware costs since dual cameras are required. The advantages and disadvantages of monocular
ranging and binocular ranging are compared in Table 2.

For accurate distance estimation, points must be acquired in the 3D space. Since the input
data consists of 2D planar images captured by the camera, it is essential to examine how points
in the 2D space are transformed into corresponding points in the 3D space. This transformation
necessitates conversions among the pixel coordinate system, the image coordinate system, the
camera coordinate system, and the world coordinate system. The relationships among these
systems are illustrated in Fig. 5.

Table 2
Features of monocular ranging and binocular ranging.

Task Advantage Disadvantage
Low computing power, fast speed,

Monocular . The sample database needs to be maintained, and
. high cost performance, . . .
ranging . . the distance calculation accuracy is low.
and relatively simple system structure.
Binocular Accurate calculations without the need High computational load, high cost,
ranein for datasets or prior identification poor registration results,
gmng and measurement requirements. and difficulty in commercialization.

tem) 11
dinate Sys P.
(pixel COO'< A
0 ¥,
(Word Coc:rdinate System)
X
0 | — ;’/

P 0
(Focal leng

A _\:'

(optical axis)

(Camera CoordinateSystem)

Fig. 5. Interrelationship between four coordinate systems.
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1. Pixel coordinate system: Digital images are composed of discrete pixels. The origin of the
pixel coordinate system is denoted using the origin at (0, 0) (O,), with the horizontal direction
defined as the horizontal and vertical directions along u- and v-axes.

2. Image coordinate system: The origin of the image coordinate system is the camera coordinate
system (O,). It is parallel to the pixel coordinate system, with the horizontal direction defined
as the x-axis and the vertical direction as the y-axis. Different from pixel coordinates, the
units are expressed in millimeters.

3. Camera coordinate system: The origin of the camera coordinate system is O,. The X, and Y.
axes are parallel to the x- and y-axes of the image coordinate system, while the Zc-axis
coincides with the optical axis of the camera.

4. World coordinate system: The external environment is represented in the world coordinate
system, defined by the X, -, ¥, -, and Z, -axes. A point in the real world, P, is mapped to a
corresponding point P in the image through the transformation from world coordinates to
image coordinates.

The pixel coordinate system provides positional information for each pixel but not the size of
objects. Therefore, transformations between coordinate systems are required to establish
meaningful geometric relationships. Specifically, the relationship between coordinates (x, y) in
the image coordinate system and (u, v) in the pixel coordinate system can be expressed as

, @

where (1, vg) are the pixel coordinates of the image center, and dx and dy are the physical
lengths of the horizontal and vertical pixels, respectively. It is written as the following rank-four
coordinate matrix.

X de 0 0fu —ugdx dx 0 —uydx||u
v =0 dy Of|v|+|—vydy|=|0 dy —vedy|lv 3)
1 0 0 0}l0 1 0 0 1 1

The distance of OO is the focal length f. Figure 6 shows the process of imaging an object
onto the image coordinate system, where points P and P’ represent the coordinates in the camera
coordinate system and image coordinate system, respectively.

Triangle O.0,B is similar to triangle O.C,, and triangle O.BP’ is similar to triangle O .AP.
According to the principle of similar triangles, Eq. (3) is used.

0,0, OB _Ob PB
0.C' CA 04 PA

@

The distance of O,0; is the focal length £ By combining P(X,, Y,, Z.) and the coordinates of
point P'(x, ), Eq. (4) is written as
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PX,Y.Z)

Fig. 6. Process of imaging objects into the image coordinate system.
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Further simplification yields
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In the world coordinate system, P, =[X,,,Y,,,Z, 1" represents the coordinates of an object in
the world coordinate system, which is a globally fixed reference system used to describe the
relative positions of all objects in the scene. In the camera coordinate system, P, =[X,.,Y.,Z,]"
represents the coordinates of an object in the camera coordinate system, with the origin located
at the camera’s optical center.

The pose of the camera in the world coordinate system is defined as the 3 x 3 orthogonal
matrix R, satisfying RTR=1 ({ is the unit matrix). The matrix reflects the direction of rotation of
the camera relative to the world coordinate system. The position of the camera in the world
coordinate system is defined by a 3D translation vector =[z,,?,,7, I

To convert from the world coordinate system to the camera coordinate system, the world
coordinates are first translated to account for the camera’s position, and then a rotation is
applied.

P, =R(P,—1) @)

c
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Matrix operations are conducted using the following set.

N1 N2 N3
R=\ry rm m ®)

B T 733
Then, Eq. (8) is defined.

Xc :rll(Xw_tx)+rl2(Yw_ty)+r13(Zw_tz)
YcZFZI(XW_tx)+r22(Yw_ty)+r23(Zw_tz) ©)

Zo=ry (X, —t,)+ 1 (Y, =1, )+ 733 (2, - 1.)

To facilitate the unified representation of translation and rotation in matrix multiplication,
homogeneous coordinates are introduced. When the following matrices are satisfied,

P =[ X, 2,11 ) B =Y 20T (10

wrTw? crrc?

The conversion equation is defined as
R —Rt
h h
P, :|:0T . jIPw: (1)

where 0 = [0,0,0]”. The 4 x 4 matrix is an external parameter matrix, which integrates the
rotation and translation information of the camera.

The rotation matrix R is expressed using Euler angles (rotation angles around coordinate axes
(a, B, y) or obtained by quaternion transformation. For example, rotation matrices around the x-,
y-, and z-axes are defined as follows.

10 0
Rx(a): 0 cosa -sina (12)

0 sina sina

[ cosp 0 sinf |
R(B)=| 0 1 o0 (13)
|—sinf8 0 cosp |
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cosy —siny 0
R.(y)=|siny cosy 0 (14)
0 0 1

The combination rotation matrix R= R, (7) R, (B)R, (). Translation vector ¢ corresponds
to the coordinates of the camera’s optical center in the world coordinate system. The coordinate
is obtained through camera calibration, simultaneous localization, and mapping. By using this
method, YOLOVS is combined to achieve distance measurement when performing object
detection.

4.3 Field testing and sensor integration

To validate the performance of the developed system, field tests were conducted using a
passenger vehicle equipped with a high-definition monocular camera sensor (1920 x 1080
resolution at 30 FPS). The system was integrated into an onboard computing unit (NVIDIA
Jetson Orin) to evaluate its performance as an edge-sensing device. The field test was performed
on a closed-loop urban test track under varying lighting conditions. To provide a ground-truth
reference for distance estimation, a high-precision millimeter-wave radar sensor and a
professional-grade laser rangefinder were mounted with the camera. This allowed for real-time
synchronization between the virtual vision sensor output and physical distance measurements.
The test scenarios included static ranging to measure distances to stationary vehicles at fixed
intervals (5 to 50 m) to calibrate the geometric projection model, a dynamic following test to
evaluate the system’s ability to track and range a moving lead vehicle at speeds up to 60 km/h,
and environmental stress tests to assess the sensor’s robustness against atmospheric noise and
reduced visibility.(!®) The results of these field tests confirmed that the integration of the
YOLOVS algorithm with the physical camera hardware achieves a sensing reliability satisfactory
for ITS.

4.4 Evaluation metrics and statistical analysis

The reported vehicle detection accuracy, specifically the mAP@0.5 of 0.5719, was calculated
by the standard Common Objects in Context evaluation protocol. The dataset was partitioned
into training, validation, and testing sets in a 7:1:2 ratio. After the model reached convergence at
epoch 300, the testing set was used for inference. The mAP was derived from the precision—
recall curve. For each detection, loU was calculated between the predicted bounding box and the
ground truth. A detection was classified as a true positive if loU was 0.5; otherwise, it was
classified as a false positive. AP for the vehicle category was calculated by integrating the PR
curve as®)
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APz.[;p(r)dr, (15)

where p(r) represents the precision at a given recall level 7.
Since we focused on vehicle ranging in this study, mAP@0.5 represented the mean of these
AP values across all vehicle classes.

5. Results and Discussion

The developed model was evaluated for performance in terms of accuracy and reliability.
Built upon the YOLOVS architecture, the system processes real-time image data captured via a
monocular camera. Following image preprocessing, the imagery was fed into the trained
YOLOvVS5 model for object detection, the output being vehicle classification, spatial localization,
and bounding box coordinates. Selecting rigorous evaluation metrics is critical for assessing the
distance measurement system’s efficacy. We utilized MAE to quantify the average absolute
deviation between predicted and actual distances, providing a direct measure of prediction
accuracy. To complement this, RMSE was used to reflect the average magnitude of prediction
errors, emphasizing the impact of large deviations.

IoU was employed to evaluate the overlap between predicted bounding boxes and ground-
truth annotations. High IoU values are essential for ensuring precise alignment, which directly
influences the accuracy of subsequent distance estimations. Additionally, precision and recall
were utilized to assess detection performance, ensuring the accuracy and completeness of the
results.

Distance was estimated using geometric principles synthesized with camera calibration
parameters. A precalibrated intrinsic matrix K was obtained for the mapping of detected vehicle
boundaries into three-dimensional space.

582488 0 0
K= 0 579370 245140 (16)
0 0 1.0

By correlating known vehicle dimensions with pixel-based measurements, a distance
estimation equation is derived on the basis of the principle that an object’s apparent pixel size is
inversely proportional to its distance from the sensor. To enhance the precision, the model
incorporated compensation for lens distortion.

System reliability was evaluated through comparative tests using datasets collected under
diverse lighting and meteorological conditions, supplemented by unmanned testing scenarios to
validate broader applicability. The system must sustain high frame rates of taking images while
maintaining accuracy. Consequently, processing latencies were recorded, and hardware and
software optimizations were implemented to ensure operational capability on embedded
platforms.
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The YOLOvS5-based vehicle ranging model demonstrated effective vehicle identification and
localization, establishing a robust foundation for ranging tasks. The monocular ranging method,
specifically for vision-based adaptive cruise control (ACC) and width-based distance estimation,
achieved high precision in calculating vehicle-to-camera distances. Despite the results,
challenges remain for images taken in complex environments where partial occlusion or
suboptimal lighting introduce prediction errors. Dataset quality and diversity are the important
determinants of model performance. Limited coverage or noise within the training data
diminished generalization and ranging accuracy.

While YOLOVS is computationally efficient and appropriate for real-time applications,
hardware constraints and limited computational resources must be balanced in its deployment to
maintain system stability. To address such constraints, the scale and diversity of the training
dataset must be expanded to improve generalization across edge cases. Also, by integrating
multimodal sensor fusion and advanced deep learning refinements, system stability can be
enhanced.

It is important to continuously refine hardware configurations to enhance real-time
efficiency. The developed YOLOVS architecture can be used to improve monocular distance
estimation and provide a reference for the development of future intelligent driving technologies.
In terms of detection accuracy, the YOLOVS architecture performs well in vehicle detection,
accurately identifying targets and providing more precise location information. This lays a solid
foundation for subsequent ranging tasks. In terms of the accuracy of distance estimation results,
the monocular distance estimation method, with vision-based single-camera ACC and distance
estimation when the vehicle width is known, demonstrated high precision, enabling the accurate
estimation of the distance between the vehicle and the camera to a certain extent. However, the
errors observed in complex scenarios must be corrected. If part of the vehicle is obstructed or
lighting conditions are poor, the distance estimation results may be affected to some extent.
Figure 7 shows the original image and the detection results.

To quantify the performance enhancement of the developed system, a comparative analysis
was conducted against a traditional monocular ranging method. The baseline system utilizes the
YOLOvV3-Tiny architecture for object detection coupled with a standard geometric projection
model.29 The developed method employs an adaptive anchor box mechanism and YOLOV5’s
CSP-Darknet backbone, while the traditional system relies on fixed-size bounding box priors
and a linear mapping function for distance estimation.

A 16.88% improvement in ranging accuracy (MAE/RMSE) was observed owing to the
reduction in bounding box jitter provided by the YOLOVS architecture and the superior handling
of scale ambiguity through our calibrated perspective projection. While the traditional system
exhibits significant error accumulation as vehicle distance increases beyond 30 m, the developed
model maintains a stable error curve owing to the enhanced feature extraction of the multiscale
fusion strategy.
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(b)

Fig. 7. (Color online) Results of distance measurement of YOLOVS architecture. (a) Rendering before testing
system. (b) Rendering after testing.

5. Conclusions

We developed and validated an efficient, low-cost monocular visual vehicle ranging system
based on the YOLOvS detection algorithm, offering an innovative solution for intelligent
transportation and autonomous driving. By optimizing the YOLOVS architecture, incorporating
an adaptive anchor box generation mechanism, and employing multiscale feature fusion, the
system significantly improved detection accuracy in complex scenarios. Specifically, it attained
a mAP@0.5 of 0.5719, representing a 16.88% increase over traditional methods such as faster
R-CNN. This result reflects the model’s reliability in localizing targets with sufficient spatial
overlap to support stable distance estimation, even in cluttered urban environments.

The monocular ranging model, constructed using camera calibration parameters and
perspective geometry principles, effectively addresses the scale ambiguity inherent in monocular
vision when converting two-dimensional images into three-dimensional space. In multiple test
scenarios, MAE and RMSE were controlled within 1.2 and 1.8 m, meeting engineering
application requirements. The system demonstrated excellent real-time performance, achieving
inference speeds of up to 140 FPS on the Tesla P100 platform. Its lightweight design enables
deployment on embedded devices, providing reliable real-time distance data for advanced driver
assistance systems such as automatic emergency braking and lane departure warning.
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Furthermore, multidimensional data augmentation strategies—including Mosaic stitching and
color space transformations—enhance robustness under challenging lighting and weather
conditions, validating the practical applicability of the developed vehicle ranging system in this
study.

Despite these achievements, accuracy decreased in scenarios involving severe occlusion or
distant small vehicles, and multi-object tracking in dense traffic required further optimization.
Therefore, it is required to integrate multimodal sensor data, such as millimeter-wave radar and
IMUs, to compensate for the limitations of monocular vision. End-to-end depth estimation
networks need to be integrated into the developed system to reduce reliance on prior knowledge
of target dimensions. The model size might be compressed through neural network pruning and
quantization to enable low-power, real-time applications in edge computing environments.

Through the integration of YOLOVS5’s efficient detection capabilities with a monocular
geometric ranging model, a low-cost, high-precision traffic perception system can be developed.
The system developed provides theoretical and practical references for advanced algorithm
optimization and hardware computing power, which can be applied to autonomous driving and
smart city infrastructures, thus contributing to enhancing traffic safety and operational
efficiency.
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