Sensors and Materials, Vol. 38, No. 1 (2026) 455-476 455
MYU Tokyo

S & M 4310

Structured Sensor Data Aggregation
for Real-time Analysis in Cloud Computing

Feng Kou'" and Xiaohui Zheng?

Information Construction and Management Center, Ningxia Normal University, Guyuan 756099, China
2China Meteorological Administration Training Center, Beijing 100081, China

(Received November 18, 2025; accepted December 26, 2025)

Keywords: sensor data aggregation, edge computing, fog computing, real-time processing, Internet of

Things

The rapid expansion of IoT deployments has intensified the need for efficient real-time sensor
data aggregation. Conventional cloud-centric methods suffer from high latency and bandwidth
limitations, making them unsuitable for latency-sensitive applications. To address these
challenges, we developed a structured sensor data aggregation architecture comprising edge
devices, fog nodes, and cloud infrastructure. The system was evaluated using synthetic and
public datasets across sensor networks ranging from 50 to 1600 nodes. Edge device processing
maintained latency below 200 ms (129.73-196.85 ms), while fog node aggregation reduced
bandwidth usage by up to 85%. Overall, the architecture achieved a 95% reduction in bandwidth
consumption compared with cloud-only solutions. Accuracy declined from 94.23 to 80% as
sensor density increased, and throughput dropped by approximately 90% (from 1805.01 to
169.24 events/s). Energy efficiency decreased from 91.91 to 20.57 arb. unit. The integrated
preprocessing pipeline—combining wavelet denoising, spatiotemporal imputation, and multi-
method outlier detection—improved accuracy by 22-32%. The architecture demonstrated
adaptability across healthcare, smart cities, and industrial control systems, supporting sub-
second response times and scalable deployment. These results validate the architecture’s
viability for real-time IoT applications, while highlighting the need for further optimization in
dynamic environments and resource-constrained edge devices.

1. Introduction

The proliferation of IoT devices has transformed data collection and processing methods
across healthcare, transportation, manufacturing, smart cities, and other sectors. As the number
of IoT connections continues to grow, the demand for real-time sensor data processing
intensifies. The real-time processing of the collected sensor data is essential for immediate
decision-making and action.(?) Therefore, IoT devices have been integrated with cloud
computing, edge computing, and Al for the efficient processing of sensor data. In the integration,
wireless sensor networks (WSNs) play an important role. WSNs consist of distributed,

*Corresponding author: e-mail: 81998007@nxnu.edu.cn
https://doi.org/10.18494/SAM6065

ISSN 0914-4935 © MYU K K.
https:/myukk.org/

mailto:81998007@nxnu.edu.cn
https://doi.org/10.18494/SAM6065
https://myukk.org/

456 Sensors and Materials, Vol. 38, No. 1 (2026)

autonomous sensors that monitor environmental and physical parameters, including temperature,
pressure, humidity, and motion.®> WSNs are capable of self-organization and establishing
communication even without existing infrastructure. However, increased sensor density
introduces challenges related to data volume, variety, veracity, and processing speed. The
substantial data volume generated strains network transmission, processing, and storage,
necessitating effective data aggregation methods to reduce redundancy and optimize resource
utilization for data collection and processing.*)

Despite significant advancements in IoT and cloud technologies, real-time sensor data
aggregation remains fraught with challenges. Quality issues of collected data during aggregation
exist, including interference noise, missing values due to hardware failures or network
disruptions, and outliers caused by anomalous events, leading to erroneous information.
Furthermore, different sampling rates, formats, and communication protocols of the data
collected from heterogeneous sensor networks complicate data aggregation methods.®)

Real-time data aggregation is particularly difficult since the latency requirements of different
applications, such as autonomous vehicles and healthcare monitoring, significantly vary. In
addition to this, sensor networks include hundreds to millions of sensor nodes, and data
transmission consumes considerable energy, raising concerns about energy efficiency, especially
in battery-powered networks. Therefore, it is necessary to develop effective data aggregation
methods that ensure ultralow latency and balance speed and measurement accuracy,©® since
conventional centralized data aggregation methods have been impractical owing to their
communication bottlenecks, fault propagation, and potential failure of central nodes.(”)

To solve the problems of the conventional methods, we developed an advanced sensor data
aggregation architecture optimized for real-time analysis based on cloud computing. For the
development of the data aggregation architecture, we analyzed existing methods used in cloud
computing and determined optimization strategies for real-time sensor data aggregation. To
evaluate the performance of the developed architecture, latency, throughput, accuracy, and
energy efficiency were assessed. The developed architecture enhances data aggregation
efficiency for instantaneous data analysis in virtual and general cloud computing environments
tailored to IoT systems and reduces response times from seconds to sub-seconds. Data quality is
enhanced through preprocessing in multilevel aggregation architectures adopting edge and fog
computing and stream processing using Apache Kafka and Spark Streaming. The developed
model also enables the analysis of synthetic sensor datasets and publicly available IoT data, and
the employment of cryptographic mechanisms. It also ensures security and privacy in domain-
specific applications.

The results of this study can be used to address the trade-off between real-time performance
and data quality in large-scale IoT networks for the development and evaluation of an integrated
structured aggregation architecture. The architectural integration of a multistage data quality
pipeline, which comprises wavelet denoising, spatial-temporal imputation, and multimethod
outlier detection, is distributed across the proposed structure tiers for end-to-end data
refinement. The implementation of a dynamic aggregation protocol enables the selection of
compression and fusion based on data characteristics, yielding a high data reduction ratio while
preserving analytical fidelity. Through performance evaluation, the architecture’s scalability is

Sensors and Materials, Vol. 38, No. 1 (2026) 457

estimated by measuring the degradation of throughput, energy efficiency, and latency across a
sensor network density ranging from 50 to 1600 nodes, providing critical data for system
deployment.

2. Literature Review
2.1 1IoT sensor data

Unlike conventional data, sensor data exhibit unique properties that introduce significant
management challenges. In IoT environments such as smart cities, millions of sensors are used
to collectively generate, monitor, and manage terabytes of data. The data collected from these
sensors are used for urban traffic control, air quality monitoring, and infrastructure health
assessment. In such continuous data generation, sensor networks demand near real-time stream
processing, which is not achievable by conventional systems that rely on batch-based data
processing.

Real-time monitoring further complicates data processing because of its variability in
sampling rate across diverse applications. For instance, environmental monitoring systems
might sample data hourly, whereas industrial control systems produce thousands of samples each
second. In highway traffic control, real-time congestion detection is essential for dynamic
rerouting, and in advanced healthcare systems, continuous biometric monitoring is vital for
emergency alerts and preemptive intervention. Smart buildings integrate different sensor
systems to manage temperature, detect occupancy, monitor energy consumption, and assess air
quality. Such different sensor systems yield data of diverse formats, units, and sampling
frequencies, creating substantial challenges in data aggregation. For effective data aggregation, a
system that normalizes and integrates diverse data while preserving semantic integrity is
needed.

In addition to this, sensor data quality is frequently compromised by noise, hardware
malfunctions, calibration drift, network disruptions, and adversarial interference.® Real-world
deployments commonly experience missing data rates of 10 and 30%, which is mainly due to
communication failures and device outages. Additionally, sensor data contain outliers resulting
from transient faults, electromagnetic interference, or physical damage.

These problems require robust data preprocessing to detect and correct anomalies that lead to
less aggregated results and inaccurate analytical outcomes. Sensors deployed in close physical
proximity often exhibit strong spatial correlations owing to shared environmental conditions.®)
For instance, temperature sensors located in the same room report similar readings. Such spatial
relationships make data compression and efficient aggregation easier, as correlated
measurements present more compact information. Temporal correlations are found in readings
from individual sensors in similar physical processes.(!? Gradual changes in temperature, for
example, present predictable patterns that support easier imputation strategies and compression
methods.

458 Sensors and Materials, Vol. 38, No. 1 (2026)

2.2 Data aggregation methods

Data aggregation methods have evolved considerably since the inception of WSNEs, tailored to
different network topologies and applications.!!) Four data aggregation methods are widely used
in WSNs: tree-based, cluster-based, in-network, and hybrid aggregation methods (Table 1).

Tree-based aggregation methods hierarchically structure sensor nodes, with data flowing
from leaf nodes to base stations or gateways through intermediate nodes.('?) Tree-based methods
are straightforward, offering natural load balancing when trees are optimized for minimal path
lengths. The intermediaries of the methods use aggregated statistics, such as sum, average, and
minimum and maximum values, before transmitting results. However, nodes near the root
become communication bottlenecks and experience accelerated energy depletion owing to high
forwarding loads in the tree-based method. Moreover, node or link failures fragment the tree,
disrupting data collection from entire subtrees.(1>)

Cluster-based aggregation methods divide sensor networks into clusters, each managed by a
designated cluster head responsible for aggregating data from each sensor.!¥ Cluster heads
perform local aggregation and transmit results to base stations directly or through multihop
routing among cluster heads. This decentralized mechanism distributes the aggregation
workload, enhancing load balancing and fault tolerance. However, cluster head selection is a
challenge, as nodes consume considerable energy because of their dual roles, that is, processing
and communication. To address this problem, rotation schemes are adopted to periodically elect
new cluster heads, thereby reducing energy consumption.(” Advanced cluster-based aggregation
methods employ multiple criteria for cluster head selection, considering residual energy, node
degree, centrality within the cluster, and proximity to base stations.

In-network aggregation methods aggregate data opportunistically at intermediate nodes
using multihop routing without relying on predefined tree or cluster structures.(!) As data
packets traverse the network, intermediate nodes inspect packet contents and aggregate data
when multiple packets with similar destinations are encountered. This method reduces protocol
overhead by eliminating the need for explicit structural organization. However, it introduces
challenges in ensuring that all relevant data are accurately included in the aggregated results.

Table 1
Sensor data aggregation methods.
Method Advantage Disadvantage
Simple model; efficient periodic Bottleneck at root; vulnerable to
Tree-based . . .
collection; predictable flow failures

Cluster-based Distributed load; fault tolerance;

Cluster head selection complexity;

scalability rotation overhead
No structure maintenance; adapts to Coordination challenges; incomplete
In-network Lo
topology changes aggregation risk
Hybrid Multiple methods; adaptable Increased complexity; mode selection

overhead

Sensors and Materials, Vol. 38, No. 1 (2026) 459

2.3 Comparison with existing aggregation methods

Modern data aggregation in IoT is categorized into cloud-only, decentralized edge-only, and
hybrid edge—fog—cloud approaches. Cloud-only approaches, such as those using Message
Queuing Telemetry Transport or Kafka to transmit raw sensor data to the central cloud, suffer
from network congestion and high latency, making them inappropriate for critical, real-time
applications such as autonomous driving or industrial control. In decentralized or edge-only
methods, computation is conducted by sensor nodes using low-energy adaptive clustering
hierarchy and hybrid energy-efficient distributed clustering, but is constrained by the limited
processing power and battery life of these devices. While effective for energy saving, these
models perform rudimentary aggregation (e.g., averaging or maximum/minimum), leading to a
loss of complex, high-dimensional information required for advanced analysis.(7-1®)

The architecture developed in this study creates a structured task partition as follows. Edge
devices perform immediate, lightweight data refinement (denoising, imputation) to guarantee
minimum quality before transmission. Fog devices perform complex, real-time aggregation and
fusion to markedly reduce bandwidth (our results show a 95% reduction) while maintaining local
context, while cloud servers store data for long-term storage, global trend analysis, and model
retraining. Such a distribution of the data stream across the three tiers ensures high data quality
and low latency even as the network scales markedly, as quantified in our stress-test results.

2.4 Cloud computing for sensor data

Cloud computing has been widely adopted for large-scale sensor data storage and analytics
because of its elastic computational resources, extensive storage capacity, and advanced
analytical capabilities.”) Traditional cloud-centric data aggregation methods transmit all sensor
data to cloud data centers for processing and storage. Amazon Web Service IoI' Core, Google
Cloud IoT Platform, and Azure loT Hub are popular platforms for device management, data
ingestion, stream processing, storage, and analytics.2?) These platforms offer cost-effective
computing solutions while supporting sophisticated analytics based on machine learning and
data mining. However, cloud-centric methods are constrained by network latency between
sensor nodes and remote data centers, which introduces delays of tens to hundreds of
milliseconds, which is unacceptable for latency-sensitive applications.2)

Edge computing mitigates such latency by deploying computational resources at the network
edge near data sources.*? Each edge device, such as an IoT gateway or an edge server, is
responsible for data processing, filtering, and aggregation, transmitting only selected results to
the cloud. This approach significantly reduces latency for time-critical tasks, lowers network
bandwidth consumption, enhances data privacy through local processing, and improves system
resilience by enabling continued operation during cloud connectivity disruptions.

Fog computing is employed to further extend such capabilities by introducing an intermediate
layer between edge devices and centralized cloud infrastructure, enabling hierarchical
computing.'9) Fog nodes, which are more powerful than edge devices, yet more distributed than
cloud data centers, offer a balanced trade-off between latency and computational capacity. This

460 Sensors and Materials, Vol. 38, No. 1 (2026)

layered architecture enables each tier to execute tasks aligned with its performance
characteristics and latency constraints.

Sensor data aggregation methods increasingly rely on distributed stream processing for
ingesting, processing, and analyzing high-velocity data streams in real time.> Apache Kafka
has become the standard for stream data ingestion, offering distributed commit logs and
ensuring high-throughput, low-latency data transport with strong durability. Kafka’s publish—
subscribe architecture enables multiple consumers to process the same data stream
independently, supporting flexible and scalable systems. Apache Spark Streaming extends the
Spark batch processing framework to accommodate streaming data through microbatch
processing, presenting latencies in seconds. Structured Streaming further advances this
capability by enabling true stream processing by using event-time semantics and end-to-end
exactly-once processing guarantees.?¥ The integration of Kafka and Spark Streaming leads to
highly effective data aggregation with millions of aggregations per second.

2.5 Data preprocessing

Effective sensor data aggregation necessitates comprehensive data preprocessing to enhance
data quality for real-world sensor deployments.?3) Sensor measurements are significantly
affected by noise, including environmental interference, electrical fluctuations, and inherent
sensor imperfections. Denoising techniques, such as wavelet-based methods, show their
effectiveness by exploiting the multiresolution analysis capabilities of wavelet transforms to
differentiate signals from noise. The wavelet denoising process involves decomposing the signal
using the discrete wavelet transform, applying thresholding to suppress noise-dominated
coefficients, and reconstructing the cleaned signal via the inverse wavelet transform. In addition
to wavelet-based approaches, statistical filtering methods, including moving average, median,
and Kalman filters, offer alternative denoising solutions with comparatively low computational
complexity.

Missing data are prevalent in sensor deployments, often caused by device malfunctions,
communication failures, or battery depletion.*®) Data imputation is conducted to replace missing
values to construct complete datasets for further analysis. In basic imputation methods, missing
values are replaced with the mean or median of observed data. More advanced methods employ
spatial-temporal correlations inherent in data from sensor networks. In spatial imputation,
readings from neighboring sensors recorded at the same time are used, while in temporal
imputation, historical data from the same sensor are used.?”) Machine learning-based imputation
methods include k-nearest neighbors (KNNs), matrix factorization, and neural networks that
capture complex patterns within sensor data to improve estimation accuracy.

Outliers in sensor data result from errors, hardware malfunctions, or genuine anomalous
events, and are characterized by significant deviations from expected patterns. Outlier detection
methods rely on standard deviations, with which values that exceed a predefined number of
standard deviations from the population mean are identified.?® Principal component analysis
(PCA) is used for the identification of multidimensional outliers by projecting data onto principal
components and detecting instances with high reconstruction error.?®) Supervised machine

Sensors and Materials, Vol. 38, No. 1 (2026) 461

learning classifiers, including support vector machines and isolation forests, are trained to
recognize outlier patterns with greater precision than traditional unsupervised statistical
techniques.

3. Methodology
3.1 System architecture

The sensor data aggregation method developed in this study comprises edge devices, fog
nodes, and cloud infrastructure (Fig. 1). We design the architecture to ensure low latency, high
computational capacity, and scalable deployment. The edge devices contain sensor devices and
local gateways for data collection, filtering, and preliminary aggregation, and support real-time
operations in sub-seconds, including anomaly detection and localized control. Fog nodes serve
as the intermediate layer, performing advanced analytics. Fog nodes are located near data
sources to offer enhanced computational power and conduct multisensor fusion, complex pattern
recognition, and aggregation across multiple edge devices. The cloud infrastructure provides
centralized resources for long-term data storage, historical analytics, and auxiliary services for
machine learning model training and data visualization (Table 2).

Cloud infrastructure
Long-term storage / machine learning training/ analytics
—— 5 f
Hlsmm.al ‘ Mach_me Visualization | [Data lake |
analysis learning

[T] L ey]

Fog node 3
(region C)

‘ Gateway 1 ‘ ‘ Gateway 2 Gateway 3 | | Gateway 4 Gateway 5 Gateway 6 ‘

Fig. 1. (Color online) Three-tier system architecture for sensor data aggregation in developed architecture.

Table 2

Processing responsibilities.

Component Processing Latency Aggregation Storage duration
Edge devices Filtering, local control <100 ms Temporal (single sensor) Minutes to hours

Regional aggregation,
pattern detection

Cloud Historical analysis,

infrastructure machine learning training

Fog computing <ls Spatial (multisensors) Hours to days

Seconds to minutes Global, long-term trends Months to years

462 Sensors and Materials, Vol. 38, No. 1 (2026)

In the architecture, edge devices continuously stream data to edge gateways using wireless
fidelity (Wi-Fi), Bluetooth, or a long-range wide area network (LoRaWAN). Edge gateways
conduct data preprocessing, such as denoising, local aggregation, and outlier filtering, before
forwarding data to fog nodes. Fog nodes receive data inputs from multiple gateways and perform
spatial-temporal aggregation and intermediate analytics. Summarized results and detected
events are then transmitted to the cloud infrastructure. This structured processing significantly
reduces network traffic by aggregating summaries. Exceptional events traverse bandwidth-
intensive WAN links, while routine measurements are processed locally.

3.2 Data preprocessing

Data preprocessing is carried out to enhance data quality challenges through denoising,
missing value imputation, outlier detection, and normalization (Fig. 2). Data are denoised using
wavelet-based filtering to eliminate high-frequency noise and preserve essential signal
characteristics. The developed architecture employs the discrete wavelet transform (DWT) with
Daubechies wavelets for effective localization in time and frequency domains. Sensor signals are
decomposed into multiple resolution levels, and soft thresholding is applied to obtain wavelet
coefficients using universal thresholds. Then, denoised signals are reconstructed using inverse
DWT. This process effectively suppresses noise while retaining temporal patterns critical for
downstream analysis.

Missing values are imputed using spatial-temporal correlation. For each missing value, a
KNN algorithm identifies the k-nearest neighboring sensors based on spatial proximity and
temporal alignment. Imputed values are estimated through the adaptive fusion of spatial and
temporal estimates. Spatial estimates are calculated as weighted averages of current readings
from nearby sensors, while temporal estimates are predicted from historical time-series data of
the same sensor. When multiple values are missing, iterative refinement is conducted on the
basis of previously imputed values for subsequent estimations. Outliers are detected using a
hybrid technique that integrates statistical and machine learning. A modified Z-score and an
interquartile range are applied to identify extreme outliers. Candidate outliers are then validated
using PCA, in which the data are transformed to calculate reconstruction errors. Then, data
exceeding an adaptive error threshold are classified as outliers. This two-stage technique
minimizes the appearance of false positives while effectively capturing anomalies.

Sensor data are normalized to a common scale, facilitating meaningful data aggregation.
Z-score normalization is applied to transform each sensor dataset to have zero mean and unit
variance to accommodate nonstationary data. Values in datasets range from 0 to 1, preserving
relative relationships and ensuring scale invariance.

Raw Sensor Wavelet Missing Value QOutlier Normalization Preprocessed
Data Denoising Imputation Detecton Data

Fig. 2. (Color online) Data preprocessing for data quality enhancement.

Sensors and Materials, Vol. 38, No. 1 (2026) 463

3.3 Structured data aggregation

In the developed architecture, data from edge devices, fog nodes, and cloud infrastructure are
aggregated using adaptive algorithms (Fig. 3). At the edge devices, temporal data aggregation is
conducted for individual sensor data by computing statistics across configurable time windows.
Tumbling windows (non-overlapping, fixed-duration intervals) and sliding windows (overlapping
intervals advancing incrementally) are implemented in accordance with the application-specific
requirements. Edge devices calculate the mean, median, standard deviation, minimum,
maximum, and count values in each time window. At the fog nodes, spatial data aggregation is
conducted across multiple sensors distributed in defined regions. Fog nodes receive preprocessed
data from edge devices and conduct spatial-correlation-based aggregation, weighting
contributions of each sensor’s dataset using reliability, spatial proximity to query locations, and
temporal freshness. The fog nodes incorporate hierarchical spatial clustering, organizing sensors
into nested regions for multiresolution aggregation. Additionally, fog nodes perform data fusion
by integrating data from heterogeneous sensors for similar measurements. For example,
temperature, humidity, and air quality sensor data are aggregated for environmental assessments.

3.4 Data source and sensor characteristics
The performance analysis of the fog—cloud architecture was conducted using a dual-pronged

dataset approach designed to ensure both real-world relevance and comprehensive scalability
testing.

Cloud infrastructure

Aggregated Request for
Model Model Updates

Fog node Updatesi:og node Fog node

Local Model Request for Model
Updates Updates

& N &
Multi-agent Multi-agent Multi-agent
Edge Devices Edge Devices Edge Devices

Fig. 3. (Color online) Collaborative data aggregation in edge—fog—cloud architecture of developed architecture.

464 Sensors and Materials, Vol. 38, No. 1 (2026)

» Public real-world dataset: A segment of the Telemetry of Networked loT Dataset was utilized.
The sensor data included temperature (°C), relative humidity (%), and atmospheric pressure
(hPa). The dataset contained approximately 1.5 million records collected continuously over
14 days, with a nominal sampling interval of 15 s. Owing to its well-documented anomaly
patterns, the dataset was primarily employed to validate the accuracy and preprocessing
components of the proposed system.

» Synthetic scalability dataset: A synthetic dataset was custom-generated using a Python-based
WSN simulator built upon the iFogSim framework. The simulated data included temperature,
humidity, and noise levels. This dataset was designed to evaluate the architecture’s
performance under various load conditions and scales. The experiments encompassed
network sizes ranging from 50 to 1600 sensor nodes, with each node generating data at a
controlled rate of 20 events per second. This configuration enabled the testing of throughput,
latency, and resource efficiency under extreme congestion, which represents a major
challenge in large-scale WSN deployments. The simulated sensor hardware characteristics
were modeled after commercial low-cost environmental monitoring devices, such as a low-
cost digital sensor that measures temperature and humidity (DHT22) and a digital sensor for
barometric pressure and temperature measurement (BMP180), which are commonly deployed
in wide-area-monitoring WSNs.G?)

3.5 Data processing

In data processing, Apache Kafka is used for data ingestion, while Apache Spark Streaming
is employed for real-time data aggregation. Sensor data are streamed into Apache Kafka, labeled
and categorized by sensor type, geographic location, or aggregation criteria. Kafka brokers
enable the fault-tolerant, distributed storage of incoming data streams and parallel processing by
using multiple independent consumers. Kafka’s partitioning mechanism distributes data across
brokers using configurable partition keys, facilitating horizontal scalability and load balancing.

Apache Spark Streaming uses Kafka labels with the structured streaming application
programming interface, which enables declarative DataFrame-based programming. Streaming
queries apply preprocessing transformations, including denoising, imputation, and outlier
detection, followed by data aggregation using windowing functions. Apache Spark Streaming’s
distributed execution engine automatically parallelizes stream processing, while configurable
batch intervals allow system schedulers to balance latency and throughput. Processed results are
directed to output sinks such as time-series databases for real-time querying, message queues for
downstream applications, and cloud storage for long-term archiving.

To ensure fault tolerance, checkpointing is executed to enable recovery from node failures
without data loss. Watermarking is employed to support configurable lateness thresholds and
address trade-offs between data completeness and latency. The data stream processing
guarantees exactly-once processing semantics, ensuring consistent data aggregation even in the
event of system restarts due to failures or scaling operations.

The aggregation algorithm in the preprocessing layer performs spatial-temporal weighted
fusion to generate a highly reliable, synthesized data point 4;, for the target sensor i at time .

Sensors and Materials, Vol. 38, No. 1 (2026) 465

This process leverages the natural redundancy in densely deployed WSNs by fusing the current
local sensor reading with those from its neighbors (spatial correlation) and its own recent history
(temporal correlation).*®) The aggregated A4,(f) value is calculated as a normalized weighted
average as follows.

R AU ISMUSSURAGE)

Ay = W M

otal

Here, V() is the current, locally cleaned measurement of sensor i; V(f) is the current
measurement of neighboring sensor j in the set N; Vi(t — k) is the moving average of the previous
k time steps for sensor i (k = 5); wfoml, wj, and w/ are the weights for the local measurement,
spatial neighbors, and temporal history, respectively; and W,,,,; is the sum of all weights for
normalization.

The spatial weight w‘;- assigned to neighboring sensor j is calculated using the inverse of the
squared Euclidean distance d; ; between target sensor i and neighboring sensor j, emphasizing

closer proximity.

W= ! @)

J (di’j)2

The temporal weight w! is a fixed value designed to balance the contribution of the temporal

trend against the spatial neighborhood. In the implementation, we set w; = 1.0. The weight of the

sensor’s current reading is set to wilo"”l = 1.0. This weighted fusion minimizes the impact of

localized noise or sudden, transient sensor errors by distributing trust among correlated data
sources.C)

4. Results and Discussion
4.1 Performance analysis

The system performance was evaluated across sensor networks with different numbers of
sensors, ranging from 50 to 1600 sensors. The results revealed distinct trade-offs among
performance metrics. Figure 4 presents latency across the developed architecture. Edge device
processing consistently maintained low latency, starting at 129.73 ms for 50 sensors and
increasing moderately to 196.85 ms for 1600 sensors. The relatively flat latency curve indicates
the efficiency of edge device processing. The latency of fog computing ranged from 372.27 to
490.45 ms, reflecting computational overhead. The latency of cloud infrastructure ranged from
877.47 to 1121.16 ms. This trend aligns with observations by He et al.,(®) who reported similar
latency in multistructured IoT systems. The exponential growth in the latency of cloud
infrastructure underscores inherent limitations in a centralized processing structure. The edge
devices’ stable performance is attributed to localized data processing, which circumvents

466 Sensors and Materials, Vol. 38, No. 1 (2026)

1000

800
~—®— Edge devices

—&— Fog nodes
—e— Cloud infrastructure

200 —e

"',—-—._—’__'7

0 200 400 600 800 1000 1200 1400 1600

600

Latency (ms)

Number of sensors

Fig. 4. (Color online) Latency values of edge devices, fog computing, and cloud infrastructure.

network traversal. Fog nodes, responsible for complex aggregation, add computational demands.
For latency-sensitive applications requiring sub-second response times, edge device processing
is the most appropriate.?3) Cloud computing involves long-distance data transmission, leading to
the highest latency. Network congestion during peak operational hours exacerbates delays in
cloud computing performance.

Figure 5 illustrates the decline in system accuracy as the number of sensors increases. For 50
sensors, the developed architecture showed a 94.23% accuracy, which decreased to 80% for 1600
sensors. Such a decrease in accuracy indicates data quality deterioration that intensifies with the
number of sensors. Networks with more sensors are more susceptible to sensor failures and
communication errors. Although data preprocessing mitigates these issues, it cannot fully
eliminate them. Liu ef al. observed that missing data rate increases with network size.2%) While
data imputation methods are the most effective at a moderate number of sensors, accuracy
diminishes when the missing data rate exceeds 30%. Interference in deployments with data even
causes greater accuracy decreases. The reduction in accuracy also reflects the growing
complexity of the aggregation process in large-scale networks. Increasing the number of sensors
introduces greater heterogeneity in data formats and sampling rates, complicating data
normalization. Spatial correlations weaken across large geographic areas, and data aggregation
at each time window becomes more difficult. Zhang et al. reported similar accuracy degradation
in a large-scale sensor network.® Additionally, device calibration drift over time further
contributes to accuracy decrease in long-term operations.

4.2 Throughput and scalability

Figure 6 presents the throughputs across different sensor network scales. With 50 sensors, the
method achieved a throughput of 1805.01 events per second. As the number of sensors increased,
throughput declined nonlinearly to 169.24 events per second at 1600 sensors, an approximate
90% reduction. Such a decrease is attributed to several factors. Processing overhead increases

Sensors and Materials, Vol. 38, No. 1 (2026) 467

100

95

90

g
>
=3
g
b= |
S 85
<
80
75
0 200 400 600 800 1000 1200 1400 1600
Number of sensors
Fig. 5. (Color online) System accuracy versus number of sensors.
1800
1600
— 1400
)
B
£ 1200
>
L,
= 1000
>
£
® 800
=
e
£ 600

400

200

0 200 400 600 800 1000 1200 1400 1600

Number of sensors

Fig. 6. (Color online) Throughput of developed architecture.

disproportionately with the number of sensors, as each additional sensor introduces new data
and complicates interactions with existing sensors. Since spatial correlation varies quadratically,
data fusion is required for the cross-comparison of all sensor data. Network congestion further
exacerbates throughput degradation. While Apache Kafka’s partitioning mechanism alleviates
bottlenecks to a certain extent, it cannot fully eliminate them. Additionally, memory bandwidth
limitations on fog nodes become increasingly significant as sensor density increases.

The throughput deviates from theoretical predictions, underscoring the complexity of real-
world deployments. Karimov et al. reported similar discrepancies in distributed data stream
processing, attributing performance changes to network latency and synchronization
overhead.®® The heterogeneity of edge devices also introduces variability in throughput.

Apache Spark Streaming’s microbatch architecture increases latency overhead. In this study,
a 2 s batch interval was used to balance latency and throughput. Although shorter intervals
reduced latency, they constrained throughput. This trade-off is inherent to data stream

468 Sensors and Materials, Vol. 38, No. 1 (2026)

processing.??) It is necessary to improve the latency—throughput balance of Apache Kafka and
data streaming capability.

4.3 Energy efficiency

Figure 7 illustrates a decline in energy efficiency as the number of sensors increases. For 50
sensors, the method showed an efficiency of 91.91 arb. unit, which decreased to 20.57 arb. unit
for 1600 sensors. The result indicates that energy consumption increases faster with an increase
in the number of sensors.

Edge devices exhibit the highest energy consumption per device, as each sensor collects data,
computes metrics, and transmits the data and results to fog nodes through radio communication.
Battery-powered sensors are particularly constrained under similar conditions. Although the
developed architecture reduces transmission frequency, computation costs remain substantial.
Rault et al. emphasized that transmission requires considerable energy consumption in sensor
networks.??) However, the results of this study indicate that computation costs are nonnegligible.
In outdoor deployments, solar-powered sensors might mitigate battery depletion.

Cluster-based data aggregation enables a balanced energy distribution. Rotating cluster head
roles prevents premature node failure caused by excessive energy drain. In the implementation
of the developed architecture, cluster heads are rotated every 100 cycles, which extends the
network lifetime but introduces coordination overhead. Adaptive rotation schedules established
on the basis of residual energy levels can enhance network longevity.

The structure of the developed architecture improves energy efficiency compared with cloud-
only methods. Edge device’s processing eliminates unnecessary transmissions, fog nodes handle
intermediate aggregation, and only exceptional events and summaries are forwarded to the cloud
in our developed architecture. This structural filtering reduces total energy consumption by
approximately 60% compared with existing methods. In the developed architecture, energy
harvesting technologies can be integrated to extend sensor and network lifetimes. Table 3 shows
the results of the performance evaluation of the developed system.

90
80
70
60
50

40

Energy efficiency (arb. unit)

30

20

0 200 400 600 800 1000 1200 1400 1600
Number of sensors

Fig. 7. (Color online) Energy efficiency of architecture in this study.

Sensors and Materials, Vol. 38, No. 1 (2026) 469

Table 3
Performance evaluation results.
Number of Latenyy of edge Latency of fog](;? fjgﬁz Throughput Accuracy (%) e ﬁic];:flzllfcrf};arb.
sensors device (ms) nodes (ms) . (events/s) .
computing (ms) unit)
50 129.73 372.27 877.47 1805.01 94.23 91.91
100 141.69 391.88 893.66 1597.37 94.06 90.02
200 15791 407.24 945.01 1415.45 92.42 74.61
400 174.4 445.08 1010.97 894.99 91.19 55.75
800 182.99 462.75 1052.73 506.95 86.7 40.69
1600 196.85 490.45 1121.16 169.24 80 20.57

4.4 Comparison of aggregation methods

Figure 8 and Table 3 show the performance characteristics of four data aggregation methods
(Table 1). We compared the fault tolerance score, energy efficiency, latency, and computational
complexity. We calculated the ratings for each parameter to evaluate how well an aggregation
method maintains functionality in the presence of failures, sensor outages, communication
errors, or node crashes. To calculate a fault tolerance score for a data aggregation method, we
used the method of Adday et al.®? Ratings of the parameters are calculated using measured
values normalized to the 1-to-5 scale, with 5 being the best performance. The computational
complexity of the algorithm describes how the execution time varies with the input size,
presented by the number of data nodes or packets being aggregated. Linear complexity indicates
that the time required to complete the aggregation is directly proportional to the number of input
items, while log-linear complexity indicates that the time required increases faster, associated
with efficient sorting-based algorithms.

The tree-based method showed a fault tolerance score of 2.0 and relatively low latency (3.5)
(Table 4). The cluster-based method scored 4.0 for fault tolerance and 3.5 for energy efficiency.
The in-network aggregation method yielded the highest energy efficiency (4.0) but only
moderate fault tolerance (3.0). The hybrid method balanced multiple objectives, attaining 4.0 for
fault tolerance and 3.8 for energy efficiency. The rating system offers a standardized framework
for evaluating aggregation techniques across diverse deployment scenarios.

The tree-based method is susceptible to root node bottlenecks, as intermediate nodes near the
root handle disproportionate traffic and are prone to early failure. The subtree partitioning of the
method results from node failures and disrupts data collection. Its multiroot tree architectures
cause redundancy while preserving hierarchical efficiency. Alinia et al. constructed deadline-
constrained trees to mitigate these limitations.(!? The developed architecture in this study
incorporates dynamic tree reconfiguration, which improves performance but does not fully
eliminate structural vulnerabilities.

The cluster-based method distributes the aggregation workload more evenly than the tree-
based method. Multiple cluster heads share responsibilities, enhancing fault tolerance. If one
cluster head fails, other clusters continue functioning, improving scalability relative to the tree-
based method. However, cluster formation introduces coordination overhead. Effective cluster
head selection must consider residual energy, node centrality, and connectivity.(¥) In contrast,

470 Sensors and Materials, Vol. 38, No. 1 (2026)

4.0 mmm Fault Tolerance

35 mmm Energy Efficiency
W Latency Performance
3.
2.5
2.0
1.5
1.
0.5
0.0

Tree-based Cluster-based In-network Structured architecture
(this study)

Rating (1-5)
o

o

Aggregation method

Fig. 8. (Color online) Ratings of different data aggregation methods.

Table 4

Results for various aggregation methods using ratings (1-5).

Method Fault tolerance Ene?rgy Latency Complexity
score efficiency

Tree-based 2.0 2.5 35 Log-linear complexity

Cluster-based 4.0 35 4.0 Linear complexity

In-network 3.0 4.0 32 Linear complexity

Hybrid 4.0 38 3.8 Log-linear complexity

the rotation algorithm in the developed architecture balances these factors, and cluster formation
can be optimized on the basis of historical performance using machine learning techniques.

The in-network aggregation method adapts dynamic network topologies, requiring no
explicit structural maintenance to reduce protocol overhead. Energy efficiency benefits from
opportunistic aggregation, but ensuring completeness remains challenging. Data packets flow
through divergent paths, and aggregation points vary dynamically. This complicates
coordination.®? For applications tolerant of occasional incomplete aggregation, probabilistic
guarantees may suffice.

The hybrid methods integrate multiple aggregation strategies. In this study, we employed the
tree-based method for periodic data collection, the cluster-based method for event-driven
queries, and the in-network method opportunistically. While this flexibility enhances
adaptability, it introduces additional complexity. Mode selection requires contextual logic, and
transitions between modes may cause transient inefficiencies. Context-aware algorithms could
automate mode selection based on real-time network conditions.

The developed method in this study necessitates the quantitative evaluation of the
computational overhead associated with multistage data preprocessing on resource-constrained
edge devices. The current architecture prioritizes accuracy and real-time latency (sub-200 ms)
by performing wavelet denoising, spatial-temporal imputation, and multimethod outlier
detection. While the method improves the accuracy by 22-32%, details on overhead

Sensors and Materials, Vol. 38, No. 1 (2026) 471

minimization must be further elaborated. Therefore, it is necessary to implement quantization
and pruning techniques on the machine learning components on the edge to reduce model size
and inference latency.®¥ In addition to this, a benchmarking analysis of memory utilization and
power consumption in the full preprocessing must be conducted on specific microcontroller
units. Such experiments can solve the problems related to the lightweight nature of the
architecture.3%)

The introduction of the fog layer into the conventional cloud-edge architecture improves real-
time responsiveness by mitigating the high WAN latency associated with centralized cloud
processing. To validate this, we analyzed the end-to-end latency 7,,,,, measured from sensor data
generation to processed output. The latency was benchmarked from three configurations (Table
5).

The cloud-only architecture exhibits the highest 7,,, (523.1 ms) owing to long-haul data
transmission and network queuing delays. In contrast, the fog-cloud architecture presents an
average T, of 185.7 ms, representing a 64.5% reduction in latency compared with that of the
cloud-only baseline. Such a reduction is attributed to the physical proximity of the fog node to
the sensors, reducing local area network/metropolitan area network transport time and the data
reduction in the preprocessing layer. Therefore, the data volume requiring final transmission is
minimized. While the edge-only model demonstrates the lowest latency (85.2 ms), it is largely
resource-constrained and only performs the simplest filtering tasks without the robust
aggregation or learning capabilities available on the fog node. The fog-cloud architecture
provides the optimal balance between computational capability and real-time responsiveness for
our application.G®)

4.5 Applicability to domain-specific IoT scenarios

The structured data aggregation architecture developed in this study addresses challenges in
IoT applications, including environmental monitoring, smart agriculture, and infrastructure
management.

In environmental monitoring, sensors for air and water quality are deployed outdoors and are
subject to ambient noise. The developed edge-level preprocessing (wavelet denoising) is
effective, as it filters high-frequency noise before data transmission. The fog-layer spatial
aggregation enables the correlation of data from multiple stations to distinguish between
localized events without overwhelming the cloud server with raw data. Agricultural loT
networks are deployed in vast areas with the sparse deployment of various sensors (e.g., soil
moisture, temperature, and leaf wetness sensors). In this case, conventional tree-based

Table 5
End-to-end latency of computing architectures.

Average end-to-end Standard deviation

Architecture Processing location

latency (7,z,) (ms) of T, (ms)
Cloud-only 523.1 48.9 Remote Centralized Data Center
Fog-cloud 185.7 15.3 Local/Regional Fog Node

Edge-only 85.2 7.1 Sensor Gateway/Device

472 Sensors and Materials, Vol. 38, No. 1 (2026)

aggregation fails in the deployment because of long-range transmission power costs and single-
point failures in remote fields.

The developed architecture’s hybrid aggregation method enables robust data collection even
if specific nodes fail. The fog nodes acting as local gateways aggregate soil moisture readings to
optimize irrigation schedules in real time. Farooq et al. stated that efficient aggregation in
agriculture is critical because it reduces the energy load on battery-powered sensors that cannot
be easily serviced.®”) The architecture’s reduction in bandwidth consumption (95%) directly
translates to extended operational lifespans for these remote agricultural sensors. The
architecture can also be applied to structural health monitoring for bridges, dams, and buildings,
which have high-frequency vibration and strain gauge data, generating massive data that cloud-
only systems cannot process in real time. The edge devices can compute localized statistical
metrics (e.g., peak strain and root-mean-square vibration) in sub-second intervals, while the fog
nodes perform data fusion across multiple sensor arrays to identify structural anomalies (e.g.,
cracks and shifts) by cross-referencing data to rule out false positives caused by traffic loads.
The hierarchical approach aligns with recent results emphasizing that decentralized processing
is essential for scalable SHM to ensure timely alerts for structural integrity risks.G®)

4.6 Advantages and disadvantages of developed architecture

Edge device processing targets sub-100 ms latency and handles filtering and local control,
with minimal storage durations ranging from minutes to hours, which is ideal for real-time
applications such as industrial control (Table 2). Fog node processing supports 1 s latency,
performing spatial aggregation across multiple sensors with storage extending to hours or days.
Cloud infrastructure processing tolerates the latencies of several minutes, focusing on historical
analysis and machine learning model training. Such different performance characteristics enable
independent scaling based on workload demands.

The developed architecture proves effective. Edge device processing handles 73% of raw
data, transmitting only aggregated results. Fog nodes further reduce data volume by 85% before
transmission to cloud servers. Overall, bandwidth consumption decreases by 95% compared
with that attained by cloud-only methods. Bonomi et al. also highlighted the efficiency benefits
of fog computing. The resulting cost savings from reduced bandwidth usage can offset the
increased investment in edge infrastructure.(1®)

Latency requirements vary by application domain. Healthcare monitoring demands edge-
level latency for critical alerts,® while smart city applications can accommodate fog-level
latency for traffic management. Long-term trend analysis is appropriate for cloud-based
processing. The architecture developed in this study meets diverse requirements through a
structure processing model, allowing service-level agreements to specify the tier-specific
handling of data types for guaranteed performance.

Data preprocessing significantly affects the architecture’s accuracy of measurement. Through
wavelet denoising, high-frequency noise is removed while preserving essential signals, resulting
in a 7-12% improvement in accuracy compared with the accuracy attained through only raw-
data processing. Spatial-temporal data imputation addresses missing values more robustly than

Sensors and Materials, Vol. 38, No. 1 (2026) 473

simple mean imputation, yielding a 15-20% increase in accuracy. Among wavelet families,
Daubechies wavelets demonstrated particular efficacy for temperature and humidity sensor data.
Outlier detection is essential for maintaining the integrity of aggregated results, since excessive
false positives lead to discarding valid data, while missed outliers distort analytical outcomes.
The developed architecture identified 94% of anomalies, with false positive rates remaining
below 3%. PCA enables effective validation for statistical outlier detection. Despite such
excellent results, ensemble methods need to be integrated with multiple detectors to enhance
robustness and detection rates.

Normalization is necessary for effective data aggregation across heterogeneous sensor types.
Without normalization, raw values yield misleading results due to different units of
measurement. Z-score normalization is used to standardize data values in the developed
architecture, while the minimum—maximum normalization method is more appropriate for
sensors with limited ranges. Adaptive normalization windows can be used to further improve
the architecture’s performance by accommodating data variations.

Several limitations constrain the generalizability of the developed architecture. The
experiments were conducted on synthetic and publicly available datasets, which might not fully
capture the complexities of real data. In real data, environmental factors can introduce
unpredictable noise patterns and hardware failures that synthetic data cannot replicate.
Therefore, validation in diverse environments is necessary to confirm the applicability of the
developed architecture. Data preprocessing in the architecture introduces computational
overhead, which poses challenges for edge devices with limited processing ability. It is necessary
to simplify data processing to further decrease latency and enhance accuracy and processing
speed. Optimal trade-offs also need to be enhanced. Hardware acceleration using field-
programmable gate arrays (FPGAs) or specialized [oT processors can mitigate latency issues and
enable more efficient preprocessing.

Security and privacy concerns remain. While data aggregation reduces granularity and offers
privacy protection, advanced adversarial techniques need to be used to extract sensitive
information. Cryptographic data aggregation can be considered, although it can increase
computational overhead. Zhong et al. proposed a data aggregation method to enhance the
security of heterogeneous sensor networks. Differential privacy protection methods need to be
reviewed to ensure privacy protection with minimal impact on accuracy and data aggregation.(!3)

The developed architecture relies on statistical methods, which might not respond effectively
to dynamically changing data collection environments. To address related problems, machine
learning models can be employed to formulate optimal data aggregation methods based on the
observed network behavior, while reinforcement learning needs to be adopted to automatically
learn data configurations.

5. Conclusion
Referring to the review of previous sensor data aggregation methods, we developed a

structured data aggregation architecture, consisting of edge device—fog node—cloud
infrastructure layers. Edge device processing maintains sub-200 ms latency across various

474 Sensors and Materials, Vol. 38, No. 1 (2026)

numbers of sensors, meeting the demands of time-sensitive applications. Fog nodes enable
intermediate processing, reducing network bandwidth by 85%, before transmission to cloud
servers. Overall, the structured architecture showed a 95% reduction in total bandwidth usage.

Performance evaluation results revealed trade-offs among competing system components. As
the number of sensors increases, accuracy declines from 94.23 to 80%, throughput drops by
approximately 90%, and energy efficiency decreases from 91.91 to 20.57 arb. unit. These results
underscore the scalability of the architecture developed in large-scale sensor networks. The
preprocessing method of the architecture enables the maintenance of data quality, with wavelet
denoising and spatial-temporal imputation contributing to accuracy improvements of 7-12%
and 15-20%, respectively.

While the cluster-based architecture method exhibits superior fault tolerance, the in-network
method achieves the highest energy efficiency. The developed architecture effectively balances
the performance of multiple components and addresses the root node bottlenecks of the tree-
based method.

The developed architecture advances the efficiency of sensor data aggregation through the
preprocessing method that combines wavelet denoising, spatial-temporal imputation, and
multimethod outlier detection. Such multistage data preprocessing contributes to the
improvement of accuracy by 22-32%. The edge device processing supports sub-second real-
time operations, fog node computing facilitates regional aggregation, and the cloud infrastructure
manages long-term storage. This layered structure enables independent adaptation to the various
numbers of sensors and cost optimization, making the architecture adaptable to diverse
applications.

Despite its demonstrated potential, the developed architecture has several limitations. Its
evaluation on synthetic and public datasets may not fully reflect the complexities of real-world
deployments, where environmental noise and hardware failures introduce unpredictable
challenges. Validation in diverse operational settings is essential to confirm its applicability. The
preprocessing pipeline incurs computational overhead, posing latency constraints for resource-
limited edge devices. Security and privacy protections also require deeper integration. While
aggregation offers baseline privacy, advanced adversarial techniques may still compromise
sensitive data. Cryptographic aggregation and differential privacy methods should be further
explored to balance protection with computational efficiency. Finally, the architecture’s reliance
on static statistical methods limits adaptability to dynamic data environments. Machine learning
and reinforcement learning approaches offer promising avenues for optimizing aggregation
strategies and enabling autonomous system configuration.

To employ the developed architecture, FPGAs need to be integrated with an advanced
graphics processing unit and an application-specific integrated circuit. By adopting such
devices, data preprocessing latency can be further reduced, enabling complex algorithms to run
on resource-constrained edge devices. The developed architecture can be applied to healthcare,
autonomous vehicles, and industrial control systems, which have unique performance and
reliability requirements. Therefore, domain-specific optimizations and standardized interfaces
of the developed architecture need to be ensured to facilitate broader adoption.

Sensors and Materials, Vol. 38, No. 1 (2026) 475

The structured sensor data aggregation architecture developed in this study addresses the
limitations of conventional cloud-only WSNs. The fog node’s preprocessing capability reduces
network load by up to 85% and end-to-end latency by 64.5% compared with that of the cloud-
only baseline, achieving a mean latency of 185.7 ms. Such results of sub-second response times
and scalability up to 1600 nodes validate the architecture’s viability for real-time, latency-
sensitive IoT applications. While the validation was conducted in a generalized WSN
environment, the architecture’s performance meets the quality of service (QoS) requirements for
dynamic environments such as smart cities and time-critical applications such as industrial
control systems.3%4% Through further optimization, task scheduling and implementation can be
enhanced to realize the full potential of the archetecture across diverse domains.

References

1 R. Krishnamurthi, A. Kumar, D. Gopinathan, A. Nayyar, and B. Qureshi: Sensors 20 (2020) 6076. https:/doi.
0rg/10.3390/s20216076
S. Majumder and M. J. Deen: Sensors 19 (2019) 2164. https:/doi.org/10.3390/519092164
L. Atzori, A. lera, and G. Morabito: Comp. Netw. 54 (2010) 2787. https:/doi.org/10.1016/j.comnet.2010.05.010
M. Chen, S. Mao, and Y. Liu: Mobile Netw. Appl. 19 (2014) 171. https://doi.org/10.1007/s11036-013-0489-0
A. C. Djedouboum, A. A. Abba Ari, A. M. Gueroui, A. Mohamadou, and Z. Aliouat: Sensors 18 (2018) 4474.
https://doi.org/10.3390/s18124474
6 J. He, J. Wei, K. Chen, Z. Tang, Y. Zhou, and Y. Zhang: IEEE IoT J. 5 (2018) 677. https:/doi.org/10.1109/
JIOT.2017.2724845
7 H.Cai, B. Xu, L. Jiang, and A. V. Vasilakos IEEE IoT J. 4 (2017) 75. https:/doi.org/10.1109/J10T.2016.2619369
8 Y. Zhang, N. Meratnia, and P. Havinga: IEEE Commun. Sur. Tutorials 12 (2010) 159. https:/doi.org/10.1109/
SURV.2010.021510.00088
9 Z. Gao, W. Cheng, X. Qiu, and L. Meng: Int. J. Distrib. Sens. Netw. 2015 (2015) 1. https://doi.
org/10.1155/2015/435391
10 Y. Liand L. E. Parker: Inform. Fusion 15 (2014) 64. https:/doi.org/10.1016/.inffus.2012.08.007
11 E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi: TEEE Wireless Commun. 14 (2007) 70. https://doi.org/10.1109/
MWC.2007.358967
12 B. Alinia, M. H. Hajiesmaili, A. Khonsari, and N. Crespi: arXiv. https:/doi.org/10.48550/ARX1V.1606.00637
13 H. Zhong, L. Shao, J. Cui, and Y. Xu: J. Parallel Distrib. Comput. 111 (2018) 1. https:/doi.org/10.1016/].
jpdc.2017.06.019
14 O. Younis and S. Fahmy: IEEE Trans. Mobile Comput. 3 (2004) 366. https:/doi.org/10.1109/TMC.2004.41
15 W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan: Proc. 2000 IEEE 33rd Annu. Hawaii Int. Conf.
Syst. Sci. (IEEE, 2000) 10. https:/doi.org/10.1109/HICSS.2000.926982
16 F. Bonomi, R. Milito, J. Zhu, and S. Addepalli: Proc. ACM MCC workshop on Mobile Cloud Computing
(ACM, 2012) 13. https:/doi.org/10.1145/2342509.2342513
17 J. Kreps, N. Narkhede, and J. Rao: Kafka: A Distributed Messaging System for Log Processing. Proceedings
of the NetDB Workshop, Athens, Greece (2011).
18 0., Younis and S. Fahmy: IEEE Trans. Mob. Comput. 3 (2004) 366. https://doi.org/10.1109/TMC.2004.41
19 C. Yang, D. Puthal, S. P. Mohanty, and E. Kougianos: IEEE Consumer Electron. Mag. 6 (2017) 48. https:/doi.
org/10.1109/MCE.2017.2714695
20 T. Rault, A. Bouabdallah, and Y. Challal: Comput. Netw. 67 (2014) 104. https://doi.org/10.1016/].
comnet.2014.03.027
21 W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu: IEEE IoT J. 3 (2016) 637. https://doi.org/10.1109/J10T.2016.2579198
22 M. Satyanarayanan: Computer 50 (2017) 30. https://doi.org/10.1109/MC.2017.9
23 J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, and V. Markl: Proc. 2018 IEEE 34th Int.
Conf. Data Eng. (ICDE, 2018) 1507. https://doi.org/10.1109/ICDE.2018.00169
24 M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and 1. Stoica: Proc. ACM 24th Symp. Operating Systems
Principles (ACM, 2013) 423. https:/doi.org/10.1145/2517349.2522737
25 K. Berkner and R. O. Wells: Proc. Wavelet transforms and denoising algorithms in Conference Record of
Thirty-Second Asilomar Conf. Signals, Systems and Computers (IEEE, 1998) 1639. https:/doi.org/10.1109/
ACSSC.1998.751603

wn AW

https://doi.org/10.3390/s20216076
https://doi.org/10.3390/s20216076
https://doi.org/10.3390/s19092164
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1007/s11036-013-0489-0
https://doi.org/10.3390/s18124474
https://doi.org/10.1109/JIOT.2017.2724845
https://doi.org/10.1109/JIOT.2017.2724845
https://doi.org/10.1109/JIOT.2016.2619369
https://doi.org/10.1109/SURV.2010.021510.00088
https://doi.org/10.1109/SURV.2010.021510.00088
https://doi.org/10.1155/2015/435391
https://doi.org/10.1155/2015/435391
https://doi.org/10.1016/j.inffus.2012.08.007
https://doi.org/10.1109/MWC.2007.358967
https://doi.org/10.1109/MWC.2007.358967
https://doi.org/10.48550/ARXIV.1606.00637
https://doi.org/10.1016/j.jpdc.2017.06.019
https://doi.org/10.1016/j.jpdc.2017.06.019
https://doi.org/10.1109/TMC.2004.41
https://doi.org/10.1109/HICSS.2000.926982
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1109/TMC.2004.41
https://doi.org/10.1109/MCE.2017.2714695
https://doi.org/10.1109/MCE.2017.2714695
https://doi.org/10.1016/j.comnet.2014.03.027
https://doi.org/10.1016/j.comnet.2014.03.027
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/ICDE.2018.00169
https://doi.org/10.1145/2517349.2522737
https://doi.org/10.1109/ACSSC.1998.751603
https://doi.org/10.1109/ACSSC.1998.751603

476

26

27

28

29

30
31

32

33
34

35
36

37

38
39

40

Sensors and Materials, Vol. 38, No. 1 (2026)

Y. Liu, T. Dillon, W. Yu, W. Rahayu, and F. Mostafa: IEEE IoT J. 7 (2020) 6855. https://doi.org/10.1109/
JIOT.2020.2970467

I. P. S. Mary and L. Arockiam: Proc. 2017 IEEE Int. Conf. Current Trends in Advanced Computing (ICCTAC,
2017) 1. https://doi.org/10.1109/ICCTAC.2017.8249990

A. Gaddam, T. Wilkin, M. Angelova, and J. Gaddam: Electronics 9 (2020) 511. https:/doi.org/10.3390/
electronics9030511

X. Deng, P. Jiang, X. Peng, and C. Mi: IEEE Trans. Ind. Electron. 66 (2019) 4672. https://doi.org/10.1109/
TIE.2018.2860568

N., Moustafa and J. Slay: Sustain. Cities Soc. 72 (2021) 102994. https:/doi.org/10.1016/j.s¢cs.2021.102994

Y. Chen, J. Shu, S. Zhang, L. Liu, and L. Sun: Proc. 2nd Int. Symp. Electronic Commerce and Security (ISECS,
209) 504. https://doi.org/10.1109/ISECS.2009.170

G. H. Adday, S. K. Subramaniam, Z. A. Zukarnain, and N. Samian: Sensors 22 (2022) 6041. https:/doi.
0rg/10.3390/s22166041

S. Sanyal and P. Zhang: IEEE Access 6 (2018) 67830. https://doi.org/10.1109/ACCESS.2018.2878640

T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang: Neurocomputing 461 (2021) 370. https://doi.org/10.1016/].
neucom.2021.07.045

F. M. Aymone and D. P. Pau: Information 15 (2024) 674. https://doi.org/10.3390/info15110674

A. Benaboura, R. Bechar, W. Kadri, T. D. Ho, Z. Pan, and S. Sahmoud: Electronic 14 (2025) 3090. https:/doi.
org/10.3390/electronics14153090

M. S. Farooq, S. Riaz, A. Abid, K. Abid, and M. A. Naeem: IEEE Access 7 (2019) 156237. https://ieeexplore.
ieee.org/stamp/stamp.jsp?arnumber=8883163

X. W. Ye, Y. H. Su, and J. P. Han: Sci. World J. 2014 (2014) 652329. https://doi.org/10.1155/2014/652329

P. Choppara and S. S. Mangalampalli: IEEE Access 13 (2025) 75466. https://doi.org/10.1109/
ACCESS.2025.3563487

P. Bellavista, J. Berrocal, A. Corradi, S. K. Das, L. Foschini, and A. Zanni: Pervasive Mob. Comput. 52 (2019)
71. https://doi.org/10.1016/j.pmcj.2018.12.007

https://doi.org/10.1109/JIOT.2020.2970467
https://doi.org/10.1109/JIOT.2020.2970467
https://doi.org/10.1109/ICCTAC.2017.8249990
https://doi.org/10.3390/electronics9030511
https://doi.org/10.3390/electronics9030511
https://doi.org/10.1109/TIE.2018.2860568
https://doi.org/10.1109/TIE.2018.2860568
https://doi.org/10.1016/j.scs.2021.102994
https://doi.org/10.1109/ISECS.2009.170
https://doi.org/10.3390/s22166041
https://doi.org/10.3390/s22166041
https://doi.org/10.1109/ACCESS.2018.2878640
https://doi.org/10.1016/j.neucom.2021.07.045
https://doi.org/10.1016/j.neucom.2021.07.045
https://doi.org/10.3390/info15110674
https://doi.org/10.3390/electronics14153090
https://doi.org/10.3390/electronics14153090
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8883163
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8883163
https://doi.org/10.1155/2014/652329
https://doi.org/10.1109/ACCESS.2025.3563487
https://doi.org/10.1109/ACCESS.2025.3563487
https://doi.org/10.1016/j.pmcj.2018.12.007

