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	 The integration of high-penetration renewable energy is significant for environmental 
improvement and the transformation and upgrading of energy systems. However, the uncertainty 
of renewable energy generation and component failures pose significant challenges to system 
stability. In this study, we focus on the optimal scheduling and reliability assessment of regional 
integrated energy systems (RIESs), and we propose a sensor physics data hybrid-driven dynamic 
reliability assessment and risk mapping framework for power systems with high renewable 
energy penetration. The proposed framework integrates quantitative reliability assessment and 
an uncertainty mapping strategy for high-penetration renewable energy systems, as well as a 
sensor physics data hybrid-driven dynamic fault rate perception strategy. This enables the 
precise assessment of system reliability and real-time monitoring and the dynamic perception of 
component failure risks. When gas turbines fail, the operating costs of integrated energy systems 
(IESs) rise significantly. For example, the cost of IES1 surges from 16791.27$ to 33299.5$. After 
equipment recovery, IES1’s energy procurement cost decreases by approximately 8.5%, 
highlighting the value of the proposed framework and algorithm in enhancing the operational 
efficiency, economy, and reliability of RIESs. In this work, we provide new insights for the 
optimized design and operational management of IESs.

1.	 Introduction

	 Global emission reduction targets are driving the transition to renewable-energy-dominated 
power systems. However, there is still a lack of standards for operational reliability assessment.(1) 
Considering that the uncertainty of renewable energy (RE) generation can cause changes in 
reliability indices,(2) it is necessary to use sensors to detect data in real time and employ 
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scientifically sound analysis methods to consider various factors to establish a comprehensive 
framework for evaluating stability, resilience, and economics.(3)

	 Current studies employ data-driven techniques and storage coordination to enhance high-RE 
system efficiency, while a parallel stream optimizes electric vehicle (EV) technologies and user 
behavior for supply–demand balance. To begin with, Kanno adopted generative adversarial 
networks (GANs) to capture RE spatiotemporal patterns, thereby cutting costs and raising 
penetration;(4) nevertheless, GANs face heavy computation in high dimensions. Building on this, 
Ghanbarzadeh et al. confirmed that storage mitigates RE intermittency, yet the authors omitted 
the impacts of extreme events and unit failures on capacity planning.(5) In contrast to these 
supply-side efforts, Lee et al. demonstrated that merely 4.5–15.3% EV vehicle-to-grid (VZG)
participation can save 36.5–45.6% storage and 3.35% cost;(6) however, the authors neglected 
hydrogen and carbon trading. Addressing this gap, Li et al. coupled EVs, hydrogen vehicles, and 
a carbon mechanism, achieving an extra 0.4% CO₂ reduction,(7) although it still relies solely on 
time-of-use pricing. Subsequently, Motlagh et al. introduced distribution locational marginal 
pricing to heighten grid flexibility for RE, but offered no concrete optimization data.(8) From the 
findings of Motlagh et al., Rehman et al. merged renewable energy-integrated battery charging 
system with ultrafast charging, cutting costs by ~40% and emissions by 65.2%.(9) Moreover, Sica 
et al. validated dynamic-pricing acceptance via a discrete-choice model, yet overlooked RE 
uncertainty.(10) Finally, Shariatzadeh et al. enriched the picture by showing that social norms and 
risk perception inject further demand-side uncertainty, thereby complementing the supply-side 
focus of earlier works.(11) In summary, while the literature has advanced along multiple fronts, 
the reliable quantification of system reliability and user-driven uncertainties remains limited.
	 Reliability studies on high-RE integrated systems have migrated from single grids to multi-
energy coupling, now embedding user loads and maintenance. First, Wang et al. proposed a 
four-stage rapid method that cuts RTS error to 3.7%, yet it scales poorly.(12) To tackle large grids, 
Niu et al. modeled cascading failures and shrank computation by 98% with <6% error; however, 
they omitted RE/storage faults.(13) On the other hand, van Nooten et al. adopted graph 
isomorphism for medium-voltage fault reliability, but they stayed within one grid.(14) Bridging 
this gap, Baik et al. coupled outage and photovoltaic (PV) -storage simulators, yet neglected 
maintenance impacts.(15) Consequently, Shariatzadeh et al. introduced an extended virtual age 
model to tune maintenance and curb faults.(16) Building on post-fault stability, Lu et al. 
rebalanced loads via price signals, although only indirectly.(17) Thereafter, Liu et al. showed that 
coordinated EV-electrical energy storage charging cuts cost under EV faults and speed recovery, 
yet lacks EV–equipment coordination.(18) Complementarily, Yang et al. quantified EV 
uncertainty, trimmed storage by ~20% and overload risk, but offered no fault scheme.(19) 
Subsequently, Agarwal and Sharma employed V2G to reshape post-fault profiles.(20) Extending 
to protection, Cao et al. co-optimized generators and relays, lifting reliability from 0.7717 to 
0.9077, although for non-repairable grids.(21) Advancing further, Shabanian-Poodeh et al. 
embedded electricity–gas coupling via stochastic optimization, boosting reliability by 12.53% 
and cutting cost by 2.81%, yet skipped parameter sensitivity.(22) Finally, Liu et al. closed the loop 
with energy-hub + self-adaptive particle swarm optimization, cutting the annual cost by 15.2% 
and realizing a 50.08% parameter impact.(23) Overall, static models still lack real-time dynamics.
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	 In-depth regional integrated energy system (RIES) research still confronts unresolved 
reliability issues under high renewable penetration. First, numerous studies have succeeded in 
enhancing the economic efficiency and flexibility of systems. However, they often lack robust 
quantitative metrics for evaluating system reliability, as well as an explicit method for mapping 
uncertainties under high RE penetration. Second, current assessments rely on static models to 
evaluate single-component failures. These models are probabilistic in nature. Consequently, they 
cannot capture the dynamic evolution of component fault risk. Third, the optimization 
algorithms for RIES scheduling frequently fall into local optima. Moreover, they suffer from low 
population diversity, which collectively limits their effectiveness in solving large-scale, multi-
objective problems.
	 To address these gaps, in this paper, we propose a physics-data hybrid dynamic reliability and 
risk-mapping framework for highly renewable power systems. This framework is supported by 
an enhanced multi-objective gray wolf optimizer (MGWO) algorithm, which is designed to 
boost the efficiency and economics of RIES. Its contributions are as follows: 
•	�a hybrid framework that quantifies reliability and maps uncertainty under high RE 

penetration by integrating renewable variability with sensor-driven dynamic fault-rate 
perception,

•	� a concise reliability metric—daily reliable renewable capacity and power deficit rate—that 
quantifies RE integration impacts, guiding stable, efficient operation, and

•	� a hybrid fault-rate model merging physics-based degradation with sensor-detected real-time 
data to create state-sensitive, time-varying failure rates, superseding static probabilities.

	 This paper proceeds as follows. In Sect. 2, we build the RIES-based model and the hybrid 
physics data reliability/risk framework. In Sect. 3, we upgrade the multi-objective MGWO. In 
Sect. 4, we present the bi-level RIES scheduling process, and in Sect. 5, we verify the framework 
and algorithm via case studies.

2.	 Formulation of Sensor Physics Data Hybrid-driven Collaborative Optimization 
Framework for RIES

	 The RIES integrates renewables with conventional equipment, featuring electricity-heat-
cooling networks and self-balancing capabilities. It operates via a bi-level structure: the upper 
level involves distributed energy units, dynamic pricing operators, and grid companies, whereas 
the lower level consists of zones with diverse load characteristics. Figure 1 shows the 
optimization framework of the RIES, and Fig. 2 shows the sensor schematic diagram.

2.1	 Constraints and operational optimization objective functions for RIES

	 Equipment modeling and constraints in RIES are discussed in Ref. 24. The multi-objective 
function of the energy producer in matrix form is as follows.

	 1

2
max run

EP
sell

M
M

M
ε
ε


= 

 
	 (1)



804	 Sensors and Materials, Vol. 38, No. 2 (2026)

	
, , , , , ,

1

, , ,
1

T
g ge e h h

sell t buy t sell t buy t sell t buy t sell
t
T

run t om t p t gas
t

M m E m E m E

M m m m

=

=

  = + +  

  = + + 


∑

∑
	 (2)

	 The mathematical expression of the energy manager’s objective function is as follows.

Fig. 1.	 (Color online) Optimization framework of RIES.

Fig. 2.	 (Color online) Sensor schematic diagram.
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2.2	 Sensor physics data hybrid-driven dynamic reliability assessment and risk mapping 
framework for power systems with high RE penetration

	 The sensor physics data hybrid-driven dynamic reliability assessment and risk mapping 
framework for power systems with high RE penetration mainly includes two strategies: (1) 
quantitative reliability assessment and uncertainty mapping strategy for high-penetration RE 
systems, and (2) sensor physics data hybrid-driven dynamic fault rate perception.

2.2.1	 Quantitative reliability assessment and uncertainty mapping strategy for high-
penetration RE systems

	 This strategy quantitatively assesses system reliability under high RE penetration. As the 
renewable output proportion rises, its uncertainty significantly affects reliability metrics. A 
higher output uncertainty lowers system reliability. Key indicators include the daily average 
reliable renewable generation capacity and energy deficit rate. The mapping of uncertainty 
factors includes the quantification of RE output uncertainty and the output correlation coefficient 
of regional RE.
	 The calculation formula for the daily average reliable renewable generation capacity is as 
follows.
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	 The energy deficit rate is primarily used to assess the impact of power shortfalls within the 
system. It is defined as the ratio of the power deficit to the total system load. Since the system 



806	 Sensors and Materials, Vol. 38, No. 2 (2026)

load forecast is fixed, a higher energy deficit rate indicates a greater inability of the generation 
units to meet the system load demand. The calculation formula for the energy deficiency rate is 
as follows.
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	 The quantification of RE output uncertainty is used to measure the degree of deviation in the 
predictions of RE output, and it is a core cause of the decline in system reliability. The 
uncertainty of high-penetration RE output can be quantified using the following metric:

	 2

1

1 ( )
N

f n
t t

t
P P

N
σ

=
= −∑ .	 (8)

	 The output correlation coefficient of regional RE can be used to calculate the output 
correlation between different RE sites and assess the spatial interconnection risks of 
uncertainties. The correlation coefficient of regional wind and solar outputs is defined as
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2.2.2	 Sensor physics data hybrid-driven dynamic fault rate perception strategy

	 In power systems, single-component failures threaten reliability because of significant 
differences in failure probabilities. Accurate failure probability models are crucial. In this study, 
we propose a sensor physics data hybrid-driven dynamic fault rate model, integrating equipment 
failure mechanisms with real-time sensor data to overcome traditional limitations and enable 
dynamic fault risk perception.
	 The construction of a time-varying and state-sensitive failure rate function is the core 
equation of the entire dynamic failure rate perception strategy. The formula for the time-varying 
and state-sensitive fault rate function is as follows.

	 0( , ) ( ; ) exp( ( ( )))T
j jt Z g t h Z tλ λ θ β= ⋅ × 	 (10)

	 The physical degradation term g(θ;t) in the specific implementation formula of the 
mechanical fatigue accumulation [Eq. (10)] is used to calculate the degree of degradation based 
on the fatigue accumulation degradation mechanism of mechanical components. The function 
g(θ;t) is typically a mechanical fatigue accumulation model, with its specific formulation given 
as follows.
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	 Equation (12) is a special optimization of the equipment based on Eq. (11). Gas turbines, as 
power generation equipment, supply electricity to the integrated energy system (IES) and 
provide thermal energy through cascade energy utilization. Under frequent start–stop conditions, 
the dynamic correction of thermal cycle damage is necessary. The fault rate function of the gas 
turbine thermal cycle dynamically quantifies failure risks by calculating the accumulated 
thermal fatigue damage from the startup and shutdown temperature differences, supporting 
condition-based maintenance and system scheduling optimization. On the basis of Eq. (13), the 
thermal cycle fatigue damage due to start–stop, Gs(t), is introduced to calculate the thermal cycle 
failure rate function of the gas turbine. The calculation formula is as follows.
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	 After the dynamic fault rate perception, it is necessary to evaluate the recovery effect after 
the failure. We evaluate the extent of recovery of the equipment after a fault, measuring the 
effectiveness of repair or control measures. Active control is employed to restore the equipment 
to its initial state, with the recovery degree defined as
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	 On the basis of the equipment recovery level assessed from Eq. (14), whether the output 
capacity after the recovery of the faulty equipment meets the standards can be further 
determined. The unit availability is an evaluation metric that measures the system’s operational 
capability over a specified period in the event of a single component failure, and its calculation 
formula is as follows.
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3.	 MGWO Algorithm-based Solving Method
	
	 In the optimal dispatch of the RIES, the integration of high-penetration RE introduces 
significant uncertainties and complexities. Testing has shown that conventional optimization 
methods, such as Particle Swarm Optimization and Multi-Verse Optimizer, often struggle to 
effectively address such high-dimensional, nonlinear, and multi-objective optimization 
problems. The gray wolf optimizer (GWO), which models the social hierarchy and hunting 
behavior of gray wolves, features a simple structure, few parameters, and high convergence 
speed, making it well-suited for multi-objective optimization in complex energy systems. The 
description of the GWO model is provided in Ref. 25.
	 In summary, the GWO clearly has certain limitations and drawbacks. In the original GWO, a 
convergence factor a decreases linearly from 2 to 0 over iterations, which does not match the 
algorithm’s actual nonlinear convergence. To better align with this nonlinear behavior, in this 
paper, we propose a sinusoidal nonlinear adjustment for a, with the following formula:

	 sin 1
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	 By adjusting the convergence factor nonlinearly, one can effectively balance the global and 
local search capabilities of the algorithm. Thus, it better aligns with the nonlinear iteration 
process of the GWO. On this basis, we constructed a MGWO by incorporating an external 
archive mechanism and crowding distance sorting. 
	 First, all nondominated solutions are identified from the initial population to form the 
external archive.

	 { },o oF a X b X b a= ∈ ∀ ∈ 
	 (17)

	 Next, the crowding distance for each solution in the nondominated front is calculated to 
evaluate the quality of solutions in the objective function space.
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	 Finally, solutions are selected on the basis of their nondomination rank and crowding 
distance. Solutions with higher nondomination ranks are prioritized. When comparing solutions 
within the same nondomination rank, those with smaller crowding distances are retained.
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	 The framework and pseudocode of the MGWO algorithm are illustrated in Fig. 3.
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4.	 Optimization Process of Bi-level Dispatching of IES

	 In this study, we focused on characterizing the uncertainty of high-penetration RE output and 
its impact on system reliability. A physics data hybrid-driven framework is introduced for 
dynamic reliability assessment and risk mapping. A hybrid MGWO algorithm, inspired by the 
gray wolf hunting behavior, is adopted to optimize the multi-objective problem of the RIES by 
simulating population initialization, prey searching, and encircling strategies, while maintaining 
solution diversity through a repository mechanism to generate the Pareto front. The bi-level 
optimization scheduling of the RIES involves energy trading price setting by the energy operator 
(EO), internal equipment optimization in IES communities, and coordinated economic cost 
reduction among IESs. The energy producer (EP) optimizes its equipment output on the basis of 
the resulting load demand using the Gurobi solver. The MGWO algorithm adjusts EO’s energy 
trading prices across generations by comparing objective function values. Three case studies 
verify the model improvements, analyzing system performance under different renewable 
penetration levels and equipment failure scenarios. For comprehensive details and processes, 
refer to Fig. 4.

5.	 Case Studies

	 To validate the proposed improved algorithm and strategies, two case studies are conducted. 
Case 1 validates the algorithm’s superiority and versatility. Case 2 analyzes the system operation 
under various outputs of RE and simulates the system behavior during partial equipment failures 
and the subsequent recovery of the equipment to normal operation.
	 Figure 5 integrates two pieces of information: “power grid structure” and “multi-fuel load 
time series curve”.

Fig. 3.	 (Color online) Flowchart and pseudocode of MGWO.
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	 In this model, the equipment failure mechanism is combined with real-time sensor data, 
using the measured data of deployed sensors and on the basis of the physical failure mechanism. 
For example, the real-time state vector of the gas turbine is derived from the measurements of 
the physical sensors deployed on the equipment in the pilot IES. These sensors directly monitor 

Fig. 4.	 (Color online) Flowchart of system optimization.

Fig. 5.	 (Color online) Power system structure and IES load.
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operating conditions and mechanical stress parameters. The benchmark failure rate and the 
parameters of the physical degradation model [such as the material constants C and γ in Eq. (11)] 
were calibrated on the basis of the manufacturer’s data tables, historical maintenance records, 
and accelerated life test data associated with the specific equipment model under study. The 
component failure scenario is introduced by the real-time state vector derived from the sensor 
covering a specific component, thereby triggering the dynamic failure rate model and ensuring 
the reliability of the model.

5.1.	 Case 1: Numerical and solving model validation of MGWO

	 To verify the versatility of the MGWO algorithm, it is integrated with system modeling and 
compared with Nondominated Sorting Genetic Algorithm II (NSGA-II), Termite Life Cycle 
Optimizer (TLCO), and GWO algorithms. Parameters are uniformly set to 50 iterations, 10 
populations, and a warehouse capacity of 50 to ensure rigorous testing. Figure 6 shows the 
optimal solutions and iteration curves for each algorithm.
	 Figure 6 shows that TLCO and NSGA-II have the lowest IES costs at $14851.2769 and 
$14537.9482, but both incur losses of $415.9558 and $2580.1023, respectively, indicating poor 
system performance. GWO has a higher IES cost, but its EP revenue is $3370.6603 higher than 
that of TLCO and $4269.5130 higher than that of NSGA-II. MGWO has the lowest IES cost, 
reduced by 24.73, 10.93, and 9.01% compared with GWO, TLCO, and NSGA-II, respectively. 

Fig. 6.	 (Color online) Distribution of solutions and iteration curves for each algorithm.
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Although MGWO’s EO revenue is slightly lower than GWO’s, it is $743.0577 higher than 
TLCO’s and $2321.6802 higher than NSGA-II’s. MGWO’s system revenue reaches $6055.9889, a 
remarkable 403.01% higher than GWO’s $1203.9403. This shows that MGWO not only optimizes 
costs but also significantly boosts overall revenue, highlighting its versatility and 
competitiveness. The iteration curves also indicate that MGWO converges to the optimal 
solution more rapidly than the other algorithms.

5.2	 Case 2: Assessment of IES performance under various new energy penetration levels 
and impact of single equipment failure on system operation

	 In Case 2, the performance of IES under different RE proportions is analyzed. Additionally, 
the complex impacts of gas turbine failures in IES1 and IES3 on system operation are explored. 
Through key indicators, the effects of gas turbine failures on operational reliability and 
economic performance are verified, as shown in Table 1.
	 In Table 1, at low renewable penetration, IES1 depends mostly on the purchased electricity 
(33.4%) owing to high peak demand, with wind and photovoltaic power contributing 21.2 and 
32.5%, respectively, but limited energy storage discharge (4.5%). IES2 better utilizes renewables 
(58.6%), relying less on the grid and using energy storage discharge (15.9%) to cut costs. IES3 
has the highest grid purchase share (50.2%) yet the lowest renewable utilization (29.5%), 
alongside insufficient energy storage.
	 Figure 7 shows the impact of gas turbine failures in IES1 and IES3 on system operation, 
including unit availability under faulty conditions, along with the corresponding output 
performance and power balance results.
	 In Fig. 7, under equipment fault conditions, IES1 and IES3 exhibit notable differences. IES1’s 
power generation remains stable, operating between 66.7 and 87.5% utilization due to redundant 
design and strong fault resistance, enabling it to sell electricity to the grid at 99.27 kW (20:00) 
and 65.48 kW (22:00). In contrast, IES3 has a wider utilization range of 62.5–79.17% and is more 
reliant on external electricity during specific periods, indicating insufficient redundancy. IES3 
adopts a conservative strategy to limit output fluctuations. These differences can be attributed to 
variations in equipment configuration, load characteristics, and control strategies.
	 Table 2 presents a comparison of the economic details and carbon emissions for the energy 
entities IESs and EP under gas turbine fault conditions (“Breakdown”) and after full equipment 
recovery (“Recovery”). 

Table 1
Electricity consumption situations of different IES groups under a certain proportion of new energy integration.

IES group Source of connected electrical energy
BUY (%) PV (%) WT (%) GT (%) DIS (%)

IES1 33.4 32.5 21.2 8.3 4.5
IES2 12.6 35.5 23.1 12.9 15.9
IES3 50.2 18.8 10.7 10.5 9.8
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	 In Table 2, during the fault period, different IES groups show how distinct fuel cost and 
carbon emission changes, linked to equipment, loads, and control strategies. IES3’s fuel cost 
drops to $4916.84 owing to its energy-saving equipment configuration during partial shutdowns, 
but rises to $4621.82 post-recovery as energy demand increases. IES1’s external energy 
purchases decrease by 8.5% from $22031.65 to $20164.95, possibly owing to its redundant 
system. Carbon emissions for IES1, IES2, and IES3 decrease by $544.65, $1684.05, and $1352.70, 
respectively, during the fault period. The post-recovery carbon emission surge highlights the IES 
groups’ reliance on gas turbines to meet load demands, closely related to control strategies 
adjusting equipment operation modes post-recovery.
	 In summary, although gas turbine faults reduce fuel costs and carbon emissions in the short 
term, the system operates stably after recovery with optimized energy purchase costs, which is 
more conducive to the long-term economy of IESs.

Fig. 7.	 (Color online) Electric balance of gas turbine and unit availability.

Table 2
Details of RIES economic composition and carbon emissions during equipment failure and after recovery.
Items Feco ($) Fpoll ($) Fom ($) Fgas ($) Carbon (KG)

IES1 Breakdown 22031.65 449.98 744.62 4705.82 3044.34
Recovery 20164.95 595.09 690.07 6593.21 3588.99

IES2 Breakdown 4878.12 521.38 445.11 5663.19 2930.18
Recovery 4143.85 937.90 508.11 13299.80 4614.23

IES3 Breakdown 17984.31 446.04 1178.81 4916.84 2672.84
Recovery 15607.15 756.80 1127.93 9538.66 4025.54

EP Breakdown 35959.30 — 308.26 — 1469.57
Recovery 48391.02 1691.23 955.06 23031.68 7863.67
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6.	 Conclusions

	 In this study, we developed a physics data hybrid-driven dynamic reliability assessment 
framework to address the challenges posed by high RE penetration and component failures in 
power systems. Key findings are as follows:
•	� IES2 discharges 15.9% of its stored electricity, with 98.9% used for equipment operation and 

only 1.1% sold, indicating significant load demand and a need for better electricity selling 
strategies.

•	� IES3 exhibits unit availability fluctuating between 62.5 and 79.17% during failures, with a 
lower variability than IES1, demonstrating more stable fault response capabilities.

	 Innovative contributions include the following:
•	� a novel quantitative reliability assessment and uncertainty mapping strategy for high 

renewable penetration systems and
•	� a sensor physics data hybrid-driven dynamic fault rate perception strategy, integrating 

equipment physical degradation mechanisms with real-time monitoring data to construct 
time-varying, state-sensitive failure rate functions.

	 This study has limitations, such as not fully accounting for environmental impacts on RE 
output and focusing only on single-component failures. Future research will address the issues 
as follows.
•	� Incorporation of multi-component failure scenarios: future work will extend the current 

model to account for simultaneous failures of multiple components. This will involve 
developing advanced probabilistic failure models to assess cascading effects and system 
resilience under complex fault conditions.

•	� Integration of environmental uncertainty models: weather-dependent RE generation models 
will be incorporated to better capture the variability and uncertainty of solar and wind power 
outputs, based on environmental changes and system operating conditions, to improve 
forecasting accuracy and dynamic reliability assessment.

•	� Experimental validation in large-scale systems: The proposed framework will be tested in 
larger and more diverse RIESs to validate its scalability and generalizability. 

	 These improvements aim to enhance the operational strategy for RIESs, supporting their 
transformation toward sustainability and reliability.
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Appendix of Mathematical Symbols

MEP Economic revenue of the energy producer Mrun Energy producers’ operating costs

Msell Income from energy sales ε1
Weighting factor for the respective cost 
components.

ε2
Weighting factor for the respective cost 
components ,

e
t buym

Real-time unit price at which the energy 
manager purchases electricity from producers

,
e
t sellE

Amount of electricity sold by energy producers 
to the energy manager ,

h
t buym

Real-time unit price at which the energy 
manager purchases heat 

,
h
t sellE

Amount of heat sold by energy producers to 
the energy manager ,

g
t buym

Unit price at which the energy manager 
purchases electricity from the external grid

,
g
t sellE

Amount of electricity sold by energy producers 
to the external grid ,t omm

Operation and maintenance costs of various 
equipment of energy producers

,t pm
Penalty fees for pollutant emissions by energy 
producers ,t gasm

Cost of natural gas purchased by energy 
producers

EOM
Comprehensive economic revenue of the 
energy manager

e
sellM

Economic revenue from selling electricity and 
heat to the IES

e
buyM

Cost incurred by the energy manager when 
purchasing electricity and heat from energy 
producers

,t selle
Unit price at which the energy manager sells 
electricity to the IES

,t sellh
Unit price at which the energy manager sells 
heat to the IES

1
,
IES
t buyE − Amount of electricity purchased by the first 

IES from the energy manager

2
,
IES
t buyE − Amount of electricity purchased by the second 

IES from the energy manager
3

,
IES
t buyE − Amount of electricity purchased by the third 

IES from the energy manager

1
,
IES
t buyH − Amount of heat purchased by the first IES 

from the energy manager
2

,
IES
t buyH − Amount of heat purchased by the second IES 

from the energy manager

3
,
IES
t buyH − Amount of heat purchased by the third IES 

from the energy manager ,t buye
Unit price at which the energy manager 
purchases electricity from energy producers

,t buyh
Unit price at which the energy manager 
purchases heat from energy producers ,

IES
t elseP

Output of generation units excluding 
photovoltaic and wind power

,
IES

t pvP Photovoltaic output
,
IES

t wtP Wind power output

η
Daily average reliable renewable generation 
capacity ζ Energy deficit rate

,
IES

t shortageP Power deficit
,
IES

t loadP Load required by the IES

f
tP Forecasted value n

tP Actual value

,X Yρ
Correlation coefficient of regional wind and 
solar λj Failure rate

λ0 Baseline failure rate g(θ;t) Physical degradation model

Zj(t) Real-time state vector h(x) Feature extraction function
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β Covariate weight vector Nc(t) Cumulative number of mechanical cycles

Nf Failure cycle count under the current stress C Material constant

γ Material constant ∆σ(t) Real-time stress amplitude

∆Tm
Temperature variation amplitude during the 
m-th start–stop cycle Tmax

Maximum temperature change during start–
stop

Zj(0) Baseline value at the initial state Zj,max Allowable limit state threshold

Pgt Unit output power Day A 24-h period

 An indicator function a Convergence factor

ainitial Initial value of the convergence factor μ Modulation coefficient

l Current iteration number lmax Maximum number of iterations

F Archive composed of nondominated solutions Xo Initial population

b a Solution b dominates solution a i
distanceC Crowding distance of solution i

P Number of objective functions max
pF Maximum value

min
pF Minimum value Q Total number of solutions in the current 

nondominated front

1
p

iF +
Values of the neighboring solutions of solution 
i in the p-th objective function. 1

p
iF −

Values of the neighboring solutions of solution 
i in the p-th objective function.

i
selectO Selection probability of solution i iRank Nondomination rank


