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	 We developed an IoT and machine learning (ML) system to predict injuries and monitor 
performance in athletes by integrating advanced sensor technology. IoT devices, including chest 
straps with heart rate monitors, inertial measurement units, accelerometers, and GPS trackers, 
were used to collect real-time physiological and biomechanical data. The data collected was 
analyzed using statistical methods and ML algorithms (Logistic Regression, Random Forest, 
and Extreme Gradient Boosting). The results showed that training load and fatigue are the most 
significant predictors of injury risk. While heart rate functioned as an independent marker, the 
participants under high strain showed significant cardiovascular overexertion with heart rate 
variability peaking between 100 and 200 BPM and median rates of 140 BPM. Ensemble ML 
models demonstrated exceptional predictive accuracy, reaching an area under the curve of 1.066. 
The results of this study demonstrate that the seamless integration of wearable sensors and data-
driven analytics offers a robust approach to personalizing training and optimizing injury 
prevention.

1.	 Introduction

	 IoT has been widely used in sports. IoT is a network of devices and sensors that collect, 
process, and make decisions in real time. In sports, IoT technologies are applied in wearable 
devices, intelligent tools, and environmental sensors that continuously compile data on the 
athlete’s movement and conditions.(1) By analyzing heart rate, movement speed, acceleration, 
and other physiological and physical data, coaches, trainers, and sports scientists gain important 
information about athletes’ abilities and overall well-being. This enables them to fine-tune 
training strategies, optimize performance, and promote long-term health, which significantly 
benefits the sports community.(2)

	 Real-time data observation is a key to examining an athlete’s overall performance. IoT 
technology ensures a seamless data flow to track an athlete’s movement and biometrics during 
training and games. This allows for timely modifications to exercises or training methods, 
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helping prevent athlete overload and exhaustion. Real-time monitoring of athletes’ biometric 
data and movements helps training programs to be tailored to an athlete’s ability and 
performance, making training effective and efficient.(3) Environmental parameters such as 
temperature, humidity, and altitude are used to optimize performance and prevent injuries, 
which also enhances the athlete’s performance. Diverse data used for athletes’ healthcare are 
summarized in Fig. 1.
	 Machine learning (ML) algorithms have been widely used in sports medicine to predict and 
prevent injuries.(5) With IoT generating a vast amount of data, the algorithms identify complex 
patterns that are not discernible to humans. On the basis of data, ML models estimate the 
likelihood of injury, enabling preventive actions. This ability enables coaches to timely adjust 
training strategies according to the past performance of athletes, helps reduce the potential for 
sports injuries, and ensures fast recovery and resilience of athletes. 
	 There are issues in incorporating IoT technology and ML for injury prediction and 
performance monitoring: effectively and seamlessly integrating the technologies, ensuring the 
accuracy of data collected through advanced sensor technology, and constructing ML 
algorithms. Therefore, we developed a system for the seamless integration of IoT and ML to 
predict injuries and track performance in this study.

Fig. 1.	 (Color online) Diverse data sources used in sports.(4)
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2.	 Theoretical Background

2.1	 IoT on performance tracking and athlete engagement

	 IoT technology enables accurate reporting on athletes’ physiology and movements, which 
helps trainers and athletes make immediate adjustments. Wearable devices, such as 
smartwatches, fitness bands, and sensor-embedded clothing, are used to monitor heart rate, 
oxygen saturation rate, speed, and movement.(6) Coaches need to adjust training programs to 
improve performance and reduce injuries in athletes. 
	 Catapult and WHOOP© are high-tech GPS tracking systems and biometric wristbands. They 
are used to study past and current results and make exercise plans tailored to each athlete. In 
sports clothes, accessories, balls, and rackets, IoT technology is embedded to track the impact of 
training and competitions on athletes. In modern sports, enhancing performance with continuous 
data analysis is considerably emphasized. Embedded IoT technology also enables post-injury 
care. Wearable sensors collect data related to early signs of fatigue, insufficient hydration, or 
unsafe movement patterns that can lead to injury.(7) 

	 IoT technology helps improve safety in sports, as coaches and athletes can prevent injuries 
and remain involved in sports for longer periods by using the data collected. For example, IoT 
devices monitor muscle activity and the type of movement, enabling an efficient recovery 
process after injury (Fig. 2). By monitoring athletes’ biometrics, coaches adjust training and 
competition strategies. 
	 IoT technology also increases athlete engagement by facilitating communication and enabling 
personalized coaching. It helps athletes and coaches exchange information in real time,  regularly 
monitor performance, and set goals based on monitored progress in training and competition.(9) 

Fig. 2.	 (Color online) IoT-based wearable health monitoring device and its operations.(8)
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Through IoT analytics, coaches track each athlete’s performance to provide appropriate support 
and encourage athletes to be more responsible for teamwork. Moreover, IoT technology helps 
adjust strategies and tactics based on data updated in real time. Coaches can make informed 
decisions about tactics based on the ongoing actions of athletes and the team. As IoT analytics 
also help identify what opponents struggle with, coaches and athletes can make informed 
decisions to win. IoT technology enables reliable and ethical training and competition. 
	 Sensors play an important role as they are essential in monitoring athletes’ performance and 
physiological status. The results are important to make tactical adjustments during a match.(10) In 
addition, sensors implemented in sports equipment and venues are used to accurately measure 
distance, speed, and time without errors. For example, sensors in the starting block accurately 
detect a false start. 
	 IoT and sensor technologies have led to technological advancements in sports, providing 
reliable measurement, information, and decision,(11) which are essential for fair play. Referees are 
supported by technology for reliable and fair decisions. Such technologies also enable fans to 
participate actively and enhance their experience and interaction. With sensors and network-
connected devices, spectators can instantly access real-time statistics and detailed information 
about teams and athletes. In various applications, sports events are broadcast live, allowing 
viewers to enjoy key moments and exciting features repeatedly. These features make sports fans 
more engaged and devoted to sports games. By leveraging data analytics and IoT technology, 
broadcasters and event organizers can enhance their content and advertising strategies, 
delivering a more engaging experience for viewers while maximizing revenue opportunities. 
The integration of advanced technology in sports benefits all stakeholders, from athletes and 
teams to fans and sponsors.
	 Nevertheless, limitations exist in the widespread adoption of IoT technology in sports. Data 
privacy and security are concerns to be addressed. False data and disinformation must be 
screened as they have negative effects. High costs to implement the technology are also a hurdle 
for small teams and amateur athletes. Resistance to the introduction of advanced technology has 
also been observed. Therefore, effective data governance, regular platform updates, and 
education on the benefits of IoT technology adoption must be provided to address these issues 
for the more effective use of IoT technology in sports.
	 IoT technology enhances team performance and game fairness based on accurate data. Injury 
prediction and detection, personalized training, team strategies, and the fairness of competitions 
can be enhanced by using wearables, smart devices, and advanced data, which leads to better 
training and competition results. Spectators and viewers can better enjoy sports. However, data 
privacy, financial constraints, and resistance to the adoption need to be addressed for the more 
widespread use of IoT technology in sports.

2.2	 Biomechanical factors in injury prediction

	 To determine the likelihood, extent, and type of injuries in sports, understanding the 
biomechanics of athletes is mandatory. Biomechanics encompasses the study of movement, 
force, and body responses to movements, which is a basis for improving safety or decreasing the 
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risk of injury. Analyzing movement patterns in sports helps identify potential risks and prevent 
injuries, ensuring that athletes perform safely and efficiently. Performing repetitive routine 
exercises can strain muscles over time, while errors in executing precise movements increase the 
risk of injuries. For example, incorrect running form, such as overextending the front foot or 
excessive bouncing, causes stress fractures, plantar fasciitis, or other running-related problems. 
Repeated tossing or hitting can disrupt scapulohumeral rhythm, especially when shoulder 
motion or strength is imbalanced, increasing the risk of tendinopathy and shoulder 
impingement.(12) A weak core and limbs can cause excessive pressure on the lower back when 
twisting, increasing the risk of lumbar spine injuries. 
	 Muscle repetitive stress injuries often arise from overstretching, excessive tension during 
muscle contraction, and imbalances between muscle groups (Fig. 3).(13) Since eccentric 
movements subject muscles to intense strain and structural changes, injuries frequently occur 
under eccentric loading conditions. Muscle damage and inflammation are affected by the degree 
of muscle over-lengthening during maximum stretch or rapid movements. The strength and 
coordination disparities of muscle groups might cause injuries as they compromise joint stability 
and movement efficiency. For example, weak hip stabilizers combined with overly strong 
quadriceps can increase knee valgus and the chances of anterior cruciate ligament injuries 
during cutting motions. Using biomechanical models and advanced motion tracking systems, 
clinicians assess joint flexibility, analyze muscle elongation, and monitor joint-loading patterns 
to enhance injury prevention and rehabilitation. 
	 Overuse injuries in running-related sports often result from variations in ground reaction 
forces, stride mechanics, and joint movement patterns. The force and speed at which the foot 
strikes the ground significantly affect injury potential, as rapid landings increase stress on bones 
and joints. Excessive pronation or supination during the stance alters weight distribution, 
elevating the likelihood of stress fractures, plantar fasciitis, and Achilles tendinopathy.(15) 
Additionally, excessive internal hip movements, common in sports such as soccer and basketball, 
increase the risk of noncontact lower-body injuries. These movement inefficiencies often stem 
from neuromuscular fatigue or improper mechanics, which are detected through detailed motion 
analysis. Optimizing cadence, step length, and muscle strength substantially reduces injury 

Fig. 3.	 (Color online) Repetitive strain injury.(14)
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rates. Therefore, these biomechanical causes must be understood for effective injury prevention 
and rehabilitation.
	 Recent advancements in biomechanical analysis with ML have enhanced injury prediction 
and the identification of key neuromuscular and biomechanical markers. A study assessing elite 
young soccer players pinpointed concentric knee extensor peak torque, hip moments during 
single-leg drop jumps, and center-of-pressure sway as primary predictors of noncontact lower-
extremity injuries. Despite a moderate accuracy [the area under the receiver operating 
characteristic curve (AUC) = 0.63], the study showed the importance of neuromuscular control 
and biomechanical stability in assessing injury risk using the least absolute shrinkage and 
selection operator regression.(16,17) Similarly, ensemble models, such as Extreme Gradient 
Boosting (XGBoost), demonstrated a 78% precision in predicting hamstring strain injuries by 
analyzing hamstring muscle strength and stiffness.(18) These models integrated biomechanical 
sensor data with physiological indicators, such as heart rate variability and respiratory patterns, 
as important information. These studies presented the importance of using advanced analytics 
and biomechanical data in improving injury risk assessment and prevention strategies. 
	 Biomechanical modeling enables personalized injury prevention plans by simulating training 
programs. For example, targeted exercises that focus on the eccentric (downward) phase of 
movement can enhance muscle resilience against high-impact forces and reduce injury 
susceptibility. Strengthening opposing muscle pairs and incorporating dynamic warm-ups can 
improve joint stability and overall mobility. Reducing high-intensity movements and extreme 
ranges of motion minimizes microtrauma and supports proper tissue recovery. These data-
driven interventions not only successfully lower injury rates but also enhance athletic 
performance. By integrating IoT-connected real-time biomechanics with advanced ML analytics, 
injuries can be predicted and prevented effectively.

3.	 Materials and Methods

	 We integrated IoT technology and ML algorithms into the monitoring of athletes’ biometric 
data and movements. Wearable IoT devices were used to collect data to identify the patterns and 
relationships of the data collected. The performance and injury factors of the athlete were 
evaluated through such data collection and advanced data analytics to ensure robust and 
reproducible results to develop evidence-based training and injury prevention methods.
	 This study was conducted in three phases: (1) a literature review and pilot testing to select 
appropriate IoT devices and algorithms with optimal accuracy and reliability, (2) the system 
integration of sensor calibration, data source identification, and ML algorithm selection, and (3) 
system performance and usability evaluation (Fig. 4). The research phases collectively ensured 
the robustness and applicability of the developed system. In this study, we designed and 
implemented an IoT system architecture that encompassed data capture, storage, processing, and 
visualization. The system underwent validation with a cohort of 200 track and field athletes, 
encompassing a range of movements such as sprinting, jumping, and change-of-direction (COD) 
maneuvers.(19) 
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3.1	 Data collection 

	 Data were collected using a chest strap in which a heart rate monitor, an inertial measurement 
unit (IMU), an accelerometer, a gyroscope, and a GPS tracker were embedded. The devices were 
selected, considering their measurement accuracy, data transmission speed and stability, and 
compatibility with commercial software.(19) Heart rate variability was tracked as it is an 
important indicator of stress and recovery. IMU and an accelerometer were used to assess injury 
risks based on biomechanical data, such as joint angles, body speed, and types of movement. 
Temperature and humidity were used to assess the effects of environmental factors on 
performance changes. The collected data were transmitted via Bluetooth Low Energy to a cloud 
server, which used a nonrelational database architecture. The data were captured during training 
and competitions for the monitoring of athletes’ health conditions and performance in various 
events.

3.2	 Data analysis

	 The data collected were analyzed using statistical methods and ML clustering algorithms. 
The noise and artifacts of the raw sensor data were removed using a Butterworth low-pass filter, 
defined by the following transfer function H.
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Fig. 4.	 Research process in this study.
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Here, ωc is the cutoff frequency, and s is the complex frequency variable. Equation (1) was used 
to ensure the integrity of movement data for subsequent analysis. 
	 The participants were athletes and exposed to a high risk of injury, so a uniform risk profile 
was expected. Therefore, unsupervised learning was prioritized to identify subtle biomechanical 
deviations and physiological markers of overexertion. K-means and hierarchical clustering 
algorithms were used to classify movement variability patterns for the detection of abnormal 
movement signatures, such as compensatory joint angles or altered ground reaction forces. 
These are early indicators of potential injury without the necessity of labeled injury outcomes. 
To predict these risk-associated biomechanical states, supervised ML models (Logistic 
Regression, Random Forest, and XGBoost) were trained to identify high-strain states 
characterized by excessive training loads and physiological fatigue. The predictive capability 
was evaluated using AUC and F1-scores to ensure the robustness of the system in identifying 
these precursor states across different athletic subgroups.
	 In this study, SPSS was used for statistical data analysis, and Python programming for ML 
model development and validation. SPSS was used to obtain descriptive statistics and conduct 
correlation and regression analyses to explore relationships between physiological variables and 
injury risks. Python libraries, such as NumPy, Pandas, scikit-learn, and TensorFlow, were 
employed to implement supervised learning algorithms (logistic regression, random forest, and 
XGBoost) for injury prediction.(20) Logistic regression was used to estimate the probability of 
injury occurrence (P) as
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,	 (2)

where  B0  is the intercept,  B1  is a coefficient, and  Xn  is a predictor of training load and 
biomechanical metrics.  Random forest and XGBoost algorithms were used for ensemble-based 
classification as they have superior accuracy and robustness against overfitting. 
	 We calculated the training load in arbitrary unit (arb. unit) using the session-rating of 
perceived exertion (sRPE) method. This involved multiplying the athlete’s RPE (on a modified 
Borg CR-10 scale) by the total duration of the session in minutes. This dimensionless unit 
enables the standardized comparison of workload across various training modalities and is a 
validated metric for monitoring fatigue and injury risk in professional sports.

	 Training Load (AU) = Intensity (RPE Scale 1–10) × Duration (min)	 (3)

Here, intensity is measured using the Borg CR-10 scale (where 1 is very easy and 10 is maximal 
effort), and duration is the total time of the training session in minutes. 
	 GPS tracker data was utilized to quantify external training load by monitoring high-
frequency movement variables, including total distance covered, sprint distance, and movement 
velocity. These metrics were integrated with accelerometer-derived mechanical load and 
physiological heart rate data to create a comprehensive profile of an athlete’s physical exertion. 
Specifically, velocity and distance data from the GPS sensors served as critical inputs for the 
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ML models, allowing the system to correlate high-intensity movement patterns with the onset of 
physical fatigue and subsequent injury risk.
	
3.3	 Ethical considerations

	 This study was conducted following the ethical guidelines established by the institutional 
review board of Shangqiu Normal University before recruiting participants and collecting data. 
The participants were notified of the study goals, steps, possible harms, and advantages, and 
submitted their written permission. Personal information was excluded from the whole data, and 
stored and protected by regulations. Each participant was allowed to quit the experiment 
whenever they wanted. The use of IoT devices was monitored to prevent any discomfort or 
issues that might affect athletes’ performance. It was ensured that ML models were used to 
process the collected data legally, and decisions on using data were made openly and fairly. This 
study was conducted while obeying the highest ethical standards in sports science research.

4.	 Results and Discussion

4.1	 Factors affecting injury risk

	 The correlation matrix (Fig. 5) presents the quantitative relationships among physiological 
and biomechanical factors used to assess athlete health and highlights the importance of an 
integrated monitoring approach. Injury risk is not attributable to a single isolated factor but 
emerges from the interaction of multiple variables. 

Fig. 5.	 (Color online) Correlation matrix of factors affecting injury risk.
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	 Heart rate exhibits negligible correlation with other assessed variables (𝑟 < 0.042), indicating 
that it functions as an independent physiological marker rather than directly reflecting specific 
biomechanical movements. Nevertheless, heart rate variability is a critical indicator of 
cardiovascular stress. The participants experiencing high physiological strain displayed elevated 
heart rate variability (100–200 BPM) compared with the baseline data (120–160 BPM), with 
outliers exceeding 180 BPM identified as states of cardiovascular overexertion, resulting from 
insufficient recovery. Figure 6 shows the heart rate distribution of the participants. The box in 
the plot represents the interquartile range (IQR). The bottom edge of the box corresponds to the 
first quartile (𝑄1), or the 25th percentile, which is approximately 130 BPM. The top edge of the 
box corresponds to the third quartile (𝑄3), or the 75th percentile, which is approximately 150 
BPM. The total height of the box represents the IQR, encompassing the middle 50% of the data. 
The horizontal line inside the box indicates the median, or the 50th percentile. In this case, the 
median heart rate is exactly 140 BPM. The vertical lines, commonly referred to as whiskers, 
extend from the box to the highest and lowest values that are not considered outliers. Typically, 
these whiskers extend to values within 1.5 × IQR from the quartiles. Figure 6 shows that the 
median heart rate is approximately 140 BPM, with a majority of observations falling between 
130 and 150 BPM.
	 A moderate positive correlation (𝑟 = 0.15) was observed between training load and fatigue, 
reflecting the expected biological response to exercise intensity, whereby increased training 
loads contribute to the accumulation of physical fatigue. This relationship confirms that higher 
exercise intensity is a primary driver of accumulated physiological strain. Knee and hip joint 
angles demonstrate limited interaction with other lower extremity joints. Moreover, the absence 
of significant correlations between muscle activation and joint angles suggests that 
neuromuscular control remains relatively stable and is not strongly dictated by specific joint 
positions in this study.
	 Training load was closely associated with injury risk. The participants exhibited training 
loads between 60 and 125 units, whereas their baseline training loads ranged from 15 to 80 units 

Fig. 6.	 (Color online) Distribution of heart rate (BPM) measurements.
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(Fig. 7). Specifically, the high-risk group trained with a load of approximately 80 units, which 
was 60% greater than the median of 50 units observed in the low-risk group. Extreme training 
with limited recovery substantially increases the likelihood of injury, and loads exceeding 120 
units indicate overreaching or overtraining, potentially impairing tissue adaptation and recovery. 
These findings emphasize the necessity of integrating individualized training load monitoring 
into injury prevention programs to safeguard athlete health and performance.
	 The generally weak correlations among factors underscore the appropriateness of the selected 
feature set for ML algorithms. High correlations (multicollinearity) can obscure predictive 
clarity, whereas the distinct nature of these variables enables algorithms to accurately weigh the 
unique contribution of each factor in injury prediction. The results suggest that heightened 
injury vulnerability arises from the integration of high training loads and physiological 
instability rather than from a single determinant.

4.2	 ML model performance

	 ML models showed varying levels of accuracy in injury prediction, while ensembled models 
outperform traditional logistic regression in terms of accuracy. In this study, the prediction 
accuracy of Random Forest and XGBoost models was 1.0, exceeding logistic regression with an 
accuracy of 0.99 (Fig. 8). Ensemble models identified complex relationships of multiple factors 
influencing injury risk. Their high accuracy suggested that they are well-suited for analyzing the 
intricate interactions affecting injury prediction. However, the potential for overfitting must be 
considered, particularly due to the limited number of observations. Logistic Regression, Random 
Forest, and XGBoost models showed high performance, with their receiver operating 
characteristic (ROC) close to 1.0 for identifying differences in injury risk between high- and 
low-injury-risk groups. The models predicted well, although their sensitivities and specificities 
varied. The ROCs of logistic regression, random forest, and XGBoost models were 1.0, 1.0, and 
0.99, respectively (Fig. 9). The XGBoost model’s ROC (0.99) was slightly lower than that of the 

Fig. 7.	 (Color online) Distribution of training load (units) measurements.
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random forest model, primarily owing to its regularization techniques, which limit performance 
in certain cases.
	 The confusion matrix of the logistic regression model is presented in Fig. 9. The confusion 
matrix reveals that the predictive model is exceptionally accurate, but the single different result 
provides an important insight into its limitations. For one participant, the model predicted a low 
risk even though the participant belonged to the high-risk group. Statistically, this single error 
reduces the Recall from a perfect 1.0 to 0.995. The model correctly identified 199 participants as 
being at high risk, which are recorded as True Positives. This high number indicates that the 
model is extremely effective at recognizing the patterns associated with injury risk in the 
majority of the population. The accuracy of the model is 99.5%, and the recall (or sensitivity) is 
also 99.5%. Because the model did not incorrectly flag anyone as high risk who was actually not, 

Fig. 8.	 (Color online) Receiver operating characteristics of injury prediction by ML models in this study.

Fig. 9.	 (Color online) Confusion matrix of logistic regression model.
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the precision is 100%. The only false negative is a significant result, as the participant who 
needed intervention or rest was classified as safe. 

4.3	 Feature importance

	 Feature importance was calculated to identify factors playing an important role in injury risk 
prediction. Feature importance was attributed to training load and fatigue. In random forest and 
XGBoost models, the feature importance of training load was the largest, accounting for 
approximately 0.6 of the entire predictive power. The intensity and frequency of exercise were 
important in predicting an injury (Fig. 10). A feature importance score of fatigue of the XGBoost 
model was 0.38, indicating a close relationship between fatigue and injury. 
	 A moderate feature importance of knee and hip joint angles was observed, indicating that 
they were not primary predictors, although they played an important role in injury prediction. 
The joint angle of the knee was more important than that of the hip, as knee injuries are more 
common in athletes. Muscle activation contributed minimally to injury prediction, implying that 
broader movement mechanics and loads on muscles were stronger indicators of injury risk than 
neuromuscular parameters. While heart rate regulation is important, it was not a significant 
predictor owing to its variability and indirect relationship with injury risk. Monitoring training 
loads is more effective in predicting injury than physiological metrics. 
	 Random forest and XGBoost models accurately predicted injury, relying on similar features. 
The XGBoost model emphasizes complex cases owing to its gradient-boosting process, which 
continuously identifies and refines weak prediction abilities. Both models highlighted training 
load as the most influential factor in injury prediction. By integrating more physiological data, 
an injury prediction method can be enhanced. However, the results of this study provide a 
reference for the development of IoT monitoring systems across various sports.

Fig. 10.	 (Color online) Feature importance of factors affecting injury risk.
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	 The injury prediction models need to be optimized by focusing on the most relevant factors 
and refining the system architecture. In this study, training load and fatigue were significant 
predictors that need to be considered in the design of injury prevention programs. Training load 
needs to be tracked using heart rate monitors, GPS trackers, and accelerometers. Fatigue can be 
measured using heart rate variability and individual reporting. Reducing the number of 
significant predictors enhances the model’s predictability, simplifies sensor requirements, and 
lowers costs, making injury prevention technologies affordable.
	 In adopting ML models, data accuracy must be ensured with the adjustment of the number of 
factors. Sensor accuracy fluctuations, environmental disruptions, data transmission stability, 
and variations in the athlete’s sensor usage must also be considered to calibrate the model’s 
performance and minimize false alarms and missed risks. Appropriate processing speed, 
resource efficiency, and adaptability are also important to ensure the robustness of ML models.
	 To monitor the training load and fatigue of athletes in predicting potential injury risks, cost-
effective wearable devices can be employed to track heart rate, physical activity, and fatigue 
levels. Advanced systems can integrate IMUs, force plates, and environmental sensors to 
generate comprehensive data for elite athletic programs. A modular approach facilitates the 
widespread adoption of the monitoring system across diverse sports. Such a simple model needs 
to be tested with many athletes in diverse environmental conditions in various sports for a 
simple but seamless IoT-based athletic management.

5.	 Conclusion

	 We developed and validated an IoT and ML system for athlete injury prediction and 
performance monitoring. By leveraging real-time data from wearable sensors, the results 
demonstrated that training load and fatigue are critical indicators of injury risk, with advanced 
ensemble ML models achieving high predictive accuracy. These findings underscore the 
potential of the system to transform sports training by enabling personalized interventions, 
optimizing performance, and reducing the incidence of injuries. The ensemble models 
successfully identified complex patterns across diverse data sources, including heart rate 
variability, training intensity, and biomechanical parameters, to provide coaches and sports 
scientists with actionable insights. This data-driven approach offers a proactive strategy for 
athlete health management, supporting long-term athletic careers and consistent peak 
performance.
	 This study further demonstrates that the integration of IoT-connected real-time biomechanics 
with advanced ML analytics is highly effective for predicting and preventing athletic injuries. 
Sensor technologies, particularly IMUs and accelerometers, are essential for capturing subtle 
movement deviations and high-strain states that precede injury. Quantitatively, the system 
achieved the maximum AUC of 1.0 using ensemble models, confirming that multisensor data 
fusion outperforms single-factor monitoring. The data revealed that while median heart rates 
remained around 140 BPM, states of overexertion were identifiable through outliers exceeding 
180 BPM, emphasizing the importance of continuous physiological monitoring. Ultimately, 
leveraging sensor technology to track variables such as joint angles, body speed, and heart rate 
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variability enables coaches to make informed, real-time tactical adjustments. Future 
implementation must prioritize data privacy and cost management to ensure that these sensor-
driven benefits are accessible across all levels of sports. 
	 While the current results are promising and establish a strong foundation for future 
advancements, several challenges must be addressed. Data privacy and security remain 
paramount, requiring robust ethical frameworks and technological safeguards to protect 
sensitive personal information. The financial burden associated with advanced sensor 
technologies, data storage, and ML infrastructure presents barriers for smaller teams and 
amateur athletes, highlighting the need for cost-effective and scalable solutions. Additionally, 
resistance to adopting new technologies among those accustomed to traditional training 
methodologies must be mitigated through education and awareness. Refining prediction models 
with larger and more diverse datasets, alongside the development of accessible and affordable 
IoT-based monitoring systems, will be essential. Collaboration among stakeholders is critical to 
ensure the seamless integration of these technologies into sports practice. Addressing these 
challenges will enable IoT and ML systems to be effectively deployed, ensuring safer, more 
efficient, and more engaging training and competition environments.
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