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	 Small object detection plays a critical role in applications such as security surveillance, 
autonomous driving, and remote sensing. However, conventional detection methods often 
struggle with high annotation costs, low resolution, and heavy computational requirements. To 
address these challenges, we propose CGF-YOLOv11n, which is the abbreviation of C2 block + 
parallel spatial attention module (C2PLUS)-Ghost Convolution (GhostConv)-Feature Diffusion 
Pyramid Network (FDPN)-You Only Look Once (YOLO)v11n, an efficient and real-time small 
object detection algorithm built upon the YOLOv11n framework. First, we introduce the 
C2PLUS module, which effectively enhances fine-grained feature extraction for small targets. 
Second, we design a plug-and-play Ghost-Residual Field-Aware Convolution module to 
strengthen the feature extraction capability of the backbone network. Finally, the FDPN module 
is incorporated to promote the balanced fusion between semantic features and spatial 
information. Experimental results on the VisDrone2019 dataset demonstrate that the proposed 
method achieves improvements of 3.5 and 3.1% in mAP@0.5 on the validation and test sets, 
respectively, outperforming the baseline YOLOv11n model. In addition, CGF-YOLOv11n 
achieves 34 frames per second on the Orange Pi 5 platform, confirming its suitability for real-
time deployment and advancing the performance of small object detection systems. The related 
implementation details, including code and datasets, are available through the authors’ public 
project repository. In this study, we primarily contribute an efficient modular enhancement 
strategy for real-time small object detection by integrating C2PLUS, Ghost-based convolution, 
and FDPN into a lightweight YOLOv11n framework. While the proposed CGF-YOLOv11n 
demonstrates notable accuracy gains and real-time performance on an embedded platform, the 
current evaluation is limited to a single aerial benchmark dataset and does not fully explore 
robustness under extremely dense scenes or severe resolution degradation. Future work will 
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focus on extending validation to more diverse datasets, improving generalization in complex 
real-world environments, and further optimizing the model for ultralow-power edge devices.

1.	 Introduction

	 With the widespread adoption of computer vision (CV) technologies in security surveillance, 
autonomous driving, and remote sensing, the demand for high-performance object detection 
algorithms continues to increase. Among existing approaches, the You Only Look Once (YOLO) 
family has become a major research focus in both academia and industry because of its favorable 
balance between detection accuracy and computational efficiency.(1) Despite these advantages, 
traditional YOLO models still encounter substantial challenges when detecting small objects. 
Owing to factors such as low resolution, blurred texture details, and susceptibility to background 
interference, the rates of missed and false detections for small targets–typically defined as 
objects occupying fewer than 32 × 32 pixels in an image–remain significantly higher than those 
for medium or large objects. For example, in traffic surveillance, pedestrians or distant vehicles 
often occupy only a tiny portion of the frame, while in remote sensing imagery, targets such as 
ships or vehicles frequently appear as densely distributed small pixel clusters.
	 Although the YOLO architecture incorporates multi-scale prediction to capture objects of 
various sizes, the deep network’s aggressive downsampling inevitably weakens the feature 
representations of small targets. Moreover, shallow layers retain detailed textures but lack high-
level semantic information, resulting in suboptimal feature fusion and further complicating 
detection.(2) To overcome these issues, recent studies have explored feature enhancement and 
context modeling strategies, for instance, optimizing feature pyramids (e.g., BiFPN), or 
integrating an attention mechanism such as Squeeze-and-Excitation (SE) or Convolutional Block 
Attention Module (CBAM) to strengthen informative feature regions.(3–5) However, these 
approaches still suffer from limitations, including the insufficient preservation of fine-grained 
details, increased computational overhead, and limited robustness of data augmentation 
methods.(6–9) Such technical bottlenecks severely hinder the practical deployment of YOLO-
based models in key application scenarios including smart cities, unmanned aerial vehicle 
(UAV) inspection, and medical image analysis. For instance, failure to detect small objects in 
remote sensing imagery may compromise disaster monitoring accuracy, while missed or 
incorrect detections in traffic environments can lead to erroneous decision-making in 
autonomous driving systems.
	 Improving YOLO’s capability in small object detection holds substantial theoretical and 
practical value. Theoretically, the design of lightweight feature enhancement modules, multi-
granularity context-awareness mechanisms, and dynamic data augmentation strategies promotes 
advancements in feature representation, semantic reasoning, and sample balancing within object 
detection frameworks. Practically, enhancing the robustness of detection models in complex 
environments is critical for ensuring the reliability of systems such as autonomous driving and 
intelligent surveillance, while also guiding the deployment of lightweight models on edge-
computing devices. Ultimately, these improvements support the broader integration of computer 
vision technologies into smart industry, public security, and medical diagnostics, yielding 
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significant societal and economic benefits. Since the introduction of the YOLO series, research 
on object detection, particularly the detection of tiny objects, has expanded rapidly worldwide. 
YOLOv1 pioneered the idea of reframing object detection as a regression problem, enabling end-
to-end real-time detection. However, its performance on small objects remained limited. 
YOLOv2 subsequently incorporated multi-scale training and high-resolution classifiers, offering 
partial improvements in small object detection, yet considerable challenges persist when targets 
appear under complex imaging conditions.(10)

	 As the YOLO architecture has evolved, it has achieved greater representational capacity, 
improved computational efficiency on CPUs and embedded devices, and enhanced adaptability 
across diverse CV tasks.(11) The most recent iteration, YOLOv11, represents a major leap forward 
in real-time detection, delivering notable improvements in speed, efficiency, and accuracy 
through refined architecture and training techniques. Building upon YOLOv11n, in this study, 
we propose several architectural enhancements and validate their effectiveness on the 
VisDrone2019 dataset, and the contributions of this work are summarized as follows.
(1)	C2 block + Parallel Spatial Attention (C2PSA) module: Inspired by transformer-based 

designs, the C2PLUS module, which serves as an advanced refinement of the original C2 
block + C2PSA module in the YOLOv11 architecture, is an enhanced feature extraction block 
developed as part of YOLOv11 improvement research. Experiments demonstrate that this 
module substantially improves detection accuracy on VisDrone2019 without compromising 
inference speed.(12)

(2)	Ghost Convolution (GhostConv) module: By integrating the concepts of GhostConv and 
Residual Field-Aware Convolution RFAConv,(13,14) we propose GRFAConv, a plug-and-play 
convolutional module that enhances backbone feature extraction. By focusing on spatial 
structures within the receptive field, GRFAConv mitigates the inherent limitations of 
convolutional kernel parameter sharing.

(3)	Feature Diffusion Pyramid Network (FDPN) Neck module: A new neck architecture, the 
Balanced Spatial and Semantic Information FDPN, is developed to process multi-scale 
features extracted from the backbone. FDPN effectively balances spatial details and semantic 
cues, improving overall feature fusion quality.

	 To address this issue, we propose C2PLUS-GRFAConv-FDPN (CGF)-YOLOv11n, an 
enhanced version of YOLOv11n that integrates three key modules, namely, C2PLUS, 
GRFAConv, and FDPN, to strengthen fine-grained feature extraction, expand receptive fields, 
and improve semantic–spatial fusion. Through these advancements, in this study, we present an 
efficient and lightweight small object detection framework that achieves an optimal balance 
among accuracy, real-time performance, and model compactness. The proposed enhancements 
not only address long-standing limitations in feature preservation and semantic–spatial fusion 
within YOLO-based architectures but also provide a scalable solution suitable for deployment on 
edge devices and resource-constrained platforms. By substantially improving detection 
robustness in challenging environments, in this work, we lay a solid foundation for future 
research on real-time, high-precision perception systems and promote the broader adoption of 
small object detection technologies in practical applications.



480	 Sensors and Materials, Vol. 38, No. 1 (2026)

2.	 Methodology

	 The YOLO family of object detection algorithms marked a major breakthrough by integrating 
class prediction and bounding box regression into a unified end-to-end neural network. This 
streamlined design removed the dependence on multi-stage processing pipelines, thereby 
enabling real-time inference while maintaining competitive accuracy compared with traditional 
detection frameworks.(15) Building on this paradigm, YOLOv11n extends and refines the 
architectural principles of YOLOv8 through structural innovations and parameter optimization, 
further enhancing its effectiveness in object detection tasks. The model incorporates advanced 
feature extraction components to capture fine-grained visual cues and significantly improves 
processing efficiency for real-time applications. The overall architecture of YOLOv11n is 
illustrated in Fig. 1. Compared with YOLOv8, YOLOv11n introduces several structural 
modifications. As shown in Fig. 1, the original C2f module is replaced with the C3k2 block, 
where the reduced convolutional kernel size (denoted by “k2”) accelerates computation while 
preserving representational capacity. Additionally, the new C2PSA module is incorporated to 
enhance detection robustness for objects of various scales and spatial distributions. To further 
improve computational efficiency, two depthwise convolution (DWConv) layers are added to the 
decoupled detection head, which substantially reduces both parameter count and computational 
load.
	 Despite these improvements, detecting small objects remains challenging owing to 
insufficient feature preservation and limited receptive field adaptation. First, the C2PLUS 
module is introduced into the backbone to replace the original C2PSA module. Designed to 

Fig. 1.	 (Color online) YOLOv11n network structure.
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capture multi-granularity contextual information more effectively, C2PLUS enhances the 
network’s ability to process small object features without degrading inference speed. Second, to 
further expand the receptive field and refine feature extraction within the backbone, we develop 
the GRFAConv module, an improved convolutional unit that replaces the two standard Conv 
layers and the Conv layer inside the C3k2 block. GRFAConv concentrates on spatial relationships 
within the receptive field and alleviates limitations associated with traditional convolution 
kernel parameter sharing. Finally, the Balanced Spatial and Semantic Information FDPN is 
introduced at the neck stage to facilitate the balanced fusion of shallow spatial information and 
deep semantic cues, thereby improving multi-scale representation consistency. The overall 
architecture of CGF-YOLOv11n is presented in Fig. 2.
	 To address the low detection accuracy of tiny objects in conventional object detection 
networks, many approaches incorporate self-attention mechanisms. Although traditional self-
attention offers a large effective receptive field, it often overlooks channel-wise similarity. 
Conversely, attention mechanisms in the classical Convolutional Neural Network (CNN) exhibit 
limited receptive fields. For instance, popular channel-attention modules such as SE and 
Efficient Channel Attention rely on global average pooling to aggregate spatial information and 
then generate channel-wise weights based on similarity, which are multiplied with the original 

Fig. 2.	 (Color online) CGF-YOLOv11n network structure.
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feature map to enhance important channels.(16) While such methods improve detection 
performance, their ability to capture fine-grained contextual relationships remains insufficient 
for small object feature representation. Motivated by these limitations, in this study, we propose 
a novel C2PLUS module to replace the PSABlock in the original C2PSA module. As illustrated 
in Fig. 3, the C2PLUS module enhances feature modeling by jointly considering the original 
input and inter-channel similarity, and then applying transformer-based processing to strengthen 
global contextual interactions. 
	 Specifically, the redesigned block replaces the standard Attention mechanism with an 
AttentionPLUS structure. In this design, the feature map processed by the Multi-Path 
Aggregation (MPA) module is assigned as the key feature K, while the original input feature 
map serves as the query Q. Within the MPA module, the feature map is subjected to pooling and 
average-pooling operations along both horizontal and vertical directions. The aggregated results 
are then summed to obtain direction-aware structural information. Inspired by the SE attention 
mechanism, two 1 × 1 convolution layers are introduced for channel compression and expansion, 
enabling more effective channel-wise feature fusion. The fused representation is passed through 
a Sigmoid activation function to obtain the final attention weights, which combine global 
contextual cues with channel interaction. This process yields an enhanced feature representation 
that is better suited for capturing small object details. The computation procedure is summarized 
in Eq. (1), where X denotes the input feature map of the MPA module and the output of the MPA 
module is denoted as Y.

	 ( ) ( ) ( ) ( )( )( )( )1 1 1 1Sigmoid Conv Conv XAvgPool YAvgPoolY X X Y× ×= × + 	 (1)

Fig. 3.	 (Color online) C2PLUS module structure diagram.
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	 To model spatial similarity within the feature map, the value component V is defined as the 
absolute difference between Q and K, thereby strengthening the correlation between features 
before and after transformation. The computation of Q, K, and V is summarized in Eq. (2). 

	 Q = X, K = Y, V = Abs(Q – K)	 (2)

	 After obtaining Q and K, a dot-product operation is performed to generate an intermediate 
correlation matrix. To prevent excessively large dot-product magnitudes and to avoid gradient 
vanishing after activation, we introduce a scaling factor 1 / kG d=  in the dot-product attention. 
Here, dk denotes the dimensionality of the key vector K (i.e., the channel/embedding size). This 
normalization stabilizes the SoftMax input distribution and improves training stability. The 
resulting matrix is then passed through the SoftMax function to produce the attention map, 
which reflects the similarity strength between different spatial regions of the feature map. 
Higher response values indicate stronger positive associations. The attention map is subsequently 
multiplied with the value representation to obtain the refined feature map, as summarized in Eq. 
3(a). Finally, the output of this computation represents the enhanced representation produced by 
the AttentionPLUS module. The full process is described in Eq. 3(b), where Z denotes the final 
output feature of AttentionPLUS.
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	 The classic RFAConv module is designed from the perspective of spatial attention, utilizing 
partial pooling and 3 × 3 convolution operations to emphasize the spatial characteristics of the 
receptive field. While effective in expanding contextual perception, this approach may introduce 
redundancy within the feature maps. To overcome this limitation, the proposed model integrates 
the strengths of RFAConv and GhostConv to develop a lightweight, plug-and-play convolutional 
unit named GRFAConv. The structural layout of the module is illustrated in Fig. 4. 
	 Let the input feature map be C H WX R × ×∈ . To avoid redundant feature extraction, a 1 × 1 
convolution is first applied to adjust the number of output channels. These channels are then 
evenly divided into two parts using a Split operation. The first branch aggregates global 
contextual information through average pooling within each receptive field. A subsequent 1 × 1 
group convolution further enhances feature interaction, followed by a SoftMax operation that 
assigns importance weights to different spatial positions. In parallel, the module employs a 3 × 3 
grouped convolution to capture enhanced local contextual cues while maintaining computational 
efficiency. The grouped structure significantly reduces the number of parameters, whereas the 3 
× 3 kernels ensure sufficient contextual extraction. A Rectified Linear Unit (ReLU) activation is 
applied to enforce unilateral suppression and stabilize training. The outputs of the two weighted 
branches are then fused through element-wise multiplication. After reshaping, a 3 × 3 



484	 Sensors and Materials, Vol. 38, No. 1 (2026)

convolution is used for downsampling. Finally, the processed feature maps are concatenated with 
the previously divided feature channels along the channel dimension to form the final output. 
The overall GRFAConv computation process is formally described in Eqs. (4)–(6).

	 ( )( )1 1
1 2, Spilt ConvX X X×= 	 (4)

	 ( )( ) ( )( )( )( )1 1 3 3
1 1 1Softmax AvgPool Relu NormF g X g X× ×= × 	 (5)

	 ( )( )( )3 3
2 2 1 2 and Concat Conv Adjust ,F X F F F×= = 	 (6)

	 In Eq. (5), gi×i denotes a multilayer convolution with a kernel size of i × i representing the 
normalization operation and X is the input feature map. The final output is obtained by 
concatenating the attention maps F1 and F2 along the channel dimension. Unlike CBAM and 
Coordinate Attention, which generate global or channel-level attention maps, the proposed 
GRFAConv module produces attention maps for each individual receptive-field region, enabling 
more fine-grained spatial modeling. Traditional convolution operations limit CNN performance 
because they rely on shared kernel parameters, making them insensitive to positional variations 

Fig. 4.	 (Color online) GRFAConv convolution structure diagram.



Sensors and Materials, Vol. 38, No. 1 (2026)	 485

within the receptive field. This restricts the network’s ability to adapt to subtle spatial changes, 
an issue that is especially detrimental in small object detection. GRFAConv overcomes this 
limitation by emphasizing the spatial characteristics within the receptive field and assigning 
differentiated importance to features at different spatial positions within the sliding window. 
Furthermore, by incorporating the grouped processing strategy used in GhostConv, GRFAConv 
significantly reduces parameter overhead and computational cost while preserving 
representational richness. This combination of receptive-field-aware attention modeling and 
lightweight convolutional design enables GRFAConv to enhance context perception efficiently, 
making it well suited for real-time small object detection tasks.
	 In the feature fusion stage, traditional PANet structures require multiple rounds of 
upsampling and downsampling to merge features across scales.(17) However, such repetitive 
spatial transformations inevitably lead to semantic information loss. As a result, deep layers 
often fail to retain the semantic cues necessary for identifying small objects, while shallow 
layers lack sufficient contextual information. When the features of small targets are weakened or 
lost during fusion, detection performance deteriorates significantly. To alleviate these issues, in 
this study, we introduce a novel feature fusion network termed FDPN. The proposed FDPN 
leverages the FocusFeature module, which integrates multi-scale features from adjacent upper, 
lower, and same-level layers, thereby compensating for semantic degradation during fusion. 
Through a feature diffusion mechanism, each scale receives richer contextual information, 
effectively enhancing feature completeness. As illustrated in Fig. 5, the FDPN workflow 
proceeds as follows. First, FocusFeature aggregates the rich semantic representations from 
layers B3, B4, and B5 to generate the fused feature layer P4. Next, P4 serves as the central 
diffusion source, propagating contextualized information upward to P3 and downward to P5. 

Fig. 5.	 (Color online) FDPN structure diagram.
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The diffusion mechanism includes one upsampling and one downsampling operation for each 
propagation direction. Unlike traditional repeated sampling operations that risk feature loss, this 
design preserves more stable semantic consistency across scales.
	 Within FDPN, the FocusFeature module is responsible for cross-scale feature focusing and 
integration. By accepting inputs from three different resolutions and processing them through 
parallel convolutional paths, FocusFeature extracts richer semantic and contextual cues. Its 
architectural design is shown in Fig. 6. As depicted in Fig. 6, layer B3 is downsampled using an 
ADown convolution, layer B4 undergoes channel adjustment via a 1 × 1 convolution, and layer 
B5 is upsampled.(18) The outputs from these three branches are then concatenated along the 
channel dimension. To fully extract hierarchical features, three depthwise-separable 
convolutions with different kernel sizes are applied in parallel. Finally, a classic residual 
structure is used to stabilize training and enhance representation. The computation process of 
FocusFeature is defined by Eqs. (7) and (8), where Z denotes the module’s final output.

	 ( ) ( ) ( )( )3 3 1 1
3 4 5Concat ADown ,Conv ,UpsampleY B B B× ×= 	 (7)

	 ( ) ( ) ( )( )1 1 3 3 5 5 7 7Conv DwConv DwConv DwConvZ Y Y Y Y× × × ×= + + + 	 (8)

Fig. 6.	 (Color online) FocusFeature structure diagram.
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3.	 Experiment Procedure

	 The experiments were conducted using the public VisDrone2019 dataset, collected by the 
research team at Tianjin University. This dataset contains 8599 static aerial images, including 
6471 for training, 548 for validation, and 1580 for testing, all captured by drones operating at 
medium to high altitudes. VisDrone2019 provides highly diverse and challenging visual 
conditions essential for evaluating small object detection models. The dataset spans 14 cities and 
includes urban, suburban, and rural environments distributed across thousands of kilometers, 
introducing significant variability in illumination, background clutter, occlusion, and perspective 
distortion. The target categories such as bicycles, cars, trucks, buses, and pedestrians often 
appear as extremely small pixel regions owing to camera altitude and oblique viewing angles. 
Furthermore, scene density ranges from sparsely populated areas to heavily congested traffic 
zones, making VisDrone2019 a rigorous benchmark for assessing both detection accuracy and 
robustness in real-world UAV applications. All experiments were implemented on an NVIDIA 
RTX 4090 GPU running Linux, equipped with 60 GB of system memory. The training 
framework was based on Python 3.8.10, CUDA 11.3, and PyTorch 2.0.0. To ensure fairness and 
reproducibility across experiments, all models were trained under identical hyperparameter 
configurations. 
	 The input resolution was set to 640 × 640, and each model was trained for 300 epochs with a 
batch size of 8, using 8 workers for data loading. The learning rate was initialized at 0.01, with a 
final learning rate factor (lrf) of 0.01, a momentum of 0.937, and a weight decay of 0.0005. The 
selected experimental configuration reflects a balance between computational feasibility and 
model performance. A resolution of 640 × 640 is commonly adopted in small object detection 
studies because it preserves fine-grained spatial details while maintaining acceptable training 
speed. Similarly, a batch size of 8 is well suited for high-resolution imagery, preventing GPU 
memory overf low while ensuring stable gradient updates. Maintaining consistent 
hyperparameters across all trials allows performance differences to be attributed directly to 
architectural innovations such as C2PLUS, GRFAConv, and FDPN rather than variations in 
training settings. Overall, this experimental setup provides a rigorous and controlled 
environment for evaluating the effectiveness of CGF-YOLOv11n on small object detection under 
realistic UAV scenarios.
	 The evaluation metrics used in this study include Precision, Recall, and mean Average 
Precision (mAP). In addition to accuracy-related indicators, it is essential to consider model 
complexity and computational efficiency, as these directly affect real-time performance, 
particularly in UAV-based small object detection tasks. Therefore, Floating Point Operations 
(GFLOPs) and the number of model parameters are also reported to comprehensively assess 
model efficiency. The formulas for the evaluation metrics are provided in Eqs. (9) and (10), 
where N denotes the total number of object categories in the dataset.

	  and TP TPPrecision Recall
TP FP TP FN

= =
+ +

	 (9)
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1

1   and 
N

iAP Precision and Recall mAP AP
N

= = ∑∫ 	 (10)

	 Precision measures the proportion of correctly predicted positive samples, where True 
Positives (TP) represent accurately identified objects, and False Positives (FP) correspond to 
incorrectly detected targets. Recall reflects the proportion of actual positive samples that are 
successfully detected by the model, with False Negatives (FN) indicating true objects that the 
model fails to identify. For overall detection quality, mAP is computed by averaging the AP 
scores across all categories, where APi denotes the AP value associated with class i. Including 
both accuracy-based and efficiency-oriented metrics is crucial for a fair and meaningful 
comparison. Small object detection models often face a trade-off: improving accuracy may 
increase computational cost, while reducing model size may degrade detection performance. By 
jointly evaluating mAP, Precision, Recall, GFLOPs, and parameter count, in this study, we 
provide a balanced perspective on how the proposed CGF-YOLOv11n architecture enhances 
small object detection without compromising real-time capability. This multifaceted evaluation 
approach ensures that improvements are not limited to accuracy alone but extend to 
computational practicality, an essential requirement for real-world deployment on embedded and 
edge-computing platforms.

4.	 Results and Discussion

	 To evaluate the effectiveness of the enhanced algorithmic modules proposed in this study, 
ultralytics-YOLOv11n was selected as the baseline model. A comprehensive ablation study was 
conducted using key metrics including GFLOPs, the number of parameters, mAP@0.5, Recall, 
and Precision. Multiple combinations of the proposed modules were tested to assess their 
individual and joint contributions. The statistical results of all ablation configurations are 
summarized in Table 1, where A, B, and C denote the progressive improved versions derived 
from the baseline. Model A incorporates the C2PLUS module into the baseline architecture. 
Despite introducing only negligible increases in computational complexity and parameter count, 
Model A demonstrates a substantial improvement in detection accuracy across both the 
validation and test sets. This confirms that C2PLUS significantly enhances feature extraction for 
small objects while maintaining lightweight characteristics, providing a strong foundation for 
subsequent architectural improvements. Model B extends Model A by integrating the proposed 
GRFAConv convolution module. Although GRFAConv incurs a slightly higher computational 
cost than a standard convolution, it yields notable performance gains. 

Table 1
Ablation tests using the VisDrone2019 dataset as a validation set.
Model C2PLUS GRFAConv FDPN Precision Recall mAP@0.5 Parameters/M GFLOPs
YOLOv11n 44.5 33.6 33.4 2.584 6.4
A ✓ 45.1 35.1 34.3 2.573 6.4
B ✓ ✓ 46.0 36.2 35.8 2.594 6.6
C ✓ ✓ ✓ 46.7 37.0 36.9 2.745 7.2
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	 On the validation set, Model B achieves improvements of 2.1% in Precision, 1.1% in Recall, 
and 1.5% in mAP@0.5 relative to Model A. These results demonstrate that GRFAConv 
effectively strengthens receptive-field modeling and spatial feature interaction, leading to a 
more discriminative feature representation. Model C further enhances Model B by replacing the 
original YOLOv11n FPN with the proposed FDPN structure. The FDPN introduces only 
minimal increases in parameters and GFLOPs, yet it significantly improves multi-scale feature 
fusion. As shown in Tables 1 and 2, Model C achieves an additional 0.8% increase in mAP@0.5 
on the test set and 1.1% on the validation set, indicating that FDPN effectively mitigates semantic 
loss during feature integration and enhances the stability of small object detection. The final 
improved model, integrating all three modules, is named CGF-YOLOv11n. Subsequent 
evaluations on embedded hardware platforms further confirm its suitability for UAV-based and 
perspective-view detection tasks, demonstrating both enhanced accuracy and practical 
deployability. Overall, the ablation results validate that each proposed module contributes 
meaningful performance improvements while maintaining computational efficiency. The 
consistent gains across both validation and test sets on the VisDrone2019 dataset confirm the 
robustness and effectiveness of the CGF-YOLOv11n architecture.
	 To further validate the detection performance of the enhanced model, a comparative study 
was conducted using several mainstream object detection algorithms, including YOLOv3-
tiny,(19) YOLOv5n,(20) YOLOv7,(21) YOLOv7-tiny,(22,23) YOLOv8n,(24) YOLOv10,(25) 
YOLOv11n,(26) YOLOv12,(27) YOLOX-Tiny,(28,29) as well as the benchmark YOLOv11n model. 
Table 3 presents the performance comparison between the original YOLOv11n and the proposed 
CGF-YOLOv11n on the VisDrone2019 test set. Experimental results show that although CGF-
YOLOv11n introduces slight increases in parameters and computational load, it achieves a 

Table 2
Ablation tests using the VisDrone2019 dataset as test sets.
Model C2PLUS GRFAConv FDPN Precision Recall mAP@0.5 Parameters/M GFLOPs
YOLOv11n 36.5 28.6 27.0 2.584 6.4
A ✓ 37.3 29.1 27.7 2.573 6.4
B ✓ ✓ 38.0 30.2 29.3 2.594 6.6
C ✓ ✓ ✓ 39.7 30.5 30.1 2.745 7.2

Table 3
VisDrone2019 dataset’s object detection outcomes using several algorithms.
Model Parameters/M GFLOPs mAP@0.5
YOLOv3-tiny 12.2 19.0 23.1
YOLOv5n 1.9 4.5 24.5
YOLOv7-tiny 5.9 13.2 25.3
YOLOv8n 3.0 8.1 25.9
YOLOv10n 2.3 6.5 26.1
YOLOv11n 2.6 6.4 27.0
YOLOv12n 2.6 6.3 25.9
YOLOX-Tiny 5.0 7.6 27.8
CGF-YOLOv11n 2.7 7.2 30.1



490	 Sensors and Materials, Vol. 38, No. 1 (2026)

significant improvement in detection accuracy, outperforming all compared methods. This 
demonstrates that the proposed architecture effectively enhances small object detection while 
maintaining a lightweight design suitable for real-time applications.
	 The performance gains can be attributed to the contributions of the three improved modules. 
The C2PLUS module enhances fine-grained feature extraction with minimal computational 
overhead, producing richer feature representations essential for small object detection. The plug-
and-play GRFAConv module reduces redundant information and accelerates network 
convergence, enabling the model to focus more effectively on critical target regions. Additionally, 
the FDPN structure diffuses semantically enriched features across multiple scales, substantially 
improving the model’s capability to detect small targets under varying perspectives, an 
important advantage for UAV-based detection tasks. Overall, the enhanced CGF-YOLOv11n 
model delivers superior performance compared with existing lightweight and standard detection 
architectures. Its improvements in accuracy, robustness, and multi-scale feature representation 
confirm its effectiveness for small object detection in complex aerial scenarios.
	 To intuitively evaluate the effectiveness of the proposed model, heatmap visualization was 
first employed to illustrate the distribution of attention across different image regions. In such 
visualization, warmer colors (redder regions) indicate a stronger contribution to classification, 
whereas cooler colors (bluer regions) indicate a weaker contribution. Figure 7 shows a 

Fig. 7.	 (Color online) Heatmap comparison.
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comparative heatmap visualization of different models; Fig. 7(a) corresponds to the original 
image, whereas Figs. 7(b) and 7(c) show the heatmaps generated by the baseline YOLOv11n and 
the proposed CGF-YOLOv11n, respectively. Both YOLOv11n and CGF-YOLOv11n are able to 
focus on the primary target regions; however, CGF-YOLOv11n exhibits significantly stronger 
and more concentrated attention on small objects. In the first scene, YOLOv11n only attends to a 
limited number of vehicles. In the second and third scenes, the baseline model mainly focuses on 
relatively larger objects in the near field, whereas the proposed model is able to attend to small 
targets located in distant regions. In the fourth scene, even under low-light conditions, the 
improved model successfully identifies a greater number of small objects at longer distances. 
These comparisons demonstrate that CGF-YOLOv11n achieves superior detection capability 
compared with the baseline model, highlighting the effectiveness of the proposed architectural 
enhancements in strengthening feature extraction and sensitivity to small target regions.
	 Next, Fig. 8 presents detection results of YOLOv11n and CGF-YOLOv11n across various 
challenging environments to further demonstrate the advantages of the enhanced model. Figure 

Fig. 8.	 (Color online) Comparison of detection outcomes across several situations.
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8 also shows the detection results of the baseline YOLOv11n and the proposed CGF-YOLOv11n 
on six representative scenarios from the VisDrone2019 dataset, where Fig. 8(a) corresponds to 
the original images, Fig. 8(b) shows the results of YOLOv11n, and Fig. 8(c) shows the results of 
CGF-YOLOv11n. In the first row of images, where numerous small objects such as motorcycles 
and pedestrians appear, CGF-YOLOv11n detects substantially more targets than YOLOv11n, 
thereby reducing missed detections. In the first three scenarios, the proposed model successfully 
detects low-angle vehicles, pedestrians, and trucks, whereas the baseline model struggles with 
these targets. In the fourth and fifth scenarios, CGF-YOLOv11n is able to identify smaller 
pedestrians and trucks located on the left side of the images, whereas in the sixth scenario, it 
detects an even smaller vehicle in the lower-left region. By contrast, YOLOv11n shows limited 
capability in detecting such small-scale targets. Moreover, compared with YOLOv11n, CGF-
YOLOv11n achieves comparable confidence levels when detecting large and medium-sized  
objects, demonstrating that the proposed improvements do not compromise robustness on larger 
targets. These results highlight the strong potential of CGF-YOLOv11n for high-precision 
applications across a wide range of small-object-dominated scenarios.
	 In the third example of the third column, the enhanced model successfully identifies a 
motorcycle located under intense illumination on the far left, which YOLOv11n fails to detect. 
Similarly, in the fourth example, only a partially visible tractor appears at the left edge of the 
image. YOLOv11n misses this object entirely, whereas CGF-YOLOv11n correctly identifies it, 
demonstrating superior robustness in scenarios involving occlusion and partial visibility. 
Overall, the visualization results clearly show that CGF-YOLOv11n exhibits stronger 
generalization ability and improved adaptability across diverse environments, including scenes 
with large numbers of small objects, complex lighting variations, and cluttered backgrounds. 
Compared with YOLOv11n, the enhanced model not only detects significantly smaller targets 
but also maintains similar confidence levels for large and medium-sized objects, highlighting its 
robustness. These findings collectively indicate that CGF-YOLOv11n holds substantial potential 
for high-precision small-object detection in real-world UAV and aerial imaging applications.

5.	 Conclusions

	 In this study, we proposed an enhanced small object detection model, CGF-YOLOv11n, to 
address the challenges of missed and erroneous detections commonly encountered in small 
target recognition. First, the model integrates transformer-based self-attention with traditional 
CNN attention mechanisms, strengthening multi-scale feature fusion within the neck structure. 
Second, a lightweight, plug-and-play convolution module, GRFAConv, was designed by 
combining the principles of RFAConv and GhostConv, effectively improving receptive-field 
modeling while maintaining computational efficiency. Finally, a novel diffusion pyramid 
network, FDPN, was introduced to mitigate feature loss through a feature diffusion process, 
ensuring more robust semantic propagation across scales. Experimental results on the 
VisDrone2019 dataset demonstrate that the proposed framework significantly improves small 
object detection performance and consistently outperforms other benchmark models. Although 
CGF-YOLOv11n achieves notable gains in accuracy, there remains room for further optimization 
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in terms of parameter count and computational complexity. Future work will focus on additional 
lightweight model compression strategies to enhance detection speed without compromising 
accuracy. Moreover, expanding evaluation to include diverse real-world datasets will help assess 
and strengthen the generalization capability of the proposed model in practical deployment 
scenarios.
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