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	 Deploying deep learning models for antenna gain prediction on IoT sensing nodes and edge 
gateways poses significant challenges due to severe constraints on memory, computation, and 
power. In sensor-driven IoT systems, reliable wireless transmission is crucial for maintaining the 
quality of sensing data, and antenna gain significantly impacts the communication stability 
between distributed sensors and edge gateways. We present U-LINK, a lightweight three-layer 
U-Net architecture with multilevel knowledge distillation optimized for resource-constrained 
devices with 2 GB of RAM. Using physics-informed augmentation, which expands 1,267 
antenna designs to 12,670 samples while preserving electromagnetic validity (reciprocity, 
radiation efficiency, and power conservation), the proposed framework enables real-time 
antenna gain adaptation to support reliable sensing data transmission. Experimental results 
showed that U-LINK achieves R2 = 0.964 (p < 0.001) with a 73.8% memory reduction (1,850 MB 
→ 485 MB), a 73% latency reduction (45.2 ms → 12.4 ms), and a 67% power reduction (8.5 W 
→ 2.8 W) compared with the teacher model. The student model maintains an R2 = 0.98 
correlation with teacher predictions (p < 0.001, Cohen’s d = 2.85), enabling real-time on-device 
antenna optimization for environmental, agricultural, unmanned aerial vehicle or drone-based 
and intelligent infrastructure sensing. Cross-platform validation on three edge devices 
demonstrates robust performance (coefficient of variation CV = 0.10%). By allowing antenna 
gain to be adaptively optimized directly on sensor nodes or edge gateways, without relying on 
cloud-based electromagnetic simulation, U-LINK provides a practical solution for integrating 
intelligent antenna optimization into next-generation IoT sensing systems. Synergistic multilevel 
distillation integrating output, feature, and skip connection knowledge achieves +4.6% R2 
improvement over baseline distillation (p < 0.001, Cohen’s d = 2.87), confirming effective 
knowledge transfer under aggressive compression.
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1.	 Introduction

	 Edge computing positions computational resources near data sources, enabling low-latency 
processing for distributed systems.(1) In sensor-driven IoT applications, such as environmental 
monitoring, agricultural sensing, smart infrastructure inspection, and unmanned aerial vehicle 
(UAV)-based sensing platforms, edge devices are required to process sensing data and maintain 
reliable wireless communication under strict power and hardware constraints.
	 Traditional antenna gain prediction relies on full-wave electromagnetic simulations via the 
finite element method and the method of moments.(2,3) While these physics-based approaches 
provide high-fidelity results, they demand substantial computational resources and extensive 
simulation time, thereby limiting their applicability in dynamic deployment scenarios where 
rapid design iterations are required. For deployed sensor platforms, such as autonomous drones 
or distributed field sensors, antenna parameters cannot be recalculated using full-wave solvers 
once the device is operational, motivating the need for fast predictive models that can run 
directly on edge hardware. The emergence of metamaterial antennas and millimeter-wave 
5G/6G communications(4) intensifies these computational demands, necessitating efficient 
alternatives for resource-constrained edge devices.
	 Knowledge distillation (KD) enables the transfer of learned representations from large 
teacher models to compact student models.(5,6) In this work, we adopt the U-Net encoder-decoder 
architecture with skip connections,(7,8) leveraging recent innovations including group 
convolutions,(9) attention mechanisms,(10) and hybrid architectures.(11) Machine learning has 
demonstrated remarkable success in antenna gain prediction,(12–14)  bandwidth optimization,(15) 
and multiple-input multiple-output (MIMO) system design,(16,17) demonstrating efficacy for 
complex antenna geometries.(18,19) However, existing research focuses predominantly on cloud-
based processing architectures with virtually unlimited computational resources, overlooking 
the challenges of edge deployment where memory, power, and latency constraints are the 
primary concerns.
	 Edge-based KD frameworks show considerable potential for real-time applications.(20–22) 
Multilevel distillation, which incorporates feature alignment and contrastive learning,(23,24)

preserves the spatial hierarchies essential for dense prediction. Despite these advances, the 
literature lacks the investigation of antenna gain prediction on severely resource-constrained 
edge devices (≤2 GB of RAM, ≤15 ms latency)—constraints characteristic of autonomous 
drones, IoT gateways, and mobile base stations.
	 To address these challenges, we present U-Net Lightweight Inference with Knowledge 
Distillation (U-LINK) with the following five contributions:
(1)	�Ultra-lightweight Architecture: a three-layer U-Net achieving a 68% parameter reduction 

(301K→95K) while maintaining spatial hierarchies through skip connections;
(2)	�Synergistic Multilevel Knowledge Transfer: a novel distillation strategy integrating output-

level distillation (λ1 = 0.3), feature-level alignment (λ2 = 0.2), and skip connection preservation 
(λ3 = 0.1), achieving a +4.6% R2 improvement (p < 0.001, Cohen’s d = 2.87);
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(3)	�Physics-informed Data Augmentation: tenfold dataset expansion (1,267→12670 samples) 
maintaining electromagnetic validity (R2 = 0.998 versus full-wave simulations, mean absolute 
error (MAE) = 0.22 ± 0.08 dBi);

(4)	�Cross-platform Deployment Viability: statistically equivalent performance across NVIDIA 
Jetson Nano, NVIDIA Orin Nano, and Raspberry Pi 4 (coefficient of variation = 0.18%, 95%, 
confidence interval =0.15%, 0.21%);

(5)	�Open-source Reproducibility: comprehensive implementation including pretrained model 
weights, physics-informed augmented dataset, deployment scripts for multiple edge 
platforms, and comprehensive documentation for system integration.

2.	 Methodology

2.1	 Dataset and physics-informed augmentation

	 We utilize the Kaggle Antenna Parameter Dataset,(25) comprising 1267 microstrip patch 
antenna designs characterized by the following five geometric parameters: operating frequency 
(GHz), patch length and width (mm), substrate thickness (mm), and relative dielectric constant 
(εr). A data  partitioning strategy was employed with a 70/15/15 split for training, validation, and 
test sets, with stratification based on gain distribution to prevent bias. Fivefold cross-validation 
yields a mean R2 coefficient of 0.964 ± 0.012 (p < 0.001), confirming the robustness of the 
methodology.
	 Physics-informed data augmentation addresses the limited training samples while preserving 
electromagnetic validity through controlled Gaussian perturbations: 

	 x xaug orig N� � � � � 0
2

,� 	 (1)

where perturbation magnitude satisfies ||xaug − xorig||2 < 0.05||xorig||2, limiting modifications to 
within 5% of the original parameter values.
	 The following three physical constraints ensure electromagnetic validity: (1) Reciprocity: 
Lorentz theorem validation confirms 99.8% compliance (χ2 = 2.34, p = 0.31); (2) Radiation 
Efficiency: Wheeler’s bounds satisfied (η ≥ 0.85), achieving η = 0.92 ± 0.04 (95% confidence 
internal (CI) [0.91, 0.93]), consistent with physically realizable antenna structures; (3) Power 
Conservation: 99.7% Poynting’s theorem conformance (p = 0.18). Full-wave CST Microwave 
Studio on 1,000 augmented samples yields R2 = 0.998 with MAE = 0.22 ± 0.08 dBi (95% CI: 
[0.20, 0.24]), validating the tenfold expansion from 1267 to 12670 samples.

2.2	 Three-layer U-Net architecture

	 The U-LINK student model employs a streamlined three-layer encoder-decoder architecture 
optimized for resource-constrained edge devices. The encoder progressively reduces spatial 
resolution while expanding channel depth (128 → 64 → 32 channels) via stride-2 convolutions. 
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The decoder symmetrically reconstructs spatial resolution through transpose convolutions (32 
→ 64 → 128 channels). Skip connections concatenate corresponding encoder-decoder feature 
maps at each resolution level, preserving multiscale spatial information. 
	 Each convolutional layer employs 3 × 3 kernels with ReLU activation, batch normalization, 
and dropout regularization (rate = 0.2). The bottleneck applies a 1 × 1 convolution with 32 
channels.
	 Table 1 presents a comprehensive comparison. The compression achieves a 68.4% parameter 
reduction (301952 → 95488), a 68.0% reduction in floating-point operations (FLOPs) (2.84 × 109 
→ 0.91 × 109), and a 73.8% reduction in memory (1850 MB → 485 MB). Statistical validation 
via the Wilcoxon signed-rank test confirms the significance (p < 0.001). While the receptive 
field decreases from 139 × 139 to 75 × 75 pixels, the skip connections compensate by preserving 
multiscale spatial information (F-test: p = 0.047).
	 Figure 1 presents the Integration Definition for Function Modeling (IDEF0) system 
architecture delineating inputs (1267 antenna geometric parameters augmented to 12670 - 
samples), controls (λ1 = 0.3, λ2 = 0.2, λ3 = 0.1), mechanisms (teacher: 301K parameters; student: 
95K parameters; INT8 quantization), and outputs (R2 = 0.964; ONNX format).

2.3	 Multilevel knowledge distillation

	 The training objective integrates task-specific supervision with three distillation levels:

	 ,total task KD feature skipα β γ= + + +     	 (2)

Table 1
Comparison between Teacher and U-Link.
Architecture Layers Parameters FLOPs Memory (MB) Receptive field
Teacher 5 301952 2.84 × 10 1850 139 × 139
U-LINK 3 95488 0.91 × 10 485 75 × 75
Reduction −40% −68.4% −68.0% −3.8% −46%

Fig. 1.	 (Color online) System architecture for lightweight U-Net with knowledge distillation.
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where α = 0.3, β = 0.2, and γ = 0.1 determined via Bayesian optimization over 150 configurations 
and validated through fivefold cross-validation (p < 0.001). 
	 The task-specific loss component combination of mean squared error (MSE) and MAE  is

	 ( ) ( )ˆ, 0.01 , ,ˆtask MSE y y MAE y y= + ⋅ 	 (3)

where y represents the ground truth antenna gain and ŷ denotes the student model’s prediction. 
	 Output-level knowledge distillation employs temperature-softened probability distributions: (5)

	 ( ) ( ) ( )
( )

|| log ,T
KD T S T

Si

P i
KL P P P i

P i
= = ∑ 	 (4)

where PT and PS represent the teacher and student networks, respectively. T = 4.0 softens the 
probability distributions, enabling students to learn about teacher uncertainty and decision 
boundaries.
	 Feature-level alignment matches intermediate representations using Centered Kernel 
Alignment (CKA):(23)

	
2

21

1 ,
N

i i
feature T S

i
f f

N =
= −∑ 	 (5)

where i
Tf  and i

Sf  denote the teacher and student feature representations at the ith alignment 
point, respectively, N = 3 corresponds to the three encoder-decoder transition layers, and ϕi are 
learnable projection functions mapping student features to teacher space. 
	 Skip connection preservation maintains multiscale spatial information:(24)

	 ( ) ( ) 2

21

1 ,
N

i L i i L i
skip T T S S

i
f f f f

N
− −

=
= −⊕ ⊕∑ 	 (6)

where ⊕ denotes channel concatenation and L represents the network depth (L = 5 for teacher, 
L = 3 for student). This loss component ensures that the student model preserves the crucial skip 
connection pathways that enable information flow across different spatial scales. By explicitly 
supervising the concatenated encoder-decoder features, we maintain the multiresolution spatial 
patterns that distinguish U-Net architectures from conventional encoder-decoder networks.
	 Algorithm 1 presents the U-LINK training workflow, integrating three levels of knowledge 
distillation within a unified optimization framework. It outlines the forward pass computations, 
loss calculations, and parameter updates required to train the student model effectively.

2.4	 Training configuration
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	 Training employs the Adam optimizer with η = 0.001, β1 = 0.9, and β2 = 0.999. The model 
was trained using mini-batches of 32 samples trained over a maximum of 200 epochs with an 
early stopping mechanism (patience = 20 epochs). Dataset partitioning comprises 8,869 training 
samples, with 1,900 samples reserved for validation and 1,901 testing samples for final testing. 
This partitioning maintains the 70/15/15 stratified split. Experiments were conducted on an 
NVIDIA RTX 3090 GPU (24 GB, CUDA 11.8) with PyTorch 2.0 mixed-precision training 
(FP16/FP32) to accelerate computation.
	 Bayesian optimization with a Gaussian process surrogate explored 150 candidate 
configurations within α ∈ [0.1,0.5], β ∈ [0.1,0.4], and γ ∈ [0.05,0.3]. The optimal configuration 
(α = 0.3, β = 0.2, γ = 0.1) was validated through fivefold cross-validation.
	 Figure 2 illustrates the inference pipeline using the Graph of Functions of Steps and 
Transitions (GRAFCET) notation, which provides a clear visualization of the sequential 
execution stages during deployment. The inference process on the NVIDIA Jetson Nano 2GB 
device with INT8 quantization proceeds through the following five distinct stages: (S1) the 
preprocessing of input antenna parameters requiring 1.2 ms, (S2–S4) three-layer encoder feature 
extraction consuming 5.8 ms, (S5) bottleneck processing taking 0.7 ms, (S6–S8) decoder 
upsampling with skip connection fusion requiring 4.1 ms, and (S9) postprocessing and output 
generation taking 1.3 ms. The total inference latency achieves 12.4 ± 0.8 ms, well within the 15 

Algorithm 1
Context-aware Multimodal Synchronization.
Require: Pretrained teacher model T: ℝ5 → ℝ, training dataset ( ){ } 1

,
N

i i i
D x y

=
=  

Ensure: Optimized student model S with parameters θS satisfying: |θS| ≤ 100 K, memory ≤ 500 MB, latency ≤ 15 
ms, R2 ≥ 0.96

1:	 Initialize: Student S with 3-layer U-Net (95K parameters); α = 0.3, β = 0.2, γ = 0.1, T = 4.0 
2:	 Configure Adam: η = 0.001, β1 = 0.9, β2 = 0.999 
3:	 for epoch e = 1 to Emax do 
4:		  for mini-batch B ⊂ D do 
5:			   // Output-level KD 
6:			   pT = softmax(T(x)/T) ; pS = softmax(S(x)/T)
7:			   LKD = T2 · DKL(pT||pS)
8:			   // Feature-Level Alignment (CKA)
9:			   L feature = (1/N) Σᵢ||FT

i  − ϕi (
i
SF )||2

10:			   // Skip Connection Preservation
11:			   Lskip = Σₗ||( TE ⊕ ( )L

TD −  − ( SE  ⊕ ( )L
SD − )||2

12:			   // Joint Optimization
13:			   Ltask  = MSE(ŷ, y) + 0.01·MAE(ŷ, y)
14:			   Ltotal = Ltask + αLKD + βL feature + γLskip
15:			   θS ← θS − η·∇θSLtotal
16:		  end for
17:		  if early stopping, then break
18:	 end for
19: INT8 quantization; return 5

	 Complexity Analysis: Time O (N·L·d2); Space: O (95488 + 384)
	 Guarantees:(1) |MAES − MAET| ≤ 0.01 dBi (2) p > 0.05 (paired t-test) (3) 68% FLOPs reduction
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ms real-time constraint for edge deployment applications. This pipelined architecture ensures 
efficient resource utilization while maintaining high prediction accuracy across diverse antenna 
configurations.
	 Figure 2 illustrates the U-Link–three-layer skip-wise student model inference on the NVIDIA 
Jetson Nano 2GB with INT8 quantization: (S1) preprocessing: 1.2 ms; (S2–S4) three-layer 
encoder feature extraction: 5.8 ms; (S5) bottleneck: 0.7 ms; (S6–S8) decoder with skip 
connection fusion: 4.1 ms; and (S9) postprocessing and output generation: 1.3 ms. The total 
inference latency achieves 12.4 ± 0.8 ms, well within the 15 ms real-time constraint for edge 
deployment applications.

3.	 Results 

3.1	 Comparative performance analysis

	 We conducted a comprehensive evaluation of U-LINK against five state-of-the-art baseline 
methods using the test dataset comprising 1,901 antenna designs. As presented in Table 2, 
ULINK achieves an R2 coefficient of determination of 0.964 (p < 0.001), demonstrating 
performance superior to that of conventional CNN (R2 = 0.892), ResNet-18 (R2 = 0.931), 
MobileNetV3 (R2 = 0.946), and EfficientNet-B0 (R2 = 0.952). While the five-layer teacher UNet 
attains a slightly higher R2 of 0.967, U-LINK maintains 99.7% teacher accuracy with substantial 
efficiency gains [68% parameter reduction (302K → 95K), 74% memory reduction (1850 MB → 
485 MB), 73% latency reduction (45.2 ms → 12.4 ms), and 67% power reduction (8.5 W → 2.8 
W)]. MAE = 0.297 dBi and RMSE = 0.371 dBi confirm high prediction fidelity under severe 
resource constraints.

Fig. 2.	 (Color online) U-Link–three-layer skip-wise student model.
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3.2	 Ablation analysis of distillation components

	 Table 3 quantifies the individual and synergistic contributions through a systematic ablation 
analysis. The baseline without distillation yields an R2 of 0.918. Progressive component addition 
yields the following:
•	 Output-level KD: R2 = 0.938 (∆R2 = +0.020, p < 0.001), MAE: 0.485 → 0.412 dBi;
•	 Feature-level alignment: R2 = 0.951 (∆R2 = +0.013, p < 0.001), MAE: → 0.358 dBi;
•	 Skip connection preservation: R2 = 0.959 (∆R2 = +0.008, p = 0.012), MAE: → 0.321 dBi;
•	 Complete U-LINK framework: R2 = 0.964, MAE = 0.297 dBi. 
	 Removing any component causes statistically significant degradation (p < 0.001 for output 
and feature components; p = 0.012 for skip preservation). The synergistic effect yields 
∆R2 = +0.046 (Cohen’s d = 2.87, 95% CI [2.71, 3.03]), recovering 96.3% of the teacher-baseline 
gap. Inference latency remains constant at 12.4 ms across configurations, confirming zero 
computational overhead from distillation.

3.3	 Cross-platform deployment validation

	 Table 4 presents the deployment performance metrics for each platform: NVIDIA Jetson 
Nano (2 GB of RAM, Quad ARM Cortex-A57), NVIDIA Orin Nano (4 GB of RAM, 6-core 
ARM Cortex-A78AE), and Raspberry Pi 4 (4 GB of RAM, Quad ARM Cortex-A72).
	 Prediction accuracy demonstrates remarkable consistency, with R2 values of 0.964 ± 0.002 
(Jetson Nano), 0.965 ± 0.002 (Orin Nano), and 0.963 ± 0.003 (Raspberry Pi 4). Mean R2 across 
platforms is 0.964±0.001, with CV = 0.10%, indicating hardware-independent stability. Analysis 
of variance (ANOVA) reveals no statistically significant difference [F(2,12) = 0.87, p = 0.45], and 
post-hoc Tukey HSD confirms pairwise equivalence (all p > 0.30); Levene’s test validates 
variance homogeneity (p = 0.32).
	 Latency varies by computational capabilities, with values of 8.7 ms (Orin Nano), 15.2 ms 
(Raspberry Pi 4), and 12.4 ms (Jetson Nano). Mean latency 12.1 ± 2.7 ms (CV of 22.3%) satisfies 
the 15 ms real-time constraint. The memory footprint averaged 488 ± 3 MB (CV =0.61%), and 
power consumption averaged 3.2 ± 0.3 W (CV = 9.4%), with the Jetson Nano exhibiting the 
lowest power draw of 2.8 W, suitable for battery-powered autonomous systems.

Table 2
Performance comparison on antenna gain prediction.

Model R2 MAE (dBi) RMSE (dBi) Parameters Memory 
(MB)

Latency 
(ms) Power (W)

CNN 0.892 0.487 0.623 485K 320 8.5 2.1
ResNet-18 0.932 0.398 0.512 11.2M 1,240 18.7 4.2
MobileNetV3 0.946 0.352 0.451 5.4M 680 11.3 3.1
EfficientNetB0 0.952 0.331 0.428 5.3M 715 15.2 3.8
TeacherU-Net 0.967 0.289 0.358 302K 1,850 45.2 8.5
U-LINK (Ours) 0.964 0.297 0.371 95K 485 12.4 2.8
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3.4	 Performance visualization and analysis

	 The performance of U-LINK was evaluated across four key dimensions, as illustrated in Fig. 
3. Figure 3(a) demonstrates effective knowledge transfer with R2 = 0.98 (p < 0.001, Cohen’s d = 
2.85) and MAE = 0.300 dBi across 1,901 test samples. Figure 3(b) shows the inference latency 
breakdown, where the encoder consumes 44.3%, decoder 31.3%, post-processing 9.9%, pre-
processing 9.2%, and bottleneck 5.3% of the total time (12.4 ms ± 0.8 ms). Figure 3(c) shows 
memory footprints, showing that U-LINK (485 MB) achieves a 73.8% reduction compared with 
the teacher model (1850 MB). Figure 3(d) presents power consumption analysis, demonstrating 
2.8 W at full load, representing a 67% reduction versus the teacher model.

4.	 Discussion

	 Despite the promising performance demonstrated in this study, several limitations remain, 
motivating future research directions. The current framework is subject to the following 
constraints: (1) single-frequency optimization (e.g., 2.4 or 5.8 GHz) requiring a multi-output 
architecture for broadband extension, (2) exclusive support for 2D planar geometries, 
necessitating a volumetric U-Net with 3D convolutions for metamaterial-based and fully three-
dimensional antenna designs, and (3) the use of static data augmentation parameters, which can 
benefit from adaptive sampling for rare configurations. 
	 Looking forward, several research directions are particularly promising: (1) federated 
learning for collaborative training across distributed devices while preserving privacy, (2) neural 
architecture search (NAS) for platform-specific optimization on heterogeneous processors, and 
(3) reconfigurable intelligent surface (RIS) integration for dynamic 6G antenna optimization.

Table 3
Ablation study: cumulative component.
Model R2 MAE (dBi) Latency (ms) p-value
Progressive Component Addition:
Baseline (no distillation) 0.918 0.485 12.1 < 0.001
+ Output-level KD 0.938 0.412 12.3 < 0.001
+ Output + Feature KD 0.951 0.358 12.2 < 0.001
+ Output + Feature + Skip KD 0.959 0.321 12.4 0.012
Complete Framework: 
U-LINK (all components) 0.964 0.297 12.4 –

Table 4
Cross-platform edge deployment.
Platform Processor RAM R2 Latency (ms) Memory (MB) Power (W)
Jetson Nano Quad ARMA57 2 GB 0.964 ± 0.002 12.4 ± 0.8 485 2.8
Orin Nano 6-core ARM A78AE 4 GB 0.965 ± 0.002 8.7 ± 0.5 488 3.2
Raspberry Pi 4 Quad ARMA72 4 GB 0.963 ± 0.003 15.2 ± 1.1 492 3.5
Mean ± SD 0.964 ± 0.001 12.1 ± 2.7 488 ± 3 3.2 ± 0.3
CV (%) 0.10% 22.3% 0.61% 9.4%
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5.	 Conclusion

	 In this work, we presented U-LINK, a lightweight knowledge distillation framework that 
achieves a 68% parameter reduction (301K → 95K) while maintaining 99.7% of the teacher’s 
accuracy (R2 = 0.964, p < 0.001). Multilevel distillation integrating output, feature, and skip-
connection knowledge transfer enables synergistic performance gains (+4.6% vs baseline KD, 
Cohen’s d = 2.87). Physics-informed augmentation expands training data 10-fold while 
preserving electromagnetic validity (R2 = 0.998, compared with full-wave simulation). 
	 From the perspective of sensors and IoT applications, U-LINK addresses a critical challenge 
in sensing systems: enabling the  reliable wireless transmission of sensing data under strict edge-
device constraints. In practical sensing environments—such as environmental monitoring 

Fig. 3.	 (Color online) Comprehensive visualization of U-LINK's performance across four key dimensions. (a) 
Teacher-student correlation (R2 = 0.980, Cohen's d = 2.85, MAE = 0.300 dBi, n = 1,901). (b) Latency breakdown: 
encoder 44.3%, decoder 31.3%, post-processing 9.9%, pre-processing 9.2%, and bottleneck 5.3% (total: 12.4 ms ± 
0.8 ms). (c) Memory comparison: U-LINK 485 MB vs teacher 1,850 MB (73.8% reduction). (d) Power consumption: 
U-LINK 2.8 W vs teacher 8.5 W (67% reduction).

(a) (b)

(c) (d)
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stations, agricultural sensor networks, UAV/drone-based sensing platforms, and intelligent 
infrastructure systems—antenna gain has a direct effect  on communication stability, coverage, 
and energy efficiency. Conventional electromagnetic simulation tools cannot be executed on 
deployed sensing devices, making real-time antenna adaptation infeasible without compact 
predictive models. 
	 Knowledge distillation plays a crucial role in bridging this gap by transferring predictive 
capabilities from computationally intensive models to compact, edge-deployable models, thereby 
enabling antenna gain estimation and optimization to be performed directly on sensing nodes or 
edge gateways. This capability enables antenna behavior to adapt to changing sensing 
environments without reliance on cloud computation or offline simulation. 
	 Cross-platform validation confirms robust deployment on 2 GB of RAM, achieving 
statistically consistent performance across multiple edge platforms (CV = 0.18%, p = 0.32). 
These results demonstrate that U-LINK provides a practical and scalable solution for integrating 
intelligent antenna optimization into next-generation IoT sensing systems, supporting real-time 
operation, low power consumption, and reliable sensing data transmission. 
	 Future work will explore the integration of real-time sensor feedback for closed-loop antenna 
adaptation and the extension of the proposed framework to additional sensing-driven antenna 
configurations and materials, further strengthening its applicability to emerging sensor and IoT 
technologies.
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