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Deploying deep learning models for antenna gain prediction on IoT sensing nodes and edge
gateways poses significant challenges due to severe constraints on memory, computation, and
power. In sensor-driven loT systems, reliable wireless transmission is crucial for maintaining the
quality of sensing data, and antenna gain significantly impacts the communication stability
between distributed sensors and edge gateways. We present U-LINK, a lightweight three-layer
U-Net architecture with multilevel knowledge distillation optimized for resource-constrained
devices with 2 GB of RAM. Using physics-informed augmentation, which expands 1,267
antenna designs to 12,670 samples while preserving electromagnetic validity (reciprocity,
radiation efficiency, and power conservation), the proposed framework enables real-time
antenna gain adaptation to support reliable sensing data transmission. Experimental results
showed that U-LINK achieves R* = 0.964 (p < 0.001) with a 73.8% memory reduction (1,850 MB
— 485 MB), a 73% latency reduction (45.2 ms — 12.4 ms), and a 67% power reduction (8.5 W
— 2.8 W) compared with the teacher model. The student model maintains an R> = 0.98
correlation with teacher predictions (p < 0.001, Cohen’s d = 2.85), enabling real-time on-device
antenna optimization for environmental, agricultural, unmanned aerial vehicle or drone-based
and intelligent infrastructure sensing. Cross-platform validation on three edge devices
demonstrates robust performance (coefficient of variation CV = 0.10%). By allowing antenna
gain to be adaptively optimized directly on sensor nodes or edge gateways, without relying on
cloud-based electromagnetic simulation, U-LINK provides a practical solution for integrating
intelligent antenna optimization into next-generation IoT sensing systems. Synergistic multilevel
distillation integrating output, feature, and skip connection knowledge achieves +4.6% R>
improvement over baseline distillation (p < 0.001, Cohen’s d = 2.87), confirming effective
knowledge transfer under aggressive compression.
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1. Introduction

Edge computing positions computational resources near data sources, enabling low-latency
processing for distributed systems.() In sensor-driven IoT applications, such as environmental
monitoring, agricultural sensing, smart infrastructure inspection, and unmanned aerial vehicle
(UAV)-based sensing platforms, edge devices are required to process sensing data and maintain
reliable wireless communication under strict power and hardware constraints.

Traditional antenna gain prediction relies on full-wave electromagnetic simulations via the
finite element method and the method of moments.?®) While these physics-based approaches
provide high-fidelity results, they demand substantial computational resources and extensive
simulation time, thereby limiting their applicability in dynamic deployment scenarios where
rapid design iterations are required. For deployed sensor platforms, such as autonomous drones
or distributed field sensors, antenna parameters cannot be recalculated using full-wave solvers
once the device is operational, motivating the need for fast predictive models that can run
directly on edge hardware. The emergence of metamaterial antennas and millimeter-wave
5G/6G communications® intensifies these computational demands, necessitating efficient
alternatives for resource-constrained edge devices.

Knowledge distillation (KD) enables the transfer of learned representations from large
teacher models to compact student models.®-% In this work, we adopt the U-Net encoder-decoder
architecture with skip connections,® leveraging recent innovations including group
convolutions,® attention mechanisms,(!? and hybrid architectures.!') Machine learning has
demonstrated remarkable success in antenna gain prediction,('>~'4) bandwidth optimization,(1>)
and multiple-input multiple-output (MIMO) system design,(!®!7) demonstrating efficacy for
complex antenna geometries.(!81%) However, existing research focuses predominantly on cloud-
based processing architectures with virtually unlimited computational resources, overlooking
the challenges of edge deployment where memory, power, and latency constraints are the
primary concerns.

Edge-based KD frameworks show considerable potential for real-time applications.(?9—22)
Multilevel distillation, which incorporates feature alignment and contrastive learning,?3:24)
preserves the spatial hierarchies essential for dense prediction. Despite these advances, the
literature lacks the investigation of antenna gain prediction on severely resource-constrained
edge devices (<2 GB of RAM, <15 ms latency)—constraints characteristic of autonomous
drones, IoT gateways, and mobile base stations.

To address these challenges, we present U-Net Lightweight Inference with Knowledge
Distillation (U-LINK) with the following five contributions:

(1) Ultra-lightweight Architecture: a three-layer U-Net achieving a 68% parameter reduction

(301K—95K) while maintaining spatial hierarchies through skip connections;

(2) Synergistic Multilevel Knowledge Transfer: a novel distillation strategy integrating output-
level distillation (4, = 0.3), feature-level alignment (1, = 0.2), and skip connection preservation

(A3 = 0.1), achieving a +4.6% R? improvement (p < 0.001, Cohen’s d = 2.87);
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(3) Physics-informed Data Augmentation: tenfold dataset expansion (1,267—12670 samples)
maintaining electromagnetic validity (R? = 0.998 versus full-wave simulations, mean absolute
error (MAE) =0.22 + 0.08 dBi);

(4) Cross-platform Deployment Viability: statistically equivalent performance across NVIDIA
Jetson Nano, NVIDIA Orin Nano, and Raspberry Pi 4 (coefficient of variation = 0.18%, 95%,
confidence interval =0.15%, 0.21%));

(5) Open-source Reproducibility: comprehensive implementation including pretrained model
weights, physics-informed augmented dataset, deployment scripts for multiple edge
platforms, and comprehensive documentation for system integration.

2. Methodology
2.1 Dataset and physics-informed augmentation

We utilize the Kaggle Antenna Parameter Dataset,'>>) comprising 1267 microstrip patch
antenna designs characterized by the following five geometric parameters: operating frequency
(GHz), patch length and width (mm), substrate thickness (mm), and relative dielectric constant
(¢,)- A data partitioning strategy was employed with a 70/15/15 split for training, validation, and
test sets, with stratification based on gain distribution to prevent bias. Fivefold cross-validation
yields a mean R? coefficient of 0.964 + 0.012 (p < 0.001), confirming the robustness of the
methodology.

Physics-informed data augmentation addresses the limited training samples while preserving
electromagnetic validity through controlled Gaussian perturbations:

aug — “vorig

X, ., =X +e-N(0,02) 1)

where perturbation magnitude satisfies |[x,,, — x(m~g||2 < 0.05||x0,ig||2, limiting modifications to
within 5% of the original parameter values.

The following three physical constraints ensure electromagnetic validity: (1) Reciprocity:
Lorentz theorem validation confirms 99.8% compliance (y*> = 2.34, p = 0.31); (2) Radiation
Efficiency: Wheeler’s bounds satisfied (7 > 0.85), achieving n = 0.92 + 0.04 (95% confidence
internal (C7) [0.91, 0.93]), consistent with physically realizable antenna structures; (3) Power
Conservation: 99.7% Poynting’s theorem conformance (p = 0.18). Full-wave CST Microwave
Studio on 1,000 augmented samples yields R = 0.998 with MAE = 0.22 + 0.08 dBi (95% CI:

[0.20, 0.24]), validating the tenfold expansion from 1267 to 12670 samples.
2.2 Three-layer U-Net architecture
The U-LINK student model employs a streamlined three-layer encoder-decoder architecture

optimized for resource-constrained edge devices. The encoder progressively reduces spatial
resolution while expanding channel depth (128 — 64 — 32 channels) via stride-2 convolutions.
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The decoder symmetrically reconstructs spatial resolution through transpose convolutions (32
— 64 — 128 channels). Skip connections concatenate corresponding encoder-decoder feature
maps at each resolution level, preserving multiscale spatial information.

Each convolutional layer employs 3 % 3 kernels with ReLU activation, batch normalization,
and dropout regularization (rate = 0.2). The bottleneck applies a 1 x 1 convolution with 32
channels.

Table 1 presents a comprehensive comparison. The compression achieves a 68.4% parameter
reduction (301952 — 95488), a 68.0% reduction in floating-point operations (FLOPs) (2.84 x 10°
— 0.91 x 10), and a 73.8% reduction in memory (1850 MB — 485 MB). Statistical validation
via the Wilcoxon signed-rank test confirms the significance (p < 0.001). While the receptive
field decreases from 139 x 139 to 75 x 75 pixels, the skip connections compensate by preserving
multiscale spatial information (F-test: p = 0.047).

Figure 1 presents the Integration Definition for Function Modeling (IDEF0) system
architecture delineating inputs (1267 antenna geometric parameters augmented to 12670 -
samples), controls (4; = 0.3, 1, = 0.2, 43 = 0.1), mechanisms (teacher: 301K parameters; student:
95K parameters; INT8 quantization), and outputs (R = 0.964; ONNX format).

2.3 Multilevel knowledge distillation

The training objective integrates task-specific supervision with three distillation levels:

Lfotal = £task + aﬁKD + ﬂ £ feature +y ‘Cskip > (2)
Table 1
Comparison between Teacher and U-Link.
Architecture Layers Parameters FLOPs Memory (MB) Receptive field
Teacher 5 301952 2.84 x 10 1850 139 x 139
U-LINK 3 95488 0.91 x 10 485 75 %75
Reduction —40% —68.4% —68.0% —3.8% —46%
U-Link

Input || Knowledge Distillation Ouput

Antenna patfameters = Teacher—Student Transfer StudentModel

Augmented dataset (301K—> 95k parameters) R2= 0,

670 samples) A0 ONNX Format

q .. . g tization
Input Data Preprocessing Teacher Training Muti-Layer KD Student Training agcl;al:;pel' ing Output
& ";‘l’f";;’e'f"t’af‘;;"fd  szayer Ut | Output + Feature +kD | 3Layer U-Net || INTS + ONNX >
A1 A2 A3 A4 A5
(1,267 —> 12,670 Samples) 301 K Parameters a=0.3, p=0.2, y=0.1 95 K Parameters 485 MB
(R2=0.998) (R2=0.967) (R2=0.964) (Pipeling12.4 —> 4.1 ms)

Fig. 1.  (Color online) System architecture for lightweight U-Net with knowledge distillation.
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where a =0.3, #=0.2, and y = 0.1 determined via Bayesian optimization over 150 configurations
and validated through fivefold cross-validation (p < 0.001).
The task-specific loss component combination of mean squared error (MSE) and MAE is

L,

tas

x =MSE(y,7)+0.01- MAE(y,7), &)

where y represents the ground truth antenna gain and y denotes the student model’s prediction.
Output-level knowledge distillation employs temperature-softened probability distributions: *)

Lyp =KL(Pr | Py) ZPT Fr(7) )

S(’)

where Py and Pg represent the teacher and student networks, respectively. 7' = 4.0 softens the
probability distributions, enabling students to learn about teacher uncertainty and decision
boundaries.

Feature-level alignment matches intermediate representations using Centered Kernel
Alignment (CKA):(33)

2
_féuz’ ©)

1
4 feature = F Z

where f;ﬁ and fSi denote the teacher and student feature representations at the ith alignment
point, respectively, N = 3 corresponds to the three encoder-decoder transition layers, and ¢, are
learnable projection functions mapping student features to teacher space.

Skip connection preservation maintains multiscale spatial information:(2*)

) CLY LY ©)

where @ denotes channel concatenation and L represents the network depth (L = 5 for teacher,
L =3 for student). This loss component ensures that the student model preserves the crucial skip
connection pathways that enable information flow across different spatial scales. By explicitly
supervising the concatenated encoder-decoder features, we maintain the multiresolution spatial
patterns that distinguish U-Net architectures from conventional encoder-decoder networks.

Algorithm 1 presents the U-LINK training workflow, integrating three levels of knowledge
distillation within a unified optimization framework. It outlines the forward pass computations,
loss calculations, and parameter updates required to train the student model effectively.

2.4 Training configuration
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Algorithm 1
Context-aware Multimodal Synchronization.

N
Require: Pretrained teacher model ¢ R® — R, training dataset D = {(xl-, Vi )} X
i=

Ensure: Optimized student model S with parameters g satisfying: |#5| < 100 K, memory < 500 MB, latency < 15
ms, R?>0.96

1: Initialize: Student S with 3-layer U-Net (95K parameters); a = 0.3, =0.2,y=0.1, T=4.0
2: Configure Adam: = 0.001, g; = 0.9, 5, =0.999

3: forepoche=1toE,, do

4 for mini-batch B < D do

S: // Output-level KD

6: pT = softmax(T(x)/T) ; p5 = softmax(S(x)/T)

7 Lxp =12 Dt (p71p%)

8: // Feature-Level Alignment (CKA)

9: Ljearure = (UN) ZI|Ff — 6 (FDIP

10: // Skip Connection Preservation

11 Loy = ZIE] © DY) — (& @ D
12: // Joint Optimization

13: Lk =MSE(, ) + 0.01'-MAE(Y, »)

14: ontal = (task + a(KD + :B(.feature + V(skip

15: 5 — 05— 1"VOsLioral

16: end for

17: if early stopping, then break

18: end for

19: INT8 quantization; return 5

Complexity Analysis: Time O (N-L-d?); Space: O (95488 + 384)
Guarantees:(1) MAES — MAE’| < 0.01 dBi (2) p > 0.05 (paired t-test) (3) 68% FLOPs reduction

Training employs the Adam optimizer with # = 0.001, g; = 0.9, and £, = 0.999. The model
was trained using mini-batches of 32 samples trained over a maximum of 200 epochs with an
early stopping mechanism (patience = 20 epochs). Dataset partitioning comprises 8,869 training
samples, with 1,900 samples reserved for validation and 1,901 testing samples for final testing.
This partitioning maintains the 70/15/15 stratified split. Experiments were conducted on an
NVIDIA RTX 3090 GPU (24 GB, CUDA 11.8) with PyTorch 2.0 mixed-precision training
(FP16/FP32) to accelerate computation.

Bayesian optimization with a Gaussian process surrogate explored 150 candidate
configurations within a € [0.1,0.5], § € [0.1,0.4], and y € [0.05,0.3]. The optimal configuration
(2=0.3, =0.2, y=0.1) was validated through fivefold cross-validation.

Figure 2 illustrates the inference pipeline using the Graph of Functions of Steps and
Transitions (GRAFCET) notation, which provides a clear visualization of the sequential
execution stages during deployment. The inference process on the NVIDIA Jetson Nano 2GB
device with INT8 quantization proceeds through the following five distinct stages: (S1) the
preprocessing of input antenna parameters requiring 1.2 ms, (S2—S4) three-layer encoder feature
extraction consuming 5.8 ms, (S5) bottleneck processing taking 0.7 ms, (S6-S8) decoder
upsampling with skip connection fusion requiring 4.1 ms, and (S9) postprocessing and output
generation taking 1.3 ms. The total inference latency achieves 12.4 + 0.8 ms, well within the 15
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Student KD Skip#1

Output:

Input:
R2 = 0.964, ONNX Format

Antenna parameters <
Augmented dataset , Student KD Skip#2 via NVIDA JetSon Nano
(12,670 samples) y
I3 s L& Rhbbbbb &
InfoNCE2 CKA2

; Student KD Sklp#3
2 A
InfoNCE3 CKA3 KD3
Bottleneck

= —— w
Fig. 2. (Color online) U-Link—three-layer skip-wise student model.

ms real-time constraint for edge deployment applications. This pipelined architecture ensures
efficient resource utilization while maintaining high prediction accuracy across diverse antenna
configurations.

Figure 2 illustrates the U-Link—three-layer skip-wise student model inference on the NVIDIA
Jetson Nano 2GB with INT8 quantization: (SI) preprocessing: 1.2 ms; (S2—S4) three-layer
encoder feature extraction: 5.8 ms; (S5) bottleneck: 0.7 ms; (S6—-S8) decoder with skip
connection fusion: 4.1 ms; and (S9) postprocessing and output generation: 1.3 ms. The total
inference latency achieves 12.4 + 0.8 ms, well within the 15 ms real-time constraint for edge
deployment applications.

3. Results
3.1 Comparative performance analysis

We conducted a comprehensive evaluation of U-LINK against five state-of-the-art baseline
methods using the test dataset comprising 1,901 antenna designs. As presented in Table 2,
ULINK achieves an R? coefficient of determination of 0.964 (p < 0.001), demonstrating
performance superior to that of conventional CNN (R?> = 0.892), ResNet-18 (R? = 0.931),
MobileNetV3 (R? = 0.946), and EfficientNet-BO (R? = 0.952). While the five-layer teacher UNet
attains a slightly higher R? of 0.967, U-LINK maintains 99.7% teacher accuracy with substantial
efficiency gains [68% parameter reduction (302K — 95K), 74% memory reduction (1850 MB —
485 MB), 73% latency reduction (45.2 ms — 12.4 ms), and 67% power reduction (8.5 W — 2.8
W)l. MAE = 0.297 dBi and RMSE = 0.371 dBi confirm high prediction fidelity under severe
resource constraints.
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Table 2

Performance comparison on antenna gain prediction.

Model R? MAE (dBi) RMSE (dBi) Parameters M(eMml;))r Y Lez::llsl)cy Power (W)
CNN 0.892 0.487 0.623 485K 320 8.5 2.1
ResNet-18 0.932 0.398 0.512 11.2M 1,240 18.7 4.2
MobileNetV3 0.946 0.352 0.451 5.4M 680 11.3 3.1
EfficientNetBO 0.952 0.331 0.428 5.3M 715 15.2 3.8
TeacherU-Net 0.967 0.289 0.358 302K 1,850 45.2 8.5
U-LINK (Ours) 0.964 0.297 0.371 95K 485 12.4 2.8

3.2 Ablation analysis of distillation components

Table 3 quantifies the individual and synergistic contributions through a systematic ablation
analysis. The baseline without distillation yields an R? of 0.918. Progressive component addition
yields the following:

+ Output-level KD: R? = 0.938 (AR? = +0.020, p < 0.001), MAE: 0.485 — 0.412 dBi;

* Feature-level alignment: R? = 0.951 (AR*> = +0.013, p < 0.001), MAE: — 0.358 dBi;

+ Skip connection preservation: R* = 0.959 (AR* = +0.008, p = 0.012), MAE: — 0.321 dBi;
+ Complete U-LINK framework: R? = 0.964, MAE = 0.297 dBi.

Removing any component causes statistically significant degradation (p < 0.001 for output
and feature components; p = 0.012 for skip preservation). The synergistic effect yields
AR? = +0.046 (Cohen’s d = 2.87, 95% CI [2.71, 3.03]), recovering 96.3% of the teacher-baseline
gap. Inference latency remains constant at 12.4 ms across configurations, confirming zero
computational overhead from distillation.

3.3 Cross-platform deployment validation

Table 4 presents the deployment performance metrics for each platform: NVIDIA Jetson
Nano (2 GB of RAM, Quad ARM Cortex-A57), NVIDIA Orin Nano (4 GB of RAM, 6-core
ARM Cortex-A78AE), and Raspberry Pi 4 (4 GB of RAM, Quad ARM Cortex-A72).

Prediction accuracy demonstrates remarkable consistency, with R? values of 0.964 + 0.002
(Jetson Nano), 0.965 + 0.002 (Orin Nano), and 0.963 + 0.003 (Raspberry Pi 4). Mean R? across
platforms is 0.964+0.001, with CV' = 0.10%, indicating hardware-independent stability. Analysis
of variance (ANOVA) reveals no statistically significant difference [F(2,12) = 0.87, p = 0.45], and
post-hoc Tukey HSD confirms pairwise equivalence (all p > 0.30); Levene’s test validates
variance homogeneity (p = 0.32).

Latency varies by computational capabilities, with values of 8.7 ms (Orin Nano), 15.2 ms
(Raspberry Pi 4), and 12.4 ms (Jetson Nano). Mean latency 12.1 + 2.7 ms (CV of 22.3%) satisfies
the 15 ms real-time constraint. The memory footprint averaged 488 +£ 3 MB (CV =0.61%), and
power consumption averaged 3.2 = 0.3 W (CV = 9.4%), with the Jetson Nano exhibiting the
lowest power draw of 2.8 W, suitable for battery-powered autonomous systems.
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Table 3

Ablation study: cumulative component.

Model R? MAE (dBi)  Latency (ms) p-value

Progressive Component Addition:

Baseline (no distillation) 0.918 0.485 12.1 <0.001

+ Output-level KD 0.938 0.412 12.3 <0.001

+ Output + Feature KD 0.951 0.358 12.2 <0.001

+ Output + Feature + Skip KD 0.959 0.321 12.4 0.012

Complete Framework:

U-LINK (all components) 0.964 0.297 124 -

Table 4

Cross-platform edge deployment.

Platform Processor RAM R? Latency (ms) Memory (MB)  Power (W)
Jetson Nano Quad ARMAS57 2GB 0.964 £0.002 12.4+0.8 485 2.8

Orin Nano 6-core ARM A78AE 4 GB 0.965 £ 0.002 87+0.5 488 32
Raspberry Pi4  Quad ARMA72 4GB 0.963£0.003 152+1.1 492 3.5
Mean + SD 0.964+0.001 12.1+£2.7 488 +3 32+0.3
CV (%) 0.10% 22.3% 0.61% 9.4%

3.4 Performance visualization and analysis

The performance of U-LINK was evaluated across four key dimensions, as illustrated in Fig.
3. Figure 3(a) demonstrates effective knowledge transfer with R? = 0.98 (p < 0.001, Cohen’s d =
2.85) and MAE = 0.300 dBi across 1,901 test samples. Figure 3(b) shows the inference latency
breakdown, where the encoder consumes 44.3%, decoder 31.3%, post-processing 9.9%, pre-
processing 9.2%, and bottleneck 5.3% of the total time (12.4 ms + 0.8 ms). Figure 3(c) shows
memory footprints, showing that U-LINK (485 MB) achieves a 73.8% reduction compared with
the teacher model (1850 MB). Figure 3(d) presents power consumption analysis, demonstrating
2.8 W at full load, representing a 67% reduction versus the teacher model.

4. Discussion

Despite the promising performance demonstrated in this study, several limitations remain,
motivating future research directions. The current framework is subject to the following
constraints: (1) single-frequency optimization (e.g., 2.4 or 5.8 GHz) requiring a multi-output
architecture for broadband extension, (2) exclusive support for 2D planar geometries,
necessitating a volumetric U-Net with 3D convolutions for metamaterial-based and fully three-
dimensional antenna designs, and (3) the use of static data augmentation parameters, which can
benefit from adaptive sampling for rare configurations.

Looking forward, several research directions are particularly promising: (1) federated
learning for collaborative training across distributed devices while preserving privacy, (2) neural
architecture search (NAS) for platform-specific optimization on heterogeneous processors, and
(3) reconfigurable intelligent surface (RIS) integration for dynamic 6G antenna optimization.
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Fig. 3.  (Color online) Comprehensive visualization of U-LINK's performance across four key dimensions. (a)
Teacher-student correlation (R2 = 0.980, Cohen's d = 2.85, MAE = 0.300 dBi, n = 1,901). (b) Latency breakdown:
encoder 44.3%, decoder 31.3%, post-processing 9.9%, pre-processing 9.2%, and bottleneck 5.3% (total: 12.4 ms +
0.8 ms). (c) Memory comparison: U-LINK 485 MB vs teacher 1,850 MB (73.8% reduction). (d) Power consumption:
U-LINK 2.8 W vs teacher 8.5 W (67% reduction).

5. Conclusion

In this work, we presented U-LINK, a lightweight knowledge distillation framework that
achieves a 68% parameter reduction (301K — 95K) while maintaining 99.7% of the teacher’s
accuracy (R? = 0.964, p < 0.001). Multilevel distillation integrating output, feature, and skip-
connection knowledge transfer enables synergistic performance gains (+4.6% vs baseline KD,
Cohen’s d = 2.87). Physics-informed augmentation expands training data 10-fold while
preserving electromagnetic validity (R? = 0.998, compared with full-wave simulation).

From the perspective of sensors and IoT applications, U-LINK addresses a critical challenge
in sensing systems: enabling the reliable wireless transmission of sensing data under strict edge-
device constraints. In practical sensing environments—such as environmental monitoring
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stations, agricultural sensor networks, UAV/drone-based sensing platforms, and intelligent
infrastructure systems—antenna gain has a direct effect on communication stability, coverage,
and energy efficiency. Conventional electromagnetic simulation tools cannot be executed on
deployed sensing devices, making real-time antenna adaptation infeasible without compact
predictive models.

Knowledge distillation plays a crucial role in bridging this gap by transferring predictive
capabilities from computationally intensive models to compact, edge-deployable models, thereby
enabling antenna gain estimation and optimization to be performed directly on sensing nodes or
edge gateways. This capability enables antenna behavior to adapt to changing sensing
environments without reliance on cloud computation or offline simulation.

Cross-platform validation confirms robust deployment on 2 GB of RAM, achieving
statistically consistent performance across multiple edge platforms (CV = 0.18%, p = 0.32).
These results demonstrate that U-LINK provides a practical and scalable solution for integrating
intelligent antenna optimization into next-generation loT sensing systems, supporting real-time
operation, low power consumption, and reliable sensing data transmission.

Future work will explore the integration of real-time sensor feedback for closed-loop antenna
adaptation and the extension of the proposed framework to additional sensing-driven antenna
configurations and materials, further strengthening its applicability to emerging sensor and IoT
technologies.
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