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We developed an IoT and machine learning (ML) system to predict injuries and monitor
performance in athletes by integrating advanced sensor technology. IoT devices, including chest
straps with heart rate monitors, inertial measurement units, accelerometers, and GPS trackers,
were used to collect real-time physiological and biomechanical data. The data collected was
analyzed using statistical methods and ML algorithms (Logistic Regression, Random Forest,
and Extreme Gradient Boosting). The results showed that training load and fatigue are the most
significant predictors of injury risk. While heart rate functioned as an independent marker, the
participants under high strain showed significant cardiovascular overexertion with heart rate
variability peaking between 100 and 200 BPM and median rates of 140 BPM. Ensemble ML
models demonstrated exceptional predictive accuracy, reaching an area under the curve of 1.066.
The results of this study demonstrate that the seamless integration of wearable sensors and data-
driven analytics offers a robust approach to personalizing training and optimizing injury
prevention.

1. Introduction

IoT has been widely used in sports. loT is a network of devices and sensors that collect,
process, and make decisions in real time. In sports, IoT technologies are applied in wearable
devices, intelligent tools, and environmental sensors that continuously compile data on the
athlete’s movement and conditions.!) By analyzing heart rate, movement speed, acceleration,
and other physiological and physical data, coaches, trainers, and sports scientists gain important
information about athletes’ abilities and overall well-being. This enables them to fine-tune
training strategies, optimize performance, and promote long-term health, which significantly
benefits the sports community.?)

Real-time data observation is a key to examining an athlete’s overall performance. loT
technology ensures a seamless data flow to track an athlete’s movement and biometrics during
training and games. This allows for timely modifications to exercises or training methods,
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helping prevent athlete overload and exhaustion. Real-time monitoring of athletes’ biometric
data and movements helps training programs to be tailored to an athlete’s ability and
performance, making training effective and efficient.®) Environmental parameters such as
temperature, humidity, and altitude are used to optimize performance and prevent injuries,
which also enhances the athlete’s performance. Diverse data used for athletes’ healthcare are
summarized in Fig. 1.

Machine learning (ML) algorithms have been widely used in sports medicine to predict and
prevent injuries.®) With IoT generating a vast amount of data, the algorithms identify complex
patterns that are not discernible to humans. On the basis of data, ML models estimate the
likelihood of injury, enabling preventive actions. This ability enables coaches to timely adjust
training strategies according to the past performance of athletes, helps reduce the potential for
sports injuries, and ensures fast recovery and resilience of athletes.

There are issues in incorporating IoT technology and ML for injury prediction and
performance monitoring: effectively and seamlessly integrating the technologies, ensuring the
accuracy of data collected through advanced sensor technology, and constructing ML
algorithms. Therefore, we developed a system for the seamless integration of IoT and ML to
predict injuries and track performance in this study.
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Fig. 1. (Color online) Diverse data sources used in sports.®



Sensors and Materials, Vol. 38, No. 1 (2026) 441

2. Theoretical Background
2.1 IoT on performance tracking and athlete engagement

IoT technology enables accurate reporting on athletes’ physiology and movements, which
helps trainers and athletes make immediate adjustments. Wearable devices, such as
smartwatches, fitness bands, and sensor-embedded clothing, are used to monitor heart rate,
oxygen saturation rate, speed, and movement.() Coaches need to adjust training programs to
improve performance and reduce injuries in athletes.

Catapult and WHOOP® are high-tech GPS tracking systems and biometric wristbands. They
are used to study past and current results and make exercise plans tailored to each athlete. In
sports clothes, accessories, balls, and rackets, IoT technology is embedded to track the impact of
training and competitions on athletes. In modern sports, enhancing performance with continuous
data analysis is considerably emphasized. Embedded IoT technology also enables post-injury
care. Wearable sensors collect data related to early signs of fatigue, insufficient hydration, or
unsafe movement patterns that can lead to injury.(”)

IoT technology helps improve safety in sports, as coaches and athletes can prevent injuries
and remain involved in sports for longer periods by using the data collected. For example, loT
devices monitor muscle activity and the type of movement, enabling an efficient recovery
process after injury (Fig. 2). By monitoring athletes’ biometrics, coaches adjust training and
competition strategies.

IoT technology also increases athlete engagement by facilitating communication and enabling
personalized coaching. It helps athletes and coaches exchange information in real time, regularly
monitor performance, and set goals based on monitored progress in training and competition.(®)
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Fig. 2.  (Color online) IoT-based wearable health monitoring device and its operations.®
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Through loT analytics, coaches track each athlete’s performance to provide appropriate support
and encourage athletes to be more responsible for teamwork. Moreover, IoT technology helps
adjust strategies and tactics based on data updated in real time. Coaches can make informed
decisions about tactics based on the ongoing actions of athletes and the team. As IoT analytics
also help identify what opponents struggle with, coaches and athletes can make informed
decisions to win. [oT technology enables reliable and ethical training and competition.

Sensors play an important role as they are essential in monitoring athletes’ performance and
physiological status. The results are important to make tactical adjustments during a match.(19 In
addition, sensors implemented in sports equipment and venues are used to accurately measure
distance, speed, and time without errors. For example, sensors in the starting block accurately
detect a false start.

IoT and sensor technologies have led to technological advancements in sports, providing
reliable measurement, information, and decision,!") which are essential for fair play. Referees are
supported by technology for reliable and fair decisions. Such technologies also enable fans to
participate actively and enhance their experience and interaction. With sensors and network-
connected devices, spectators can instantly access real-time statistics and detailed information
about teams and athletes. In various applications, sports events are broadcast live, allowing
viewers to enjoy key moments and exciting features repeatedly. These features make sports fans
more engaged and devoted to sports games. By leveraging data analytics and IoT technology,
broadcasters and event organizers can enhance their content and advertising strategies,
delivering a more engaging experience for viewers while maximizing revenue opportunities.
The integration of advanced technology in sports benefits all stakeholders, from athletes and
teams to fans and sponsors.

Nevertheless, limitations exist in the widespread adoption of IoT technology in sports. Data
privacy and security are concerns to be addressed. False data and disinformation must be
screened as they have negative effects. High costs to implement the technology are also a hurdle
for small teams and amateur athletes. Resistance to the introduction of advanced technology has
also been observed. Therefore, effective data governance, regular platform updates, and
education on the benefits of [oT technology adoption must be provided to address these issues
for the more effective use of [oT technology in sports.

IoT technology enhances team performance and game fairness based on accurate data. Injury
prediction and detection, personalized training, team strategies, and the fairness of competitions
can be enhanced by using wearables, smart devices, and advanced data, which leads to better
training and competition results. Spectators and viewers can better enjoy sports. However, data
privacy, financial constraints, and resistance to the adoption need to be addressed for the more
widespread use of IoT technology in sports.

2.2 Biomechanical factors in injury prediction
To determine the likelihood, extent, and type of injuries in sports, understanding the

biomechanics of athletes is mandatory. Biomechanics encompasses the study of movement,
force, and body responses to movements, which is a basis for improving safety or decreasing the
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risk of injury. Analyzing movement patterns in sports helps identify potential risks and prevent
injuries, ensuring that athletes perform safely and efficiently. Performing repetitive routine
exercises can strain muscles over time, while errors in executing precise movements increase the
risk of injuries. For example, incorrect running form, such as overextending the front foot or
excessive bouncing, causes stress fractures, plantar fasciitis, or other running-related problems.
Repeated tossing or hitting can disrupt scapulohumeral rhythm, especially when shoulder
motion or strength is imbalanced, increasing the risk of tendinopathy and shoulder
impingement.!1? A weak core and limbs can cause excessive pressure on the lower back when
twisting, increasing the risk of lumbar spine injuries.

Muscle repetitive stress injuries often arise from overstretching, excessive tension during
muscle contraction, and imbalances between muscle groups (Fig. 3).(!3) Since eccentric
movements subject muscles to intense strain and structural changes, injuries frequently occur
under eccentric loading conditions. Muscle damage and inflammation are affected by the degree
of muscle over-lengthening during maximum stretch or rapid movements. The strength and
coordination disparities of muscle groups might cause injuries as they compromise joint stability
and movement efficiency. For example, weak hip stabilizers combined with overly strong
quadriceps can increase knee valgus and the chances of anterior cruciate ligament injuries
during cutting motions. Using biomechanical models and advanced motion tracking systems,
clinicians assess joint flexibility, analyze muscle elongation, and monitor joint-loading patterns
to enhance injury prevention and rehabilitation.

Overuse injuries in running-related sports often result from variations in ground reaction
forces, stride mechanics, and joint movement patterns. The force and speed at which the foot
strikes the ground significantly affect injury potential, as rapid landings increase stress on bones
and joints. Excessive pronation or supination during the stance alters weight distribution,
elevating the likelihood of stress fractures, plantar fasciitis, and Achilles tendinopathy.(!)
Additionally, excessive internal hip movements, common in sports such as soccer and basketball,
increase the risk of noncontact lower-body injuries. These movement inefficiencies often stem
from neuromuscular fatigue or improper mechanics, which are detected through detailed motion
analysis. Optimizing cadence, step length, and muscle strength substantially reduces injury

Fig. 3.  (Color online) Repetitive strain injury.(¥)
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rates. Therefore, these biomechanical causes must be understood for effective injury prevention
and rehabilitation.

Recent advancements in biomechanical analysis with ML have enhanced injury prediction
and the identification of key neuromuscular and biomechanical markers. A study assessing elite
young soccer players pinpointed concentric knee extensor peak torque, hip moments during
single-leg drop jumps, and center-of-pressure sway as primary predictors of noncontact lower-
extremity injuries. Despite a moderate accuracy [the area under the receiver operating
characteristic curve (AUC) = 0.63], the study showed the importance of neuromuscular control
and biomechanical stability in assessing injury risk using the least absolute shrinkage and
selection operator regression.!%!7) Similarly, ensemble models, such as Extreme Gradient
Boosting (XGBoost), demonstrated a 78% precision in predicting hamstring strain injuries by
analyzing hamstring muscle strength and stiffness.!®) These models integrated biomechanical
sensor data with physiological indicators, such as heart rate variability and respiratory patterns,
as important information. These studies presented the importance of using advanced analytics
and biomechanical data in improving injury risk assessment and prevention strategies.

Biomechanical modeling enables personalized injury prevention plans by simulating training
programs. For example, targeted exercises that focus on the eccentric (downward) phase of
movement can enhance muscle resilience against high-impact forces and reduce injury
susceptibility. Strengthening opposing muscle pairs and incorporating dynamic warm-ups can
improve joint stability and overall mobility. Reducing high-intensity movements and extreme
ranges of motion minimizes microtrauma and supports proper tissue recovery. These data-
driven interventions not only successfully lower injury rates but also enhance athletic
performance. By integrating loT-connected real-time biomechanics with advanced ML analytics,
injuries can be predicted and prevented effectively.

3. Materials and Methods

We integrated IoT technology and ML algorithms into the monitoring of athletes’ biometric
data and movements. Wearable IoT devices were used to collect data to identify the patterns and
relationships of the data collected. The performance and injury factors of the athlete were
evaluated through such data collection and advanced data analytics to ensure robust and
reproducible results to develop evidence-based training and injury prevention methods.

This study was conducted in three phases: (1) a literature review and pilot testing to select
appropriate Iol devices and algorithms with optimal accuracy and reliability, (2) the system
integration of sensor calibration, data source identification, and ML algorithm selection, and (3)
system performance and usability evaluation (Fig. 4). The research phases collectively ensured
the robustness and applicability of the developed system. In this study, we designed and
implemented an IoT system architecture that encompassed data capture, storage, processing, and
visualization. The system underwent validation with a cohort of 200 track and field athletes,
encompassing a range of movements such as sprinting, jumping, and change-of-direction (COD)
maneuvers.(1)
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Fig. 4. Research process in this study.

3.1 Data collection

Data were collected using a chest strap in which a heart rate monitor, an inertial measurement
unit (IMU), an accelerometer, a gyroscope, and a GPS tracker were embedded. The devices were
selected, considering their measurement accuracy, data transmission speed and stability, and
compatibility with commercial software.!) Heart rate variability was tracked as it is an
important indicator of stress and recovery. IMU and an accelerometer were used to assess injury
risks based on biomechanical data, such as joint angles, body speed, and types of movement.
Temperature and humidity were used to assess the effects of environmental factors on
performance changes. The collected data were transmitted via Bluetooth Low Energy to a cloud
server, which used a nonrelational database architecture. The data were captured during training
and competitions for the monitoring of athletes’ health conditions and performance in various
events.

3.2 Data analysis
The data collected were analyzed using statistical methods and ML clustering algorithms.

The noise and artifacts of the raw sensor data were removed using a Butterworth low-pass filter,
defined by the following transfer function H.

H(S)=—2 )
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Here, w,. is the cutoff frequency, and s is the complex frequency variable. Equation (1) was used
to ensure the integrity of movement data for subsequent analysis.

The participants were athletes and exposed to a high risk of injury, so a uniform risk profile
was expected. Therefore, unsupervised learning was prioritized to identify subtle biomechanical
deviations and physiological markers of overexertion. K-means and hierarchical clustering
algorithms were used to classify movement variability patterns for the detection of abnormal
movement signatures, such as compensatory joint angles or altered ground reaction forces.
These are early indicators of potential injury without the necessity of labeled injury outcomes.
To predict these risk-associated biomechanical states, supervised ML models (Logistic
Regression, Random Forest, and XGBoost) were trained to identify high-strain states
characterized by excessive training loads and physiological fatigue. The predictive capability
was evaluated using AUC and Fl1-scores to ensure the robustness of the system in identifying
these precursor states across different athletic subgroups.

In this study, SPSS was used for statistical data analysis, and Python programming for ML
model development and validation. SPSS was used to obtain descriptive statistics and conduct
correlation and regression analyses to explore relationships between physiological variables and
injury risks. Python libraries, such as NumPy, Pandas, scikit-learn, and TensorFlow, were
employed to implement supervised learning algorithms (logistic regression, random forest, and
XGBoost) for injury prediction.??) Logistic regression was used to estimate the probability of
injury occurrence (P) as

1

p= ~(By+B,X,+B,X,+By+B,X,) ’ @

_1+e

where B, is the intercept, B; is a coefficient, and X, is a predictor of training load and
biomechanical metrics. Random forest and XGBoost algorithms were used for ensemble-based
classification as they have superior accuracy and robustness against overfitting.

We calculated the training load in arbitrary unit (arb. unit) using the session-rating of
perceived exertion (SRPE) method. This involved multiplying the athlete’s RPE (on a modified
Borg CR-10 scale) by the total duration of the session in minutes. This dimensionless unit
enables the standardized comparison of workload across various training modalities and is a
validated metric for monitoring fatigue and injury risk in professional sports.

Training Load (AU) = Intensity (RPE Scale 1-10) X Duration (min) 3)

Here, intensity is measured using the Borg CR-10 scale (where 1 is very easy and 10 is maximal
effort), and duration is the total time of the training session in minutes.

GPS tracker data was utilized to quantify external training load by monitoring high-
frequency movement variables, including total distance covered, sprint distance, and movement
velocity. These metrics were integrated with accelerometer-derived mechanical load and
physiological heart rate data to create a comprehensive profile of an athlete’s physical exertion.
Specifically, velocity and distance data from the GPS sensors served as critical inputs for the
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ML models, allowing the system to correlate high-intensity movement patterns with the onset of
physical fatigue and subsequent injury risk.

3.3 Ethical considerations

This study was conducted following the ethical guidelines established by the institutional
review board of Shangqiu Normal University before recruiting participants and collecting data.
The participants were notified of the study goals, steps, possible harms, and advantages, and
submitted their written permission. Personal information was excluded from the whole data, and
stored and protected by regulations. Each participant was allowed to quit the experiment
whenever they wanted. The use of IoT devices was monitored to prevent any discomfort or
issues that might affect athletes’ performance. It was ensured that ML models were used to
process the collected data legally, and decisions on using data were made openly and fairly. This
study was conducted while obeying the highest ethical standards in sports science research.

4. Results and Discussion
4.1 Factors affecting injury risk

The correlation matrix (Fig. 5) presents the quantitative relationships among physiological
and biomechanical factors used to assess athlete health and highlights the importance of an
integrated monitoring approach. Injury risk is not attributable to a single isolated factor but
emerges from the interaction of multiple variables.

Heart rate
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Muscle activation

Training load

Fatigue

g 3
[ 1
<

Joint angle of knee
Joint angle of hip
Muscle activation

Training load

Fig. 5. (Color online) Correlation matrix of factors affecting injury risk.
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Heart rate exhibits negligible correlation with other assessed variables (r < 0.042), indicating
that it functions as an independent physiological marker rather than directly reflecting specific
biomechanical movements. Nevertheless, heart rate variability is a critical indicator of
cardiovascular stress. The participants experiencing high physiological strain displayed elevated
heart rate variability (100200 BPM) compared with the baseline data (120—160 BPM), with
outliers exceeding 180 BPM identified as states of cardiovascular overexertion, resulting from
insufficient recovery. Figure 6 shows the heart rate distribution of the participants. The box in
the plot represents the interquartile range (/QR). The bottom edge of the box corresponds to the
first quartile (Q1), or the 25th percentile, which is approximately 130 BPM. The top edge of the
box corresponds to the third quartile (Q3), or the 75th percentile, which is approximately 150
BPM. The total height of the box represents the /OR, encompassing the middle 50% of the data.
The horizontal line inside the box indicates the median, or the 50th percentile. In this case, the
median heart rate is exactly 140 BPM. The vertical lines, commonly referred to as whiskers,
extend from the box to the highest and lowest values that are not considered outliers. Typically,
these whiskers extend to values within 1.5 x IQR from the quartiles. Figure 6 shows that the
median heart rate is approximately 140 BPM, with a majority of observations falling between
130 and 150 BPM.

A moderate positive correlation (r = 0.15) was observed between training load and fatigue,
reflecting the expected biological response to exercise intensity, whereby increased training
loads contribute to the accumulation of physical fatigue. This relationship confirms that higher
exercise intensity is a primary driver of accumulated physiological strain. Knee and hip joint
angles demonstrate limited interaction with other lower extremity joints. Moreover, the absence
of significant correlations between muscle activation and joint angles suggests that
neuromuscular control remains relatively stable and is not strongly dictated by specific joint
positions in this study.

Training load was closely associated with injury risk. The participants exhibited training
loads between 60 and 125 units, whereas their baseline training loads ranged from 15 to 80 units

200
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140
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120

100 ]

Fig. 6.  (Color online) Distribution of heart rate (BPM) measurements.
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(Fig. 7). Specifically, the high-risk group trained with a load of approximately 80 units, which
was 60% greater than the median of 50 units observed in the low-risk group. Extreme training
with limited recovery substantially increases the likelihood of injury, and loads exceeding 120
units indicate overreaching or overtraining, potentially impairing tissue adaptation and recovery.
These findings emphasize the necessity of integrating individualized training load monitoring
into injury prevention programs to safeguard athlete health and performance.

The generally weak correlations among factors underscore the appropriateness of the selected
feature set for ML algorithms. High correlations (multicollinearity) can obscure predictive
clarity, whereas the distinct nature of these variables enables algorithms to accurately weigh the
unique contribution of each factor in injury prediction. The results suggest that heightened
injury vulnerability arises from the integration of high training loads and physiological
instability rather than from a single determinant.

4.2 ML model performance

ML models showed varying levels of accuracy in injury prediction, while ensembled models
outperform traditional logistic regression in terms of accuracy. In this study, the prediction
accuracy of Random Forest and XGBoost models was 1.0, exceeding logistic regression with an
accuracy of 0.99 (Fig. 8). Ensemble models identified complex relationships of multiple factors
influencing injury risk. Their high accuracy suggested that they are well-suited for analyzing the
intricate interactions affecting injury prediction. However, the potential for overfitting must be
considered, particularly due to the limited number of observations. Logistic Regression, Random
Forest, and XGBoost models showed high performance, with their receiver operating
characteristic (ROC) close to 1.0 for identifying differences in injury risk between high- and
low-injury-risk groups. The models predicted well, although their sensitivities and specificities
varied. The ROCs of logistic regression, random forest, and XGBoost models were 1.0, 1.0, and
0.99, respectively (Fig. 9). The XGBoost model’s ROC (0.99) was slightly lower than that of the

200
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Fig. 7. (Color online) Distribution of training load (units) measurements.
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Fig. 8.  (Color online) Receiver operating characteristics of injury prediction by ML models in this study.
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Fig. 9.  (Color online) Confusion matrix of logistic regression model.

random forest model, primarily owing to its regularization techniques, which limit performance
in certain cases.

The confusion matrix of the logistic regression model is presented in Fig. 9. The confusion
matrix reveals that the predictive model is exceptionally accurate, but the single different result
provides an important insight into its limitations. For one participant, the model predicted a low
risk even though the participant belonged to the high-risk group. Statistically, this single error
reduces the Recall from a perfect 1.0 to 0.995. The model correctly identified 199 participants as
being at high risk, which are recorded as True Positives. This high number indicates that the
model is extremely effective at recognizing the patterns associated with injury risk in the
majority of the population. The accuracy of the model is 99.5%, and the recall (or sensitivity) is
also 99.5%. Because the model did not incorrectly flag anyone as high risk who was actually not,
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the precision is 100%. The only false negative is a significant result, as the participant who
needed intervention or rest was classified as safe.

4.3 Feature importance

Feature importance was calculated to identify factors playing an important role in injury risk
prediction. Feature importance was attributed to training load and fatigue. In random forest and
XGBoost models, the feature importance of training load was the largest, accounting for
approximately 0.6 of the entire predictive power. The intensity and frequency of exercise were
important in predicting an injury (Fig. 10). A feature importance score of fatigue of the XGBoost
model was 0.38, indicating a close relationship between fatigue and injury.

A moderate feature importance of knee and hip joint angles was observed, indicating that
they were not primary predictors, although they played an important role in injury prediction.
The joint angle of the knee was more important than that of the hip, as knee injuries are more
common in athletes. Muscle activation contributed minimally to injury prediction, implying that
broader movement mechanics and loads on muscles were stronger indicators of injury risk than
neuromuscular parameters. While heart rate regulation is important, it was not a significant
predictor owing to its variability and indirect relationship with injury risk. Monitoring training
loads is more effective in predicting injury than physiological metrics.

Random forest and XGBoost models accurately predicted injury, relying on similar features.
The XGBoost model emphasizes complex cases owing to its gradient-boosting process, which
continuously identifies and refines weak prediction abilities. Both models highlighted training
load as the most influential factor in injury prediction. By integrating more physiological data,
an injury prediction method can be enhanced. However, the results of this study provide a
reference for the development of 0T monitoring systems across various sports.

Random Forest
0.6 mm XGBoost

0.5

0.4

Feature importance

0.0

Heart rate  Acceleration Joint angle Joint angle  Muscle Training load Fatigue
of knee ofhip  activation

Fig. 10. (Color online) Feature importance of factors affecting injury risk.
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The injury prediction models need to be optimized by focusing on the most relevant factors
and refining the system architecture. In this study, training load and fatigue were significant
predictors that need to be considered in the design of injury prevention programs. Training load
needs to be tracked using heart rate monitors, GPS trackers, and accelerometers. Fatigue can be
measured using heart rate variability and individual reporting. Reducing the number of
significant predictors enhances the model’s predictability, simplifies sensor requirements, and
lowers costs, making injury prevention technologies affordable.

In adopting ML models, data accuracy must be ensured with the adjustment of the number of
factors. Sensor accuracy fluctuations, environmental disruptions, data transmission stability,
and variations in the athlete’s sensor usage must also be considered to calibrate the model’s
performance and minimize false alarms and missed risks. Appropriate processing speed,
resource efficiency, and adaptability are also important to ensure the robustness of ML models.

To monitor the training load and fatigue of athletes in predicting potential injury risks, cost-
effective wearable devices can be employed to track heart rate, physical activity, and fatigue
levels. Advanced systems can integrate IMUs, force plates, and environmental sensors to
generate comprehensive data for elite athletic programs. A modular approach facilitates the
widespread adoption of the monitoring system across diverse sports. Such a simple model needs
to be tested with many athletes in diverse environmental conditions in various sports for a
simple but seamless loT-based athletic management.

5. Conclusion

We developed and validated an IoT and ML system for athlete injury prediction and
performance monitoring. By leveraging real-time data from wearable sensors, the results
demonstrated that training load and fatigue are critical indicators of injury risk, with advanced
ensemble ML models achieving high predictive accuracy. These findings underscore the
potential of the system to transform sports training by enabling personalized interventions,
optimizing performance, and reducing the incidence of injuries. The ensemble models
successfully identified complex patterns across diverse data sources, including heart rate
variability, training intensity, and biomechanical parameters, to provide coaches and sports
scientists with actionable insights. This data-driven approach offers a proactive strategy for
athlete health management, supporting long-term athletic careers and consistent peak
performance.

This study further demonstrates that the integration of loT-connected real-time biomechanics
with advanced ML analytics is highly effective for predicting and preventing athletic injuries.
Sensor technologies, particularly IMUs and accelerometers, are essential for capturing subtle
movement deviations and high-strain states that precede injury. Quantitatively, the system
achieved the maximum AUC of 1.0 using ensemble models, confirming that multisensor data
fusion outperforms single-factor monitoring. The data revealed that while median heart rates
remained around 140 BPM, states of overexertion were identifiable through outliers exceeding
180 BPM, emphasizing the importance of continuous physiological monitoring. Ultimately,
leveraging sensor technology to track variables such as joint angles, body speed, and heart rate
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variability enables coaches to make informed, real-time tactical adjustments. Future
implementation must prioritize data privacy and cost management to ensure that these sensor-
driven benefits are accessible across all levels of sports.

While the current results are promising and establish a strong foundation for future
advancements, several challenges must be addressed. Data privacy and security remain
paramount, requiring robust ethical frameworks and technological safeguards to protect
sensitive personal information. The financial burden associated with advanced sensor
technologies, data storage, and ML infrastructure presents barriers for smaller teams and
amateur athletes, highlighting the need for cost-effective and scalable solutions. Additionally,
resistance to adopting new technologies among those accustomed to traditional training
methodologies must be mitigated through education and awareness. Refining prediction models
with larger and more diverse datasets, alongside the development of accessible and affordable
IoT-based monitoring systems, will be essential. Collaboration among stakeholders is critical to
ensure the seamless integration of these technologies into sports practice. Addressing these
challenges will enable IoT and ML systems to be effectively deployed, ensuring safer, more
efficient, and more engaging training and competition environments.
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