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	 With the continuous development of deep learning and computer vision technologies, the 
integration of image recognition with robotic manipulation has become an important topic in 
smart manufacturing and agricultural automation. In this study, we propose an interactive 
teaching platform for fruit classification and autonomous grasping, which incorporates a vision 
sensor (camera) with the You Only Look Once Version 7 (YOLOv7) object detection algorithm 
enhanced by the adaptively spatial feature fusion (ASFF) module. The camera serves as the 
primary sensing component, providing a real-time visual input that is processed by the detection 
algorithm to enable robust fruit recognition and precise grasping actions. The system integrates 
advanced visual recognition, adaptive grasping strategies, and a user-friendly human–machine 
interface, creating a practical learning environment for hands-on experience in intelligent 
system applications. Experimental results indicate that the proposed YOLOv7-ASFF model, 
trained and validated on a self-constructed fruit image dataset, achieved a mean average 
precision (mAP) of 94.6%, while physical grasping experiments attained a success rate of 93%. 
These findings confirm the effectiveness of the sensor–algorithm integration and demonstrate 
the robustness and practical feasibility of the proposed system.

1.	 Introduction

1.1	 Research motivation and objectives

	 The development of automation systems in agriculture has increasingly focused on intelligent 
fruit detection and robotic grasping, as these technologies play a crucial role in addressing labor 
shortages, enhancing productivity, and ensuring product quality. Traditional image processing 
techniques, such as color and shape-based recognition, have been applied to fruit detection, yet 
they are often sensitive to variations in illumination, occlusion, and complex background 
conditions. More recently, deep-learning-based approaches have demonstrated superior 
performance in object detection; however, their application to real-time fruit grasping remains 

mailto:jasonccw@yuntech.edu.tw
https://doi.org/10.18494/SAM5854
https://myukk.org/


786	 Sensors and Materials, Vol. 38, No. 2 (2026)

limited owing to challenges in detection robustness, coordinate transformation, and the dynamic 
nature of unstructured environments.
	 To overcome these limitations, we present an interactive teaching platform that integrates 
real-time fruit detection and robotic grasping. The proposed system employs the You Only Look 
Once Version 7 (YOLOv7) object detection algorithm enhanced with the adaptively spatial 
feature fusion (ASFF) module, which improves detection robustness by refining multiscale 
feature representations. Real-time image data are processed to identify fruit categories and 
positions, which are subsequently transformed into world coordinates to guide the robotic arm in 
performing accurate grasping and sorting operations. In contrast to conventional static training 
tools or simulation-only systems, the platform emphasizes physical interaction, modular 
hardware design, and continuous visual feedback, thereby supporting hands-on learning in 
object detection, coordinate transformation, and robotic control.

1.2	 Literature review and related research

	 In recent years, YOLO-based object detection algorithms have demonstrated strong potential 
in real-time applications across agriculture, transportation, and remote sensing. To address 
challenges such as occlusion, scale variation, and dense object distribution, researchers have 
proposed enhancements to the YOLO architecture by integrating modules such as ASFF and 
Transformer-based components. Li et al.(1) introduced YOLOv5-ASFF for strawberry detection, 
where the ASFF module was used to improve multiscale feature representation. The model 
achieved a mAP of 91.86% and an F1 score of 88.03%, outperforming SSD, YOLOv3, YOLOv4, 
and YOLOv5s in complex field environments. Similarly, Liu et al.(2) proposed ASFF-YOLOv5 
for multiscale traffic element detection by incorporating K-means++ clustering and SPPF 
modules, which improved the detection of small and overlapping objects, achieving a mAP of 
93.1%.
	 Several studies have focused on improving detection robustness under complex outdoor 
conditions. YOLOv7-PSAFP was proposed for pest and disease identification by introducing a 
progressive spatial adaptive feature pyramid and combining varifocal loss with loss rank mining 
to suppress noise from negative samples.(3) The model achieved mAP values of 84.7 and 93.3% 
on two datasets, exceeding the baseline YOLOv7. In the maritime domain, Liu et al.(4) proposed 
YOLOv5s-SwinDS, in which the backbone was replaced with a Swin Transformer, introduced 
deformable convolution (DCNv2), and adopted SIoU loss to improve the detection of irregular 
targets. Experimental results showed superior performance over YOLOv5s, YOLOv7, and 
YOLOv8 on the SeaDronesSee dataset.
	 In addition, Transformer-based improvements have been applied in SAR ship detection and 
fruit recognition. The ST-YOLOA model described in Ref. 5 incorporated a Swin Transformer 
and coordinate attention into the STCNet backbone, and employed a residual PANet and a novel 
sampling strategy to enhance localization accuracy. It achieved an accuracy of up to 97.37% and 
maintained a real-time speed of 21.4 FPS. For fruit detection, Liu et al.(6) proposed YOLO-
SwinTF by integrating a Swin Transformer and a Trident Pyramid Network (TPN) into 
YOLOv7, and introducing the Focaler-IoU loss. The model reached an AP of 98.67% and showed 
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high robustness under various lighting and occlusion conditions, offering improved performance 
over the original YOLOv7. 
	 Those studies demonstrated the effectiveness of integrating modules such as ASFF and 
Transformer structures into YOLO-based models to enhance feature fusion, detection accuracy, 
and robustness under complex real-world conditions. Building on those advancements, in this 
study, we develop a YOLO-based fruit recognition framework enhanced with the ASFF module, 
specifically designed to address scale variation, occlusion, and dense fruit distribution in orchard 
environments. By emphasizing real-time detection precision and stability, the proposed approach 
provides a practical solution for reliable fruit recognition and lays a foundation for further 
applications in intelligent agricultural systems.

2.	 Research Methods

2.1	 YOLOv4(7)

	 The YOLOv4 object detection framework is composed of four major components: the input 
module, backbone, neck, and detection head. The input module is responsible for receiving raw 
image data to be processed by the network. CSPDarknet53 is employed as the backbone network, 
which performs initial feature extraction from the input images. This backbone architecture 
enhances learning capability and reduces computational cost through the use of cross-stage 
partial connections. Following the backbone, the neck component integrates feature maps from 
different levels using a combination of Spatial Pyramid Pooling (SPP) and the Path Aggregation 
Network (PAN). These modules effectively enhance the receptive field and facilitate multiscale 
feature fusion, which are essential for detecting objects of various sizes.
	 The final component of YOLOv4 is the detection head, for which the structure used in 
YOLOv3 was adopted. It takes the refined feature maps produced by the neck and performs the 
final object detection tasks, generating bounding boxes and class probabilities for each detected 
object. The overall structure of the YOLOv4 framework is illustrated in Fig. 1, while Fig. 2 
shows the sequential processing pipeline, highlighting the data flow through each stage of the 
architecture. These diagrams demonstrate how the combination of feature extraction, multiscale 
fusion, and prediction modules enables YOLOv4 to achieve efficient and accurate object 
detection in real time.

2.2	 YOLOv7(8)

	 YOLOv7, introduced by Wang in 2022,(8) is an advanced real-time object detection algorithm 
that represents a significant enhancement over previous models in the YOLO family. This 
version retains the rapid inference capability characteristic of YOLO architectures while 
incorporating several critical improvements aimed at both accuracy and computational 
efficiency. The core design integrates reparameterized blocks and a modular architecture, 
allowing the model to operate under distinct configurations during training and inference. In the 
training phase, a more complex network is utilized to improve the learning capacity, whereas the 
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inference phase adopts a simplified structure to ensure high-speed execution without sacrificing 
accuracy. Moreover, YOLOv7 adopts novel training strategies such as task-aligned learning and 
the coarse-to-fine head structure, enabling superior multitask learning performance across 
object detection, bounding box regression, and classification. 
	 As illustrated in Fig. 3, the overall YOLOv7 framework comprises three major modules: (1) 
an enhanced backbone employing convolution-BatchNorm-SiLU (CBS) blocks with 
reparameterization; (2) a multiscale feature aggregation neck designed with ELAN and 
SPPCSPC modules; and (3) a task-aligned detection head capable of handling object localization 
and classification with improved precision. Evaluations conducted on benchmark datasets such 
as COCO and Pascal VOC have demonstrated that YOLOv7 consistently surpasses prior YOLO 
versions, including YOLOv5 and YOLOv6, in terms of both mean average precision (mAP) and 
inference speed. In particular, YOLOv7-tiny achieves high frame rates on the COCO dataset 
while maintaining competitive accuracy, indicating its suitability for deployment in edge-
computing scenarios and latency-sensitive applications. These advancements underscore the 
model’s applicability in various domains, including intelligent video surveillance, autonomous 
driving, and industrial machine vision systems.

2.3	 ASFF 

	 The ASFF module serves as an effective feature aggregation strategy designed to enhance 
multiscale representation in object detection networks. In fruit detection tasks, target objects 
frequently vary in size and may suffer from partial occlusion or overlap caused by foliage or 
clustering. ASFF addresses these challenges by allowing the network to dynamically adjust the 
contribution of features from different scales at each spatial location. Unlike conventional fusion 
strategies such as summation or concatenation, which statically combine features, ASFF 
introduces learnable spatial attention weights that selectively emphasize the most informative 

Fig. 1.	 (Color online) YOLOv4 network architecture.

Fig. 2.	 (Color online) YOLOv4 processing flow.
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features. This adaptive mechanism significantly strengthens the network’s ability to localize and 
classify fruits under complex agricultural conditions.
	 To ensure both precision and computational efficiency, ASFF is integrated into the YOLOv7 
framework. YOLOv7, characterized by its optimized backbone and real-time detection 
capability, provides a robust foundation for edge deployment in smart farming applications. By 
embedding ASFF into the feature pyramid network of YOLOv7, the proposed YOLOv7-ASFF 
architecture enhances robustness against small-scale, overlapping, and partially occluded fruits 
while maintaining near real-time inference. In a previous study,(1) it was further demonstrated 
that ASFF improves mAP across object sizes with only marginal computational overhead, 
validating its practical benefits. 
	 The structural role of ASFF within the YOLOv7 framework is illustrated in Fig. 4. Multiscale 
features extracted from the backbone are first aligned in resolution through up-sampling or 
down-sampling operations. These features are then adaptively fused at each spatial location by 
employing learnable attention weights, enabling the network to dynamically prioritize the most 
relevant information. This process preserves fine-grained details from shallow layers while 
simultaneously leveraging high-level semantic context from deeper layers, thereby improving 
detection robustness across diverse fruit sizes and environmental conditions.
	 The advantages of integrating ASFF into YOLOv7 can be summarized as follows.
•	 �Improved Multiscale Detection: ASFF enhances the detector’s ability to capture small and 

partially occluded fruits by adaptively leveraging complementary information across feature 
levels.

•	� Better Generalization: The adaptive fusion mechanism provides robustness against 
variations in illumination, occlusion, and background complexity, which is critical for real-
world robotic harvesting and sorting systems.

•	� Near Real-Time Performance: Despite the additional computations introduced by ASFF, 
the YOLOv7-ASFF model maintains inference efficiency suitable for robotic arm integration 
and other edge-computing scenarios in smart agriculture.

Fig. 3.	 (Color online) Architecture of the YOLOv7 model.
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3.	 Hardware Architecture

3.1	 Experimental environment

	 As illustrated in Figs. 5 and 6, the experimental setup developed in this study consists of a 
robotic arm, a camera, a fruit recognition zone, and six designated fruit placement areas. 
Initially, a fruit is placed within the recognition zone. The camera captures an image of the 
object, and the YOLOv4 algorithm is applied to identify the fruit and its location. The detection 
results are then transmitted via serial communication to the robotic arm, which executes the 
corresponding pick-and-place operation. A pneumatic compressor is used to drive the air-
powered gripper, enabling the arm to grasp and relocate the object to its designated location. 
	 In this study, the robotic arm system is operated using NVIDIA Jetson Nano, a compact and 
energy-efficient computing platform designed for edge AI applications. Jetson Nano is equipped 
with a quad-core ARM Cortex-A57 CPU and a 128-core Maxwell GPU, offering sufficient 
computational performance to support real-time image processing and inference tasks. It 
includes 4 GB of LPDDR4 memory and is compatible with major deep learning frameworks, 
such as TensorFlow, PyTorch, and MXNet. The integrated JetPack SDK, which combines the 
Ubuntu operating system with CUDA, cuDNN, and TensorRT, provides a comprehensive 
development environment tailored for embedded AI applications. Owing to its low power 
consumption (5–10 W) and small form factor, Jetson Nano is particularly well suited to use in 
robotics, unmanned systems, and intelligent vision-based control.
	 The robotic arm utilized in this system was manufactured by Shenzhen Yuanhang Robotics 
Technology Co., Ltd., and features six degrees of freedom (DOF), a 62.9 cm reach, and a total 
weight of 1.9 kg. The arm achieves a global positioning accuracy of approximately 1 mm and has 
a maximum power consumption of 198 W. The end effector is an air-driven gripper constructed 
from aluminum alloy, which ensures a favorable balance between structural strength and low 
weight. This design contributes to enhanced stability and precision during high-speed 
movements. In addition, the gripper includes flexible, high-resilience fingers made from wear-
resistant materials, which allow it to conform to objects of various shapes and surfaces. The 
compliant structure promotes even pressure distribution during grasping, thereby reducing the 
risk of object slippage or damage.
	 Visual input is captured by a wide-angle camera with a resolution of 1920 × 1080 pixels 
(progressive scan), operating at 60 frames per second and offering a 120° field of view. The 
camera is mounted approximately 30 cm above the workspace and angled 30° downward to 

Fig. 4.	 (Color online) Illustration of YOLOv7-ASFF model structure.
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optimize the capture of the robotic arm’s operating region. This setup facilitates a clear 
observation of the detection zone, improving object recognition and localization accuracy. The 
high frame rate further enhances the responsiveness of the control system, supporting real-time 
detection and tracking based on the YOLO algorithm. This configuration ensures that the 
robotic system maintains operational efficiency in dynamic and time-sensitive environments.

3.2	 Denavit–Hartenberg method 

	 The Denavit–Hartenberg (D–H) convention is a mathematical method commonly used to 
establish the kinematic model of a robotic arm. Proposed by Jacques Denavit and Richard S. 
Hartenberg in 1955, this method simplifies the description of the spatial relationship between 

Fig. 5.	 Schematic of the experimental environment.

Fig. 6.	 (Color online) Robotic arm used in the system.
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adjacent joints. While the relative position between two joints typically requires six parameters—
three translational and three rotational—the D–H method reduces this to just four parameters.
	 As shown in Fig. 7, the four D–H parameters for the j-th joint are bj, αj, cj, and θj, where j 
denotes the joint index. The definitions of these parameters are as follows.
•	 bj is the distance between points Pj and '

1jP − .
•	� αj is the angle of rotation from zj−1 to zj, with counterclockwise rotation around xj being 

positive.
•	 cj is the distance between points Pj and '

1jP − .
•	� θj is the angle of rotation from xj−1 to xj with counterclockwise rotation around zj−1 being 

positive. 
	 Using the D–H method, the transformation relationship from the joint coordinates of the i-th 
axis to the joint coordinates of the ( j + 1)th axis can be represented by 1

jT − , 1j
jT − . Here, 1

jT − , 1j
jT −  

denotes the transformation matrix that converts the coordinates from the ( j − 1)th axis to the jth 
axis, as shown in Eq. (1).
	 Using the D–H convention, the transformation from the coordinate frame of the ( j + 1)th 
joint to that of the jth joint can be expressed as a homogeneous transformation matrix 1j

jT − , as 
defined in Eq. (1). This transformation is composed of a sequence of elementary operations: 
rotation about the zj−1-axis by θj, translation along the zj−1-axis by cj, translation along the xj-axis 
by bj, and finally, rotation about the xi-axis by αi:

	 1
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	 After calculating the transformation matrices between each pair of adjacent joints, the overall 
transformation from the base frame to the end-effector frame can be obtained by sequentially 
multiplying the individual transformations. This yields the complete forward kinematic model of 
the robotic arm.

Fig. 7.	 Parameter explanation diagram for the D–H method.
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3.3	 Inverse kinematics (IK)

	 IK is a mathematical approach used to determine the joint angles of a robotic arm when the 
desired position and orientation of the end effector are known. Given a target pose for the end 
effector, IK allows for the computation of the corresponding joint configurations that will move 
the arm precisely to the intended location. Since robotic arms typically consist of multiple joints, 
where the motion of one joint affects the posture of others, solving the IK problem requires the 
careful consideration of the robot’s geometric structure and motion constraints.
	 For a 6-DOF robotic manipulator, IK often yields multiple solutions. This is due to the 
redundancy in joint DOFs, which allows the robot to reach the same end-effector pose using 
different joint configurations.
	 On the basis of the D–H convention, the relative transformation between adjacent joints is 
expressed using a series of homogeneous transformation matrices denoted as 1i

iT − . These 
matrices describe the coordinate transformation from the (i-1)-th joint frame to the i-th joint 
frame. For a 6-DOF robotic arm, if the desired position and orientation of the end effector are 
known, the overall transformation matrix 6

0T  can be used to derive the joint variables through 
inverse kinematic analysis.
	 The overall transformation from the base frame to the end-effector frame is given by

	 6 6 5 4 3 2 1
0 5 4 3 2 1 0T T T T T T T= × × × × × .	 (2)

	 Since each transformation matrix comprises both a rotation matrix and a translation vector, it 
is possible to extract the individual joint angles and displacements by applying inverse operations 
to these matrices. Ultimately, by solving the IK equations, the desired joint configurations can 
be obtained. This enables the robotic arm to accurately perform predefined tasks, achieving 
high-precision target positioning and object manipulation.

3.4	 Forward kinematics (FK)

	 FK is the process of determining the position and orientation of a robotic arm’s end effector 
on the basis of the known joint angles and link parameters. In contrast to IK, where joint 
variables are computed from a desired end-effector pose, FK calculates the resulting pose when 
the joint configurations are already specified. This technique is essential in robot control and 
path planning, as it allows for the precise determination of the end effector’s absolute location in 
space.
	 The core principle of forward kinematics lies in a sequence of geometric transformations that 
describe the spatial relationships between adjacent links and joints. Typically, the D–H 
convention is adopted to model these relationships mathematically. Using the D–H 
parameterization, each joint can be represented by a standard homogeneous transformation 
matrix 1i

iT − , which defines the transformation from one joint coordinate frame to the next.
	 By successively multiplying these transformation matrices, the overall transformation from 
the robot base to the end effector can be obtained. For a 6-DOF robotic arm, the FK can be 
expressed as
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	 1 2 3 4 5 6 6
0 1 2 3 4 5 0T T T T T T T× × × × × = .	 (3)

Here, 6
0T  represents the final homogeneous transformation matrix from the base frame to the 

end-effector frame, and each 1i
iT −  is computed from the joint’s rotation and translation 

parameters. These matrices contain both rotational and translational components, enabling a 
complete description of the robot’s pose.
	 In practical applications, FK is often used to simulate the motion trajectory of the robotic 
arm, verify whether the arm can reach a target position, or serve as a reference output in closed-
loop control systems to ensure that the robot performs as expected. Since FK calculations are 
unidirectional and deterministic, they are generally more straightforward than IK calculations 
and do not suffer from issues such as multiple solutions. As a result, FK is widely applied in 
robotic path planning and control algorithms.

4.	 Experimental Methods and Analysis

4.1	 Integration process

(1)	�Baseline Selection: We adopt YOLOv7 as the base architecture because of its performance 
and modularity.

(2)	�ASFF Placement: The ASFF module is integrated into the neck portion of the YOLOv7 
architecture, replacing or augmenting the traditional PANet- or FPN-based feature fusion 
layers. Specifically, ASFF receives feature maps from different stages (e.g., P3, P4, and P5) 
and fuses them adaptively.

(3)	�Channel and Spatial Alignment: Feature maps from each scale are resized to the same spatial 
dimensions and channel depths before being passed to the ASFF block.

(4)	�Adaptive Weighting: Within the ASFF module, spatial attention weights are learned during 
training to emphasize more informative regions at each scale. This allows the model to 
dynamically adjust its focus during inference.

(5)	�Detection Head: The fused feature map is then passed to the YOLOv7 detection head, where 
object classification and bounding box regression are performed.

(6)	�Training Strategy: The model is trained end-to-end on a customized fruit dataset using 
standard YOLO loss functions [including objectness (i.e., the confidence score representing 
the probability that an object exists in the bounding box), class probability, and bounding box 
regression losses], with additional regularization to stabilize the learning of attention weights 
in ASFF.

4.2	 Experimental procedure

	 To evaluate the accuracy and robustness of the object recognition model adopted in this study 
under different angles and object orientations, the experimental design deliberately incorporates 
various real-world challenges. In addition to variations in the appearance, direction, and 
placement of the objects, the environment was configured with more realistic and complex 



Sensors and Materials, Vol. 38, No. 2 (2026)	 795

background elements—such as nonuniform surface textures, natural lighting variations, 
shadows, reflective surfaces, and other visual noise—to simulate the perceptual disturbances 
commonly encountered in agricultural, logistics, and processing environments.
	 As illustrated in Fig. 8, two representative types of experimental environments were 
considered: a simple background [Fig. 8(b)] and a complex background [Fig. 8(a)]. The simple 
background corresponds to a controlled environment with a uniform surface and minimal 
interference, allowing the system to be tested under idealized conditions. In contrast, the 
complex background represents an orchard-like environment, where fruits are embedded within 
dense foliage and branches, and are affected by natural lighting variation, occlusion, and 
irregular textures. These contrasting settings enable a systematic evaluation of the system’s 
robustness by exposing the model to both laboratory-style conditions and realistic agricultural 
scenarios.
	 The experiment is conducted in two stages. In the first stage, in a simple background setting, 
each fruit is placed in six distinct orientations—top view, side view, bottom view, inclined, and 
asymmetrical positions. Real-time detection and classification are then performed by the models 
to compare the recognition performance characteristics of YOLOv7 and YOLOv7 integrated 
with the ASFF module (YOLOv7-ASFF). In the second stage, the same experiment is repeated 
with a visually complex background to investigate whether the performance gap between 
YOLOv7 and YOLOv7-ASFF becomes more significant in a challenging environment. This 
two-stage evaluation aims to verify whether integrating the ASFF module effectively enhances 
YOLOv7’s recognition performance, particularly under complex visual conditions.

4.3	 Experimental results

	 To quantitatively compare the performance characteristics of different object detection 
models, YOLOv4, YOLOv7, and YOLOv7 integrated with the ASFF module (YOLOv7-ASFF) 
were evaluated in a simple background environment. The evaluation metrics used in this study 
include mean average precision at an IoU threshold of 0.5 (mAP@0.5), Precision, Recall, and F1 
score.

Fig. 8.	 (Color online) Representative images of experimental environments: (a) complex and (b) simple 
background.

(a) (b)
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	 mAP@0.5 reflects the model’s ability to correctly localize and classify objects under a 
relatively lenient criterion. Precision measures how many of the model’s positive predictions are 
correct (i.e., low false positive rate), while Recall indicates how many of the actual targets are 
successfully detected (i.e., low false negative rate). F1 score, the harmonic mean of Precision and 
Recall, provides a balanced measure of the model’s overall detection performance.
	 As shown in Table 1, YOLOv7-ASFF outperformed both YOLOv7 and YOLOv4 across all 
metrics. Its mAP@0.5 reached 0.93, indicating excellent localization and classification 
capability. Compared with YOLOv7 (mAP@0.5 = 0.89), the integration of the ASFF module led 
to improvements in Recall (0.91 vs 0.86), highlighting better generalization to varying object 
poses. YOLOv4 exhibited the lowest performance across the board (e.g., mAP@0.5 = 0.82, 
Recall = 0.80), reflecting its relatively outdated architecture. Overall, the results demonstrate 
that the addition of ASFF effectively enhances YOLOv7’s detection accuracy and robustness, 
even under relatively simple visual conditions.
	 To further examine model robustness under realistic field conditions, the same evaluation 
was conducted using more visually complex backgrounds. These environments included an 
orchard setting with dense foliage and variable lighting, as well as a structured conveyor 
platform commonly used in post-harvest processing. These backgrounds introduced moderate 
visual disturbances such as nonuniform illumination, natural occlusion, and reflective surfaces, 
simulating common challenges in agricultural and logistics applications. The corresponding 
performance metrics are presented in Table 2.
	 Overall, all models experienced some degree of performance degradation owing to the 
increased visual complexity. However, YOLOv7-ASFF maintained relatively stable results, 
indicating superior adaptability to realistic field conditions. Specifically, YOLOv7-ASFF 
achieved an mAP@0.5 of 0.89 and an F1 score of 0.89, demonstrating high accuracy and 
consistency. In contrast, YOLOv4 exhibited a notable drop in performance (mAP@0.5 = 0.72; 
Recall = 0.68), suggesting limited robustness. YOLOv7 showed moderate decreases across 
several metrics, with Recall dropping to 0.79. These findings confirm that the ASFF module 
significantly improves YOLOv7’s detection performance under realistic operating scenarios, 
making it more suitable for practical deployment.

Table 1
Performance metrics under simple background conditions.
Metric YOLOv4 YOLOv7 YOLOv7-ASFF
mAP@0.5 0.82 0.89 0.93
Precision 0.88 0.92 0.95
Recall 0.80 0.86 0.91
F1 score 0.84 0.89 0.93

Table 2
Performance metrics under complex background conditions.
Metric YOLOv4 YOLOv7 YOLOv7-ASFF
mAP@0.5 0.72 0.83 0.89
Precision 0.78 0.86 0.91
Recall 0.68 0.79 0.87
F1 score 0.72 0.82 0.89
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4.4	 Results of grasping experiment 

	 Our experimental design involved testing the grasping performance of the proposed 
YOLOv7-ASFF model using six different types of fruit: apple, orange, pear, mangosteen, lemon, 
and wax apple. The experiments were carried out under two scenarios: a simple background 
with a uniform surface and a complex background with multiple fruits and distractors to 
simulate real-world conditions. Performance was evaluated in terms of grasping success rate, 
average grasping time, and failure cases, which were further categorized into misdetection, 
missed detection, pose deviation, and slippage. For each condition, 30 grasping trials were 
conducted and the results of YOLOv7-ASFF were compared against those of the baseline 
YOLOv7 model.
	 For each fruit type, a fixed placement location was designated, and the corresponding return 
coordinates were programmed into the robotic arm control system, with the end effector 
referenced to the base as the origin, as shown in Table 3. This configuration ensures that after 
each grasping operation, the fruit is accurately returned to its assigned category, thereby 
maintaining consistency in sorting outcomes and experimental repeatability. Furthermore, this 
approach allows the control system to efficiently coordinate the grasping and returning motions, 
facilitating subsequent performance analysis and process optimization.
	 As illustrated in Fig. 9, the experimental process of fruit recognition and manipulation by the 
robotic arm is demonstrated in four sequential stages. In the initial state [Fig. 9(a)], the robotic 
arm is positioned at its standby location, awaiting detection results. A camera-based vision 
sensor identifies the fruit type and designates the placement area accordingly. Once the fruit is 
positioned in the designated zone [Fig. 9(b)], the robotic arm receives the control command and 
proceeds to grasp the target object [Fig. 9(c)]. Subsequently, the robotic arm executes the 
returning motion to relocate the fruit back to its original category bin [Fig. 9(d)]. This sequence 
validates the integration of the vision sensor and robotic manipulation system, ensuring accurate 
object recognition, grasping, and sorting functionality under real-world conditions. The final 
experimental results are shown in Table 4.

4.5	 Analysis of experimental results

	 The experimental results presented in Table 4 clearly demonstrate the effectiveness of 
integrating the ASFF module into the YOLOv7 framework. Compared with the baseline 
YOLOv7, the YOLOv7-ASFF model achieved significantly higher grasp success rate in both 

Table 3
Fruit-specific placement and return coordinates.
Fruit X Y Z
Apple 122.4 319.2 268
Orange 171.2 −313.8 268
Pear 122.4 −319.2 268
Mangosteen 171.2 313.8 268
Lemon 146.8 325.9 268
Wax apple 146.8 −325.9 268
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simple and complex backgrounds, with improvements from 82.0 to 92.0% and from 68.0 to 
85.0%, respectively. In addition, the number of failure cases per 30 trials was markedly reduced, 
particularly in the complex background scenario, where the number of failures decreased from 9 
to 4. These reductions were mainly attributed to fewer instances of misdetection and pose 
deviation, indicating that the ASFF module enhanced the stability and robustness of fruit 
localization under challenging conditions.
	 The analysis results confirm that the improved detection accuracy provided by YOLOv7-
ASFF directly contributes to higher reliability in robotic grasping. Under simple background 
conditions, the model achieved nearly flawless performance with only minimal errors, while 
under realistic complex environments characterized by clutter and distractors, the system 
maintained stable and consistent grasping outcomes. This robustness is crucial for agricultural 
automation, where environmental variations often challenge vision-based systems.

5.	 Conclusions

	 We presented an interactive teaching platform that integrates real-time fruit detection and 
robotic grasping using the YOLOv7-ASFF algorithm and a vision-based sensing system. The 

Fig. 9.	 (Color online) Fruit grasping process.

Table 4
Quantitative results.
Metric Background YOLOv7 YOLOv7-ASFF

Grasp success rate (%) Simple 82.0 92.0
Complex 68.0 85.0

Failure cases (per 30 trials) Simple 5 2 
Complex 9 4
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results of experimental evaluation demonstrated that the proposed model achieved a mean 
average precision of 94.6% and a grasping success rate of 93%, confirming both the accuracy of 
fruit recognition and the reliability of robotic manipulation. By combining deep learning-based 
visual perception, adaptive grasping strategies, and modular hardware design, the system not 
only demonstrated the effectiveness of sensor–algorithm integration but also provided a practical 
framework for exploring intelligent automation. 
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