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Small object detection plays a critical role in applications such as security surveillance,
autonomous driving, and remote sensing. However, conventional detection methods often
struggle with high annotation costs, low resolution, and heavy computational requirements. To
address these challenges, we propose CGF-YOLOvl11n, which is the abbreviation of C2 block +
parallel spatial attention module (C2PLUS)-Ghost Convolution (GhostConv)-Feature Diffusion
Pyramid Network (FDPN)-You Only Look Once (YOLO)vlln, an efficient and real-time small
object detection algorithm built upon the YOLOvlln framework. First, we introduce the
C2PLUS module, which effectively enhances fine-grained feature extraction for small targets.
Second, we design a plug-and-play Ghost-Residual Field-Aware Convolution module to
strengthen the feature extraction capability of the backbone network. Finally, the FDPN module
is incorporated to promote the balanced fusion between semantic features and spatial
information. Experimental results on the VisDrone2019 dataset demonstrate that the proposed
method achieves improvements of 3.5 and 3.1% in mAP@0.5 on the validation and test sets,
respectively, outperforming the baseline YOLOvIIn model. In addition, CGF-YOLOvlIn
achieves 34 frames per second on the Orange Pi 5 platform, confirming its suitability for real-
time deployment and advancing the performance of small object detection systems. The related
implementation details, including code and datasets, are available through the authors’ public
project repository. In this study, we primarily contribute an efficient modular enhancement
strategy for real-time small object detection by integrating C2PLUS, Ghost-based convolution,
and FDPN into a lightweight YOLOvlIn framework. While the proposed CGF-YOLOvlln
demonstrates notable accuracy gains and real-time performance on an embedded platform, the
current evaluation is limited to a single aerial benchmark dataset and does not fully explore
robustness under extremely dense scenes or severe resolution degradation. Future work will
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focus on extending validation to more diverse datasets, improving generalization in complex
real-world environments, and further optimizing the model for ultralow-power edge devices.

1. Introduction

With the widespread adoption of computer vision (CV) technologies in security surveillance,
autonomous driving, and remote sensing, the demand for high-performance object detection
algorithms continues to increase. Among existing approaches, the You Only Look Once (YOLO)
family has become a major research focus in both academia and industry because of its favorable
balance between detection accuracy and computational efficiency.(!) Despite these advantages,
traditional YOLO models still encounter substantial challenges when detecting small objects.
Owing to factors such as low resolution, blurred texture details, and susceptibility to background
interference, the rates of missed and false detections for small targets—typically defined as
objects occupying fewer than 32 x 32 pixels in an image—-remain significantly higher than those
for medium or large objects. For example, in traffic surveillance, pedestrians or distant vehicles
often occupy only a tiny portion of the frame, while in remote sensing imagery, targets such as
ships or vehicles frequently appear as densely distributed small pixel clusters.

Although the YOLO architecture incorporates multi-scale prediction to capture objects of
various sizes, the deep network’s aggressive downsampling inevitably weakens the feature
representations of small targets. Moreover, shallow layers retain detailed textures but lack high-
level semantic information, resulting in suboptimal feature fusion and further complicating
detection.?) To overcome these issues, recent studies have explored feature enhancement and
context modeling strategies, for instance, optimizing feature pyramids (e.g., BiFPN), or
integrating an attention mechanism such as Squeeze-and-Excitation (SE) or Convolutional Block
Attention Module (CBAM) to strengthen informative feature regions.3—>) However, these
approaches still suffer from limitations, including the insufficient preservation of fine-grained
details, increased computational overhead, and limited robustness of data augmentation
methods.~? Such technical bottlenecks severely hinder the practical deployment of YOLO-
based models in key application scenarios including smart cities, unmanned aerial vehicle
(UAV) inspection, and medical image analysis. For instance, failure to detect small objects in
remote sensing imagery may compromise disaster monitoring accuracy, while missed or
incorrect detections in traffic environments can lead to erroneous decision-making in
autonomous driving systems.

Improving YOLQO’s capability in small object detection holds substantial theoretical and
practical value. Theoretically, the design of lightweight feature enhancement modules, multi-
granularity context-awareness mechanisms, and dynamic data augmentation strategies promotes
advancements in feature representation, semantic reasoning, and sample balancing within object
detection frameworks. Practically, enhancing the robustness of detection models in complex
environments is critical for ensuring the reliability of systems such as autonomous driving and
intelligent surveillance, while also guiding the deployment of lightweight models on edge-
computing devices. Ultimately, these improvements support the broader integration of computer
vision technologies into smart industry, public security, and medical diagnostics, yielding
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significant societal and economic benefits. Since the introduction of the YOLO series, research

on object detection, particularly the detection of tiny objects, has expanded rapidly worldwide.

YOLOVI pioneered the idea of reframing object detection as a regression problem, enabling end-

to-end real-time detection. However, its performance on small objects remained limited.

YOLOV2 subsequently incorporated multi-scale training and high-resolution classifiers, offering

partial improvements in small object detection, yet considerable challenges persist when targets

appear under complex imaging conditions.(1?

As the YOLO architecture has evolved, it has achieved greater representational capacity,
improved computational efficiency on CPUs and embedded devices, and enhanced adaptability
across diverse CV tasks.('") The most recent iteration, YOLOVI11, represents a major leap forward
in real-time detection, delivering notable improvements in speed, efficiency, and accuracy
through refined architecture and training techniques. Building upon YOLOvlIn, in this study,
we propose several architectural enhancements and validate their effectiveness on the
VisDrone2019 dataset, and the contributions of this work are summarized as follows.

(1) C2 block + Parallel Spatial Attention (C2PSA) module: Inspired by transformer-based
designs, the C2PLUS module, which serves as an advanced refinement of the original C2
block + C2PSA module in the YOLOvVI11 architecture, is an enhanced feature extraction block
developed as part of YOLOv11 improvement research. Experiments demonstrate that this
module substantially improves detection accuracy on VisDrone2019 without compromising
inference speed.(?

(2) Ghost Convolution (GhostConv) module: By integrating the concepts of GhostConv and
Residual Field-Aware Convolution RFAConv, 1314 we propose GRFAConv, a plug-and-play
convolutional module that enhances backbone feature extraction. By focusing on spatial
structures within the receptive field, GRFAConv mitigates the inherent limitations of
convolutional kernel parameter sharing.

(3) Feature Diffusion Pyramid Network (FDPN) Neck module: A new neck architecture, the
Balanced Spatial and Semantic Information FDPN, is developed to process multi-scale
features extracted from the backbone. FDPN effectively balances spatial details and semantic
cues, improving overall feature fusion quality.

To address this issue, we propose C2PLUS-GRFAConv-FDPN (CGF)-YOLOvlIn, an
enhanced version of YOLOvlln that integrates three key modules, namely, C2PLUS,
GRFAConv, and FDPN, to strengthen fine-grained feature extraction, expand receptive fields,
and improve semantic—spatial fusion. Through these advancements, in this study, we present an
efficient and lightweight small object detection framework that achieves an optimal balance
among accuracy, real-time performance, and model compactness. The proposed enhancements
not only address long-standing limitations in feature preservation and semantic—spatial fusion
within YOLO-based architectures but also provide a scalable solution suitable for deployment on
edge devices and resource-constrained platforms. By substantially improving detection
robustness in challenging environments, in this work, we lay a solid foundation for future
research on real-time, high-precision perception systems and promote the broader adoption of
small object detection technologies in practical applications.
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2. Methodology

The YOLO family of object detection algorithms marked a major breakthrough by integrating
class prediction and bounding box regression into a unified end-to-end neural network. This
streamlined design removed the dependence on multi-stage processing pipelines, thereby
enabling real-time inference while maintaining competitive accuracy compared with traditional
detection frameworks.(!) Building on this paradigm, YOLOvlln extends and refines the
architectural principles of YOLOv8 through structural innovations and parameter optimization,
further enhancing its effectiveness in object detection tasks. The model incorporates advanced
feature extraction components to capture fine-grained visual cues and significantly improves
processing efficiency for real-time applications. The overall architecture of YOLOvlln is
illustrated in Fig. 1. Compared with YOLOvVS8, YOLOvlln introduces several structural
modifications. As shown in Fig. 1, the original C2f module is replaced with the C3k2 block,
where the reduced convolutional kernel size (denoted by “k2”) accelerates computation while
preserving representational capacity. Additionally, the new C2PSA module is incorporated to
enhance detection robustness for objects of various scales and spatial distributions. To further
improve computational efficiency, two depthwise convolution (DWConv) layers are added to the
decoupled detection head, which substantially reduces both parameter count and computational
load.

Despite these improvements, detecting small objects remains challenging owing to
insufficient feature preservation and limited receptive field adaptation. First, the C2PLUS
module is introduced into the backbone to replace the original C2PSA module. Designed to
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Fig. 1. (Color online) YOLOv11n network structure.
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capture multi-granularity contextual information more effectively, C2PLUS enhances the
network’s ability to process small object features without degrading inference speed. Second, to
further expand the receptive field and refine feature extraction within the backbone, we develop
the GRFAConv module, an improved convolutional unit that replaces the two standard Conv
layers and the Conv layer inside the C3k2 block. GRFAConv concentrates on spatial relationships
within the receptive field and alleviates limitations associated with traditional convolution
kernel parameter sharing. Finally, the Balanced Spatial and Semantic Information FDPN is
introduced at the neck stage to facilitate the balanced fusion of shallow spatial information and
deep semantic cues, thereby improving multi-scale representation consistency. The overall
architecture of CGF-YOLOvlIn is presented in Fig. 2.

To address the low detection accuracy of tiny objects in conventional object detection
networks, many approaches incorporate self-attention mechanisms. Although traditional self-
attention offers a large effective receptive field, it often overlooks channel-wise similarity.
Conversely, attention mechanisms in the classical Convolutional Neural Network (CNN) exhibit
limited receptive fields. For instance, popular channel-attention modules such as SE and
Efficient Channel Attention rely on global average pooling to aggregate spatial information and
then generate channel-wise weights based on similarity, which are multiplied with the original
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Fig. 2. (Color online) CGF-YOLOvI1n network structure.
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feature map to enhance important channels.!®) While such methods improve detection
performance, their ability to capture fine-grained contextual relationships remains insufficient
for small object feature representation. Motivated by these limitations, in this study, we propose
a novel C2PLUS module to replace the PSABlock in the original C2PSA module. As illustrated
in Fig. 3, the C2PLUS module enhances feature modeling by jointly considering the original
input and inter-channel similarity, and then applying transformer-based processing to strengthen
global contextual interactions.

Specifically, the redesigned block replaces the standard Attention mechanism with an
AttentionPLUS structure. In this design, the feature map processed by the Multi-Path
Aggregation (MPA) module is assigned as the key feature K, while the original input feature
map serves as the query Q. Within the MPA module, the feature map is subjected to pooling and
average-pooling operations along both horizontal and vertical directions. The aggregated results
are then summed to obtain direction-aware structural information. Inspired by the SE attention
mechanism, two 1 X 1 convolution layers are introduced for channel compression and expansion,
enabling more effective channel-wise feature fusion. The fused representation is passed through
a Sigmoid activation function to obtain the final attention weights, which combine global
contextual cues with channel interaction. This process yields an enhanced feature representation
that is better suited for capturing small object details. The computation procedure is summarized
in Eq. (1), where X denotes the input feature map of the MPA module and the output of the MPA
module is denoted as Y.

Y =Xx Sigmoid(ConV(M) (Conv(“l) (XAvgPool(X)+YAvgPool (¥ )))) M
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Fig. 3. (Color online) C2PLUS module structure diagram.
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To model spatial similarity within the feature map, the value component / is defined as the
absolute difference between O and K, thereby strengthening the correlation between features
before and after transformation. The computation of O, K, and V is summarized in Eq. (2).

O=X, K=Y, V=Abs(Q-K) @

After obtaining Q and K, a dot-product operation is performed to generate an intermediate
correlation matrix. To prevent excessively large dot-product magnitudes and to avoid gradient
vanishing after activation, we introduce a scaling factor G =1/ \/Z in the dot-product attention.
Here, d), denotes the dimensionality of the key vector K (i.e., the channel/embedding size). This
normalization stabilizes the SoftMax input distribution and improves training stability. The
resulting matrix is then passed through the SoftMax function to produce the attention map,
which reflects the similarity strength between different spatial regions of the feature map.
Higher response values indicate stronger positive associations. The attention map is subsequently
multiplied with the value representation to obtain the refined feature map, as summarized in Eq.
3(a). Finally, the output of this computation represents the enhanced representation produced by
the AttentionPLUS module. The full process is described in Eq. 3(b), where Z denotes the final
output feature of AttentionPLUS.

1
G=—
©WTa
, A)
(b)Z = Softmax(?/% JV

The classic RFAConv module is designed from the perspective of spatial attention, utilizing
partial pooling and 3 x 3 convolution operations to emphasize the spatial characteristics of the
receptive field. While effective in expanding contextual perception, this approach may introduce
redundancy within the feature maps. To overcome this limitation, the proposed model integrates
the strengths of RFAConv and GhostConv to develop a lightweight, plug-and-play convolutional
unit named GRFAConv. The structural layout of the module is illustrated in Fig. 4.

Let the input feature map be X € R“"” . To avoid redundant feature extraction, a 1 x 1
convolution is first applied to adjust the number of output channels. These channels are then
evenly divided into two parts using a Split operation. The first branch aggregates global
contextual information through average pooling within each receptive field. A subsequent 1 x 1
group convolution further enhances feature interaction, followed by a SoftMax operation that
assigns importance weights to different spatial positions. In parallel, the module employs a 3 x 3
grouped convolution to capture enhanced local contextual cues while maintaining computational
efficiency. The grouped structure significantly reduces the number of parameters, whereas the 3
x 3 kernels ensure sufficient contextual extraction. A Rectified Linear Unit (ReLU) activation is
applied to enforce unilateral suppression and stabilize training. The outputs of the two weighted
branches are then fused through element-wise multiplication. After reshaping, a 3 x 3



484 Sensors and Materials, Vol. 38, No. 1 (2026)

Kernel3
Group3 _ Softmax

Kernel2
@ Group2 Softmax
. it
C//2XHXW
Kernell

Group1 Softmax

I
Cl2XHXW El /
Il

@ Conv 1 X1+ Split . ®

CXHXW CXHXW

Fig. 4.  (Color online) GRFAConv convolution structure diagram.

convolution is used for downsampling. Finally, the processed feature maps are concatenated with
the previously divided feature channels along the channel dimension to form the final output.
The overall GRFAConv computation process is formally described in Egs. (4)—(6).

X,. X, =Spilt(Conv™ (X)) @)
F, =Softmax (gle (AvgPool (X, ))xRelu (Norm(g”3 (X, )))) 5)
F,=X,and F = COHC&t(COHV3X3 (Adjust(F1 )),Fz) 6)

In Eq. (5), g denotes a multilayer convolution with a kernel size of i x i representing the
normalization operation and X is the input feature map. The final output is obtained by
concatenating the attention maps F; and F, along the channel dimension. Unlike CBAM and
Coordinate Attention, which generate global or channel-level attention maps, the proposed
GRFAConv module produces attention maps for each individual receptive-field region, enabling
more fine-grained spatial modeling. Traditional convolution operations limit CNN performance
because they rely on shared kernel parameters, making them insensitive to positional variations
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within the receptive field. This restricts the network’s ability to adapt to subtle spatial changes,
an issue that is especially detrimental in small object detection. GRFAConv overcomes this
limitation by emphasizing the spatial characteristics within the receptive field and assigning
differentiated importance to features at different spatial positions within the sliding window.
Furthermore, by incorporating the grouped processing strategy used in GhostConv, GRFAConv
significantly reduces parameter overhead and computational cost while preserving
representational richness. This combination of receptive-field-aware attention modeling and
lightweight convolutional design enables GRFAConv to enhance context perception efficiently,
making it well suited for real-time small object detection tasks.

In the feature fusion stage, traditional PANet structures require multiple rounds of
upsampling and downsampling to merge features across scales.(!”) However, such repetitive
spatial transformations inevitably lead to semantic information loss. As a result, deep layers
often fail to retain the semantic cues necessary for identifying small objects, while shallow
layers lack sufficient contextual information. When the features of small targets are weakened or
lost during fusion, detection performance deteriorates significantly. To alleviate these issues, in
this study, we introduce a novel feature fusion network termed FDPN. The proposed FDPN
leverages the FocusFeature module, which integrates multi-scale features from adjacent upper,
lower, and same-level layers, thereby compensating for semantic degradation during fusion.
Through a feature diffusion mechanism, each scale receives richer contextual information,
effectively enhancing feature completeness. As illustrated in Fig. 5, the FDPN workflow
proceeds as follows. First, FocusFeature aggregates the rich semantic representations from
layers B3, B4, and B5 to generate the fused feature layer P4. Next, P4 serves as the central
diffusion source, propagating contextualized information upward to P3 and downward to P5.
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+ * [f)
D D
Bt 4 \ 4 P4 t N
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t + (t
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B3 3 ¥ P3

o -

o —
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Fig. 5. (Color online) FDPN structure diagram.
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The diffusion mechanism includes one upsampling and one downsampling operation for each
propagation direction. Unlike traditional repeated sampling operations that risk feature loss, this
design preserves more stable semantic consistency across scales.

Within FDPN, the FocusFeature module is responsible for cross-scale feature focusing and
integration. By accepting inputs from three different resolutions and processing them through
parallel convolutional paths, FocusFeature extracts richer semantic and contextual cues. Its
architectural design is shown in Fig. 6. As depicted in Fig. 6, layer B3 is downsampled using an
ADown convolution, layer B4 undergoes channel adjustment via a 1 x 1 convolution, and layer
BS5 is upsampled.('®) The outputs from these three branches are then concatenated along the
channel dimension. To fully extract hierarchical features, three depthwise-separable
convolutions with different kernel sizes are applied in parallel. Finally, a classic residual
structure is used to stabilize training and enhance representation. The computation process of
FocusFeature is defined by Egs. (7) and (8), where Z denotes the module’s final output.

Y = Concat (ADown3x3 (B,),Conv™ (B, ), Upsample( By )) (7
Z =Y +Conv"™ (DWConV3 3 (Y ) +DwConv™® (Y ) +DwConv™’ (Y )) ®)
B3 B4 BS5
Adown 3x3 Conv 1x1 Upsample
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DWConv 3x3 DWConv 5%5 DWConv 7x7
Q-F
Conv 1x1
(CJP,:

|

Fig. 6.  (Color online) FocusFeature structure diagram.
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3. Experiment Procedure

The experiments were conducted using the public VisDrone2019 dataset, collected by the
research team at Tianjin University. This dataset contains 8599 static aerial images, including
6471 for training, 548 for validation, and 1580 for testing, all captured by drones operating at
medium to high altitudes. VisDrone2019 provides highly diverse and challenging visual
conditions essential for evaluating small object detection models. The dataset spans 14 cities and
includes urban, suburban, and rural environments distributed across thousands of kilometers,
introducing significant variability in illumination, background clutter, occlusion, and perspective
distortion. The target categories such as bicycles, cars, trucks, buses, and pedestrians often
appear as extremely small pixel regions owing to camera altitude and oblique viewing angles.
Furthermore, scene density ranges from sparsely populated areas to heavily congested traffic
zones, making VisDrone2019 a rigorous benchmark for assessing both detection accuracy and
robustness in real-world UAV applications. All experiments were implemented on an NVIDIA
RTX 4090 GPU running Linux, equipped with 60 GB of system memory. The training
framework was based on Python 3.8.10, CUDA 11.3, and PyTorch 2.0.0. To ensure fairness and
reproducibility across experiments, all models were trained under identical hyperparameter
configurations.

The input resolution was set to 640 x 640, and each model was trained for 300 epochs with a
batch size of 8, using 8 workers for data loading. The learning rate was initialized at 0.01, with a
final learning rate factor (Irf) of 0.01, a momentum of 0.937, and a weight decay of 0.0005. The
selected experimental configuration reflects a balance between computational feasibility and
model performance. A resolution of 640 x 640 is commonly adopted in small object detection
studies because it preserves fine-grained spatial details while maintaining acceptable training
speed. Similarly, a batch size of 8 is well suited for high-resolution imagery, preventing GPU
memory overflow while ensuring stable gradient updates. Maintaining consistent
hyperparameters across all trials allows performance differences to be attributed directly to
architectural innovations such as C2PLUS, GRFAConv, and FDPN rather than variations in
training settings. Overall, this experimental setup provides a rigorous and controlled
environment for evaluating the effectiveness of CGF-YOLOv11n on small object detection under
realistic UAV scenarios.

The evaluation metrics used in this study include Precision, Recall, and mean Average
Precision (mAP). In addition to accuracy-related indicators, it is essential to consider model
complexity and computational efficiency, as these directly affect real-time performance,
particularly in UAV-based small object detection tasks. Therefore, Floating Point Operations
(GFLOPs) and the number of model parameters are also reported to comprehensively assess
model efficiency. The formulas for the evaluation metrics are provided in Egs. (9) and (10),
where N denotes the total number of object categories in the dataset.

TP

TP
Precision=————— and Recall =—— )
+F TP+ FN
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N
AP = jPrecision and Recall and mAP = iz AP (10)
Ng

Precision measures the proportion of correctly predicted positive samples, where True
Positives (7P) represent accurately identified objects, and False Positives (FP) correspond to
incorrectly detected targets. Recall reflects the proportion of actual positive samples that are
successfully detected by the model, with False Negatives (/) indicating true objects that the
model fails to identify. For overall detection quality, mAP is computed by averaging the AP
scores across all categories, where 4P; denotes the AP value associated with class i. Including
both accuracy-based and efficiency-oriented metrics is crucial for a fair and meaningful
comparison. Small object detection models often face a trade-off: improving accuracy may
increase computational cost, while reducing model size may degrade detection performance. By
jointly evaluating mAP, Precision, Recall, GFLOPs, and parameter count, in this study, we
provide a balanced perspective on how the proposed CGF-YOLOvlIn architecture enhances
small object detection without compromising real-time capability. This multifaceted evaluation
approach ensures that improvements are not limited to accuracy alone but extend to
computational practicality, an essential requirement for real-world deployment on embedded and
edge-computing platforms.

4. Results and Discussion

To evaluate the effectiveness of the enhanced algorithmic modules proposed in this study,
ultralytics-YOLOv11n was selected as the baseline model. A comprehensive ablation study was
conducted using key metrics including GFLOPs, the number of parameters, m4P@0.5, Recall,
and Precision. Multiple combinations of the proposed modules were tested to assess their
individual and joint contributions. The statistical results of all ablation configurations are
summarized in Table 1, where A, B, and C denote the progressive improved versions derived
from the baseline. Model A incorporates the C2PLUS module into the baseline architecture.
Despite introducing only negligible increases in computational complexity and parameter count,
Model A demonstrates a substantial improvement in detection accuracy across both the
validation and test sets. This confirms that C2PLUS significantly enhances feature extraction for
small objects while maintaining lightweight characteristics, providing a strong foundation for
subsequent architectural improvements. Model B extends Model A by integrating the proposed
GRFAConv convolution module. Although GRFAConv incurs a slightly higher computational
cost than a standard convolution, it yields notable performance gains.

Table 1

Ablation tests using the VisDrone2019 dataset as a validation set.

Model C2PLUS GRFAConv  FDPN  Precision = Recall ~—mAP@O0.5 Parameters/M GFLOPs
YOLOvlIn 44.5 33.6 334 2.584 6.4

A v 45.1 35.1 343 2.573 6.4

B v v 46.0 36.2 35.8 2.594 6.6

C v v v 46.7 37.0 36.9 2.745 7.2
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On the validation set, Model B achieves improvements of 2.1% in Precision, 1.1% in Recall,
and 1.5% in mAP@0.5 relative to Model A. These results demonstrate that GRFAConv
effectively strengthens receptive-field modeling and spatial feature interaction, leading to a
more discriminative feature representation. Model C further enhances Model B by replacing the
original YOLOvlln FPN with the proposed FDPN structure. The FDPN introduces only
minimal increases in parameters and GFLOPs, yet it significantly improves multi-scale feature
fusion. As shown in Tables 1 and 2, Model C achieves an additional 0.8% increase in mAP@0.5
on the test set and 1.1% on the validation set, indicating that FDPN effectively mitigates semantic
loss during feature integration and enhances the stability of small object detection. The final
improved model, integrating all three modules, is named CGF-YOLOvlln. Subsequent
evaluations on embedded hardware platforms further confirm its suitability for UAV-based and
perspective-view detection tasks, demonstrating both enhanced accuracy and practical
deployability. Overall, the ablation results validate that each proposed module contributes
meaningful performance improvements while maintaining computational efficiency. The
consistent gains across both validation and test sets on the VisDrone2019 dataset confirm the
robustness and effectiveness of the CGF-YOLOv11n architecture.

To further validate the detection performance of the enhanced model, a comparative study
was conducted using several mainstream object detection algorithms, including YOLOV3-
tiny,(!” YOLOv5n,?9 YOLOv7,2D YOLOv7-tiny,(*>?3 YOLOvS8n,* YOLOv10,2>)
YOLOvV11n,29 YOLOVI2,??) YOLOX-Tiny,?%:2% as well as the benchmark YOLOvIIn model.
Table 3 presents the performance comparison between the original YOLOv11n and the proposed
CGF-YOLOvVIIn on the VisDrone2019 test set. Experimental results show that although CGF-
YOLOvl1n introduces slight increases in parameters and computational load, it achieves a

Table 2

Ablation tests using the VisDrone2019 dataset as test sets.

Model C2PLUS GRFAConv  FDPN  Precision  Recall ~mAP@0.5 Parameters/M GFLOPs
YOLOvlIn 36.5 28.6 27.0 2.584 6.4
A v 373 29.1 277 2.573 6.4
B v v 38.0 30.2 29.3 2.594 6.6
C v v v 39.7 30.5 30.1 2.745 7.2
Table 3

VisDrone2019 dataset’s object detection outcomes using several algorithms.

Model Parameters/M GFLOPs mAP@0.5
YOLOV3-tiny 12.2 19.0 23.1
YOLOvV5n 1.9 4.5 24.5
YOLOV7-tiny 5.9 13.2 253
YOLOv8n 3.0 8.1 259
YOLOvV10n 2.3 6.5 26.1
YOLOvlIn 2.6 6.4 27.0
YOLOvI2n 2.6 6.3 259
YOLOX-Tiny 5.0 7.6 27.8

CGF-YOLOvl1n 2.7 7.2 30.1
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significant improvement in detection accuracy, outperforming all compared methods. This
demonstrates that the proposed architecture effectively enhances small object detection while
maintaining a lightweight design suitable for real-time applications.

The performance gains can be attributed to the contributions of the three improved modules.
The C2PLUS module enhances fine-grained feature extraction with minimal computational
overhead, producing richer feature representations essential for small object detection. The plug-
and-play GRFAConv module reduces redundant information and accelerates network
convergence, enabling the model to focus more effectively on critical target regions. Additionally,
the FDPN structure diffuses semantically enriched features across multiple scales, substantially
improving the model’s capability to detect small targets under varying perspectives, an
important advantage for UAV-based detection tasks. Overall, the enhanced CGF-YOLOvllIn
model delivers superior performance compared with existing lightweight and standard detection
architectures. Its improvements in accuracy, robustness, and multi-scale feature representation
confirm its effectiveness for small object detection in complex aerial scenarios.

To intuitively evaluate the effectiveness of the proposed model, heatmap visualization was
first employed to illustrate the distribution of attention across different image regions. In such
visualization, warmer colors (redder regions) indicate a stronger contribution to classification,
whereas cooler colors (bluer regions) indicate a weaker contribution. Figure 7 shows a

(b)

Fig. 7. (Color online) Heatmap comparison.
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comparative heatmap visualization of different models; Fig. 7(a) corresponds to the original
image, whereas Figs. 7(b) and 7(c) show the heatmaps generated by the baseline YOLOvI1n and
the proposed CGF-YOLOvl1n, respectively. Both YOLOvl1n and CGF-YOLOvll1n are able to
focus on the primary target regions; however, CGF-YOLOvl1In exhibits significantly stronger
and more concentrated attention on small objects. In the first scene, YOLOvI1n only attends to a
limited number of vehicles. In the second and third scenes, the baseline model mainly focuses on
relatively larger objects in the near field, whereas the proposed model is able to attend to small
targets located in distant regions. In the fourth scene, even under low-light conditions, the
improved model successfully identifies a greater number of small objects at longer distances.
These comparisons demonstrate that CGF-YOLOv11n achieves superior detection capability
compared with the baseline model, highlighting the effectiveness of the proposed architectural
enhancements in strengthening feature extraction and sensitivity to small target regions.

Next, Fig. 8 presents detection results of YOLOvlIn and CGF-YOLOvlIn across various
challenging environments to further demonstrate the advantages of the enhanced model. Figure

Fig. 8. (Color online) Comparison of detection outcomes across several situations.
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8 also shows the detection results of the baseline YOLOvl1n and the proposed CGF-YOLOv1In
on six representative scenarios from the VisDrone2019 dataset, where Fig. 8(a) corresponds to
the original images, Fig. 8(b) shows the results of YOLOvl1n, and Fig. 8(c) shows the results of
CGF-YOLOvV1In. In the first row of images, where numerous small objects such as motorcycles
and pedestrians appear, CGF-YOLOvl1ln detects substantially more targets than YOLOvlIn,
thereby reducing missed detections. In the first three scenarios, the proposed model successfully
detects low-angle vehicles, pedestrians, and trucks, whereas the baseline model struggles with
these targets. In the fourth and fifth scenarios, CGF-YOLOvlln is able to identify smaller
pedestrians and trucks located on the left side of the images, whereas in the sixth scenario, it
detects an even smaller vehicle in the lower-left region. By contrast, YOLOvI1In shows limited
capability in detecting such small-scale targets. Moreover, compared with YOLOvl1n, CGF-
YOLOvlIn achieves comparable confidence levels when detecting large and medium-sized
objects, demonstrating that the proposed improvements do not compromise robustness on larger
targets. These results highlight the strong potential of CGF-YOLOvlIn for high-precision
applications across a wide range of small-object-dominated scenarios.

In the third example of the third column, the enhanced model successfully identifies a
motorcycle located under intense illumination on the far left, which YOLOvl1n fails to detect.
Similarly, in the fourth example, only a partially visible tractor appears at the left edge of the
image. YOLOv11n misses this object entirely, whereas CGF-YOLOvl11n correctly identifies it,
demonstrating superior robustness in scenarios involving occlusion and partial visibility.
Overall, the visualization results clearly show that CGF-YOLOvlln exhibits stronger
generalization ability and improved adaptability across diverse environments, including scenes
with large numbers of small objects, complex lighting variations, and cluttered backgrounds.
Compared with YOLOvl1n, the enhanced model not only detects significantly smaller targets
but also maintains similar confidence levels for large and medium-sized objects, highlighting its
robustness. These findings collectively indicate that CGF-YOLOv11n holds substantial potential
for high-precision small-object detection in real-world UAV and aerial imaging applications.

5. Conclusions

In this study, we proposed an enhanced small object detection model, CGF-YOLOvlIn, to
address the challenges of missed and erroneous detections commonly encountered in small
target recognition. First, the model integrates transformer-based self-attention with traditional
CNN attention mechanisms, strengthening multi-scale feature fusion within the neck structure.
Second, a lightweight, plug-and-play convolution module, GRFAConv, was designed by
combining the principles of RFAConv and GhostConv, effectively improving receptive-field
modeling while maintaining computational efficiency. Finally, a novel diffusion pyramid
network, FDPN, was introduced to mitigate feature loss through a feature diffusion process,
ensuring more robust semantic propagation across scales. Experimental results on the
VisDrone2019 dataset demonstrate that the proposed framework significantly improves small
object detection performance and consistently outperforms other benchmark models. Although
CGF-YOLOv11n achieves notable gains in accuracy, there remains room for further optimization
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in terms of parameter count and computational complexity. Future work will focus on additional
lightweight model compression strategies to enhance detection speed without compromising
accuracy. Moreover, expanding evaluation to include diverse real-world datasets will help assess
and strengthen the generalization capability of the proposed model in practical deployment
scenarios.
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