Sensors and Materials, Vol. 38, No. 2 (2026) 801-817 801
MYU Tokyo

S & M 4349

Sensor Physics Data Hybrid-driven Regional Integrated
Energy Systems Operation Optimization Considering
Dynamic Reliability Assessment and Risk Mapping Framework
with High Renewable Energy Penetration

Zai-He Yang,! Shi-Hao Yin,! Bin Zhang,'** Ming-Liang Yang,' and Jin-Qiu Li!

Yunnan Power Dispatching and Control Center, Kunming, Yunnan Province 650500, China
2Faculty of Land and Resources Engineering, Kunming University of Science and Technology,
Kunming 650093, China

(Received August 2, 2025; accepted October 1, 2025)

Keywords: regional integrated energy systems, physics data hybrid-driven dynamic reliability

assessment, reliability assessment, gas turbine fault analysis

The integration of high-penetration renewable energy is significant for environmental
improvement and the transformation and upgrading of energy systems. However, the uncertainty
of renewable energy generation and component failures pose significant challenges to system
stability. In this study, we focus on the optimal scheduling and reliability assessment of regional
integrated energy systems (RIESs), and we propose a sensor physics data hybrid-driven dynamic
reliability assessment and risk mapping framework for power systems with high renewable
energy penetration. The proposed framework integrates quantitative reliability assessment and
an uncertainty mapping strategy for high-penetration renewable energy systems, as well as a
sensor physics data hybrid-driven dynamic fault rate perception strategy. This enables the
precise assessment of system reliability and real-time monitoring and the dynamic perception of
component failure risks. When gas turbines fail, the operating costs of integrated energy systems
(IESs) rise significantly. For example, the cost of IES1 surges from 16791.27$ to 33299.5$. After
equipment recovery, IESI’s energy procurement cost decreases by approximately 8.5%,
highlighting the value of the proposed framework and algorithm in enhancing the operational
efficiency, economy, and reliability of RIESs. In this work, we provide new insights for the
optimized design and operational management of I1ESs.

1. Introduction

Global emission reduction targets are driving the transition to renewable-energy-dominated
power systems. However, there is still a lack of standards for operational reliability assessment.()
Considering that the uncertainty of renewable energy (RE) generation can cause changes in
reliability indices,? it is necessary to use sensors to detect data in real time and employ
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scientifically sound analysis methods to consider various factors to establish a comprehensive
framework for evaluating stability, resilience, and economics.®)

Current studies employ data-driven techniques and storage coordination to enhance high-RE
system efficiency, while a parallel stream optimizes electric vehicle (EV) technologies and user
behavior for supply—demand balance. To begin with, Kanno adopted generative adversarial
networks (GANs) to capture RE spatiotemporal patterns, thereby cutting costs and raising
penetration;® nevertheless, GANs face heavy computation in high dimensions. Building on this,
Ghanbarzadeh et al. confirmed that storage mitigates RE intermittency, yet the authors omitted
the impacts of extreme events and unit failures on capacity planning.®) In contrast to these
supply-side efforts, Lee et al. demonstrated that merely 4.5-15.3% EV vehicle-to-grid (VZG)
participation can save 36.5-45.6% storage and 3.35% cost;®) however, the authors neglected
hydrogen and carbon trading. Addressing this gap, Li et al. coupled EVs, hydrogen vehicles, and
a carbon mechanism, achieving an extra 0.4% CO. reduction,(”) although it still relies solely on
time-of-use pricing. Subsequently, Motlagh et al. introduced distribution locational marginal
pricing to heighten grid flexibility for RE, but offered no concrete optimization data.®) From the
findings of Motlagh et al., Rehman et al. merged renewable energy-integrated battery charging
system with ultrafast charging, cutting costs by ~40% and emissions by 65.2%.(°) Moreover, Sica
et al. validated dynamic-pricing acceptance via a discrete-choice model, yet overlooked RE
uncertainty.!? Finally, Shariatzadeh et al. enriched the picture by showing that social norms and
risk perception inject further demand-side uncertainty, thereby complementing the supply-side
focus of earlier works.!')) In summary, while the literature has advanced along multiple fronts,
the reliable quantification of system reliability and user-driven uncertainties remains limited.

Reliability studies on high-RE integrated systems have migrated from single grids to multi-
energy coupling, now embedding user loads and maintenance. First, Wang et al. proposed a
four-stage rapid method that cuts RTS error to 3.7%, yet it scales poorly.(!?) To tackle large grids,
Niu et al. modeled cascading failures and shrank computation by 98% with <6% error; however,
they omitted RE/storage faults.!3 On the other hand, van Nooten et al. adopted graph
isomorphism for medium-voltage fault reliability, but they stayed within one grid.('¥) Bridging
this gap, Baik et al. coupled outage and photovoltaic (PV) -storage simulators, yet neglected
maintenance impacts.(!>) Consequently, Shariatzadeh et al. introduced an extended virtual age
model to tune maintenance and curb faults.!®) Building on post-fault stability, Lu et al.
rebalanced loads via price signals, although only indirectly.(!”) Thereafter, Liu et al. showed that
coordinated EV-electrical energy storage charging cuts cost under EV faults and speed recovery,
yet lacks EV-equipment coordination.('® Complementarily, Yang et al. quantified EV
uncertainty, trimmed storage by ~20% and overload risk, but offered no fault scheme.(!”)
Subsequently, Agarwal and Sharma employed V2G to reshape post-fault profiles.?? Extending
to protection, Cao et al. co-optimized generators and relays, lifting reliability from 0.7717 to
0.9077, although for non-repairable grids.?") Advancing further, Shabanian-Poodeh et al.
embedded electricity—gas coupling via stochastic optimization, boosting reliability by 12.53%
and cutting cost by 2.81%, yet skipped parameter sensitivity.?? Finally, Liu ef al. closed the loop
with energy-hub + self-adaptive particle swarm optimization, cutting the annual cost by 15.2%
and realizing a 50.08% parameter impact.?®) Overall, static models still lack real-time dynamics.
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In-depth regional integrated energy system (RIES) research still confronts unresolved
reliability issues under high renewable penetration. First, numerous studies have succeeded in
enhancing the economic efficiency and flexibility of systems. However, they often lack robust
quantitative metrics for evaluating system reliability, as well as an explicit method for mapping
uncertainties under high RE penetration. Second, current assessments rely on static models to
evaluate single-component failures. These models are probabilistic in nature. Consequently, they
cannot capture the dynamic evolution of component fault risk. Third, the optimization
algorithms for RIES scheduling frequently fall into local optima. Moreover, they suffer from low
population diversity, which collectively limits their effectiveness in solving large-scale, multi-
objective problems.

To address these gaps, in this paper, we propose a physics-data hybrid dynamic reliability and
risk-mapping framework for highly renewable power systems. This framework is supported by
an enhanced multi-objective gray wolf optimizer (MGWO) algorithm, which is designed to
boost the efficiency and economics of RIES. Its contributions are as follows:

* a hybrid framework that quantifies reliability and maps uncertainty under high RE
penetration by integrating renewable variability with sensor-driven dynamic fault-rate
perception,

* a concise reliability metric—daily reliable renewable capacity and power deficit rate—that
quantifies RE integration impacts, guiding stable, efficient operation, and

* a hybrid fault-rate model merging physics-based degradation with sensor-detected real-time
data to create state-sensitive, time-varying failure rates, superseding static probabilities.

This paper proceeds as follows. In Sect. 2, we build the RIES-based model and the hybrid
physics data reliability/risk framework. In Sect. 3, we upgrade the multi-objective MGWO. In
Sect. 4, we present the bi-level RIES scheduling process, and in Sect. 5, we verify the framework
and algorithm via case studies.

2. Formulation of Sensor Physics Data Hybrid-driven Collaborative Optimization
Framework for RIES

The RIES integrates renewables with conventional equipment, featuring electricity-heat-
cooling networks and self-balancing capabilities. It operates via a bi-level structure: the upper
level involves distributed energy units, dynamic pricing operators, and grid companies, whereas
the lower level consists of zones with diverse load characteristics. Figure 1 shows the
optimization framework of the RIES, and Fig. 2 shows the sensor schematic diagram.

2.1 Constraints and operational optimization objective functions for RIES

Equipment modeling and constraints in RIES are discussed in Ref. 24. The multi-objective
function of the energy producer in matrix form is as follows.
3 Mruni| (1)
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Fig. 1. (Color online) Optimization framework of RIES.
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Fig. 2. (Color online) Sensor schematic diagram.
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The mathematical expression of the energy manager’s objective function is as follows.
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2.2 Sensor physics data hybrid-driven dynamic reliability assessment and risk mapping
framework for power systems with high RE penetration

The sensor physics data hybrid-driven dynamic reliability assessment and risk mapping
framework for power systems with high RE penetration mainly includes two strategies: (1)
quantitative reliability assessment and uncertainty mapping strategy for high-penetration RE
systems, and (2) sensor physics data hybrid-driven dynamic fault rate perception.

2.2.1 Quantitative reliability assessment and uncertainty mapping strategy for high-
penetration RE systems

This strategy quantitatively assesses system reliability under high RE penetration. As the
renewable output proportion rises, its uncertainty significantly affects reliability metrics. A
higher output uncertainty lowers system reliability. Key indicators include the daily average
reliable renewable generation capacity and energy deficit rate. The mapping of uncertainty
factors includes the quantification of RE output uncertainty and the output correlation coefficient
of regional RE.

The calculation formula for the daily average reliable renewable generation capacity is as
follows.

24
ZPIES Zptlfvf
n= (=1 x100% 6)

ZPtlgf ZPIES + ZPIeElfe
t=l1

The energy deficit rate is primarily used to assess the impact of power shortfalls within the
system. It is defined as the ratio of the power deficit to the total system load. Since the system
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load forecast is fixed, a higher energy deficit rate indicates a greater inability of the generation
units to meet the system load demand. The calculation formula for the energy deficiency rate is
as follows.

24 24
IES IES
é/ = (Zpt,shortage / Z Pt,load j x100% (M
t=1

t=l1

The quantification of RE output uncertainty is used to measure the degree of deviation in the
predictions of RE output, and it is a core cause of the decline in system reliability. The
uncertainty of high-penetration RE output can be quantified using the following metric:

1Y r e
o= WZ(P’ -5 . ®)

t=1

The output correlation coefficient of regional RE can be used to calculate the output
correlation between different RE sites and assess the spatial interconnection risks of
uncertainties. The correlation coefficient of regional wind and solar outputs is defined as

Cov(Py , B
Pxy _Cov(Py.By) ©)
OO0y

2.2.2 Sensor physics data hybrid-driven dynamic fault rate perception strategy

In power systems, single-component failures threaten reliability because of significant
differences in failure probabilities. Accurate failure probability models are crucial. In this study,
we propose a sensor physics data hybrid-driven dynamic fault rate model, integrating equipment
failure mechanisms with real-time sensor data to overcome traditional limitations and enable
dynamic fault risk perception.

The construction of a time-varying and state-sensitive failure rate function is the core
equation of the entire dynamic failure rate perception strategy. The formula for the time-varying
and state-sensitive fault rate function is as follows.

Mt Z;) = Ao - g(0:1)x exp(B h(Z (1)) (10)

The physical degradation term g(#;f) in the specific implementation formula of the
mechanical fatigue accumulation [Eq. (10)] is used to calculate the degree of degradation based
on the fatigue accumulation degradation mechanism of mechanical components. The function
2(0:¢) is typically a mechanical fatigue accumulation model, with its specific formulation given
as follows.
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Equation (12) is a special optimization of the equipment based on Eq. (11). Gas turbines, as
power generation equipment, supply electricity to the integrated energy system (IES) and
provide thermal energy through cascade energy utilization. Under frequent start—stop conditions,
the dynamic correction of thermal cycle damage is necessary. The fault rate function of the gas
turbine thermal cycle dynamically quantifies failure risks by calculating the accumulated
thermal fatigue damage from the startup and shutdown temperature differences, supporting
condition-based maintenance and system scheduling optimization. On the basis of Eq. (13), the
thermal cycle fatigue damage due to start—stop, G,(¥), is introduced to calculate the thermal cycle
failure rate function of the gas turbine. The calculation formula is as follows.

2:(6.2,) = 2 - g(0:0)xexp(BT h(Z,; (1)) + (1 + G, (1)) (12)
A AT, 13
G,(6)= mz . (13)

After the dynamic fault rate perception, it is necessary to evaluate the recovery effect after
the failure. We evaluate the extent of recovery of the equipment after a fault, measuring the
effectiveness of repair or control measures. Active control is employed to restore the equipment
to its initial state, with the recovery degree defined as

|2,-7;0)
”Zj,max - Zj (O)” '

P(t)=1- (14)

On the basis of the equipment recovery level assessed from Eq. (14), whether the output
capacity after the recovery of the faulty equipment meets the standards can be further
determined. The unit availability is an evaluation metric that measures the system’s operational
capability over a specified period in the event of a single component failure, and its calculation
formula is as follows.

24 1(P, > 0)

p=y —5——= (15)
t=1 Day
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3. MGWO Algorithm-based Solving Method

In the optimal dispatch of the RIES, the integration of high-penetration RE introduces
significant uncertainties and complexities. Testing has shown that conventional optimization
methods, such as Particle Swarm Optimization and Multi-Verse Optimizer, often struggle to
effectively address such high-dimensional, nonlinear, and multi-objective optimization
problems. The gray wolf optimizer (GWO), which models the social hierarchy and hunting
behavior of gray wolves, features a simple structure, few parameters, and high convergence
speed, making it well-suited for multi-objective optimization in complex energy systems. The
description of the GWO model is provided in Ref. 25.

In summary, the GWO clearly has certain limitations and drawbacks. In the original GWO, a
convergence factor a decreases linearly from 2 to 0 over iterations, which does not match the
algorithm’s actual nonlinear convergence. To better align with this nonlinear behavior, in this
paper, we propose a sinusoidal nonlinear adjustment for a, with the following formula:

. yis /
a = iyisig) 'Sm(ﬂ‘g'[l—l—j} (16)
max

By adjusting the convergence factor nonlinearly, one can effectively balance the global and
local search capabilities of the algorithm. Thus, it better aligns with the nonlinear iteration
process of the GWO. On this basis, we constructed a MGWO by incorporating an external
archive mechanism and crowding distance sorting.

First, all nondominated solutions are identified from the initial population to form the
external archive.

F={aeX,|VbeX,,b>a} (17)

Next, the crowding distance for each solution in the nondominated front is calculated to
evaluate the quality of solutions in the objective function space.

max min
C' _in _Fp % F;'fl_F;'fl (18)
distance — Q 1 Fmax le'n
p=l p tp

Finally, solutions are selected on the basis of their nondomination rank and crowding
distance. Solutions with higher nondomination ranks are prioritized. When comparing solutions
within the same nondomination rank, those with smaller crowding distances are retained.

select — 0

Z (Ranki x Caiiistance)
i=1

i Célistance (1 9)

The framework and pseudocode of the MGWO algorithm are illustrated in Fig. 3.
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4. Optimization Process of Bi-level Dispatching of IES

In this study, we focused on characterizing the uncertainty of high-penetration RE output and
its impact on system reliability. A physics data hybrid-driven framework is introduced for
dynamic reliability assessment and risk mapping. A hybrid MGWO algorithm, inspired by the
gray wolf hunting behavior, is adopted to optimize the multi-objective problem of the RIES by
simulating population initialization, prey searching, and encircling strategies, while maintaining
solution diversity through a repository mechanism to generate the Pareto front. The bi-level
optimization scheduling of the RIES involves energy trading price setting by the energy operator
(EO), internal equipment optimization in IES communities, and coordinated economic cost
reduction among [ESs. The energy producer (EP) optimizes its equipment output on the basis of
the resulting load demand using the Gurobi solver. The MGWO algorithm adjusts EO’s energy
trading prices across generations by comparing objective function values. Three case studies
verify the model improvements, analyzing system performance under different renewable
penetration levels and equipment failure scenarios. For comprehensive details and processes,
refer to Fig. 4.

5. Case Studies

To validate the proposed improved algorithm and strategies, two case studies are conducted.
Case 1 validates the algorithm’s superiority and versatility. Case 2 analyzes the system operation
under various outputs of RE and simulates the system behavior during partial equipment failures
and the subsequent recovery of the equipment to normal operation.

Figure 5 integrates two pieces of information: “power grid structure” and “multi-fuel load
time series curve”.
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In this model, the equipment failure mechanism is combined with real-time sensor data,
using the measured data of deployed sensors and on the basis of the physical failure mechanism.
For example, the real-time state vector of the gas turbine is derived from the measurements of
the physical sensors deployed on the equipment in the pilot IES. These sensors directly monitor
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operating conditions and mechanical stress parameters. The benchmark failure rate and the
parameters of the physical degradation model [such as the material constants C and y in Eq. (11)]
were calibrated on the basis of the manufacturer’s data tables, historical maintenance records,
and accelerated life test data associated with the specific equipment model under study. The
component failure scenario is introduced by the real-time state vector derived from the sensor
covering a specific component, thereby triggering the dynamic failure rate model and ensuring
the reliability of the model.

5.1. Case 1: Numerical and solving model validation of MGWO

To verify the versatility of the MGWO algorithm, it is integrated with system modeling and
compared with Nondominated Sorting Genetic Algorithm II (NSGA-II), Termite Life Cycle
Optimizer (TLCO), and GWO algorithms. Parameters are uniformly set to 50 iterations, 10
populations, and a warehouse capacity of 50 to ensure rigorous testing. Figure 6 shows the
optimal solutions and iteration curves for each algorithm.

Figure 6 shows that TLCO and NSGA-II have the lowest IES costs at $14851.2769 and
$14537.9482, but both incur losses of $415.9558 and $2580.1023, respectively, indicating poor
system performance. GWO has a higher IES cost, but its EP revenue is $3370.6603 higher than
that of TLCO and $4269.5130 higher than that of NSGA-II. MGWO has the lowest IES cost,
reduced by 24.73, 10.93, and 9.01% compared with GWO, TLCO, and NSGA-II, respectively.

IES Cost 17574.3176 $ IES Cost 13228.5901 $
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Fig. 6.  (Color online) Distribution of solutions and iteration curves for each algorithm.
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Although MGWO’s EO revenue is slightly lower than GWO?’s, it is $743.0577 higher than
TLCO’s and $2321.6802 higher than NSGA-II’'s. MGWO’s system revenue reaches $6055.9889, a
remarkable 403.01% higher than GWO’s $1203.9403. This shows that MGWO not only optimizes
costs but also significantly boosts overall revenue, highlighting its versatility and
competitiveness. The iteration curves also indicate that MGWO converges to the optimal
solution more rapidly than the other algorithms.

5.2 Case 2: Assessment of IES performance under various new energy penetration levels
and impact of single equipment failure on system operation

In Case 2, the performance of IES under different RE proportions is analyzed. Additionally,
the complex impacts of gas turbine failures in IES1 and IES3 on system operation are explored.
Through key indicators, the effects of gas turbine failures on operational reliability and
economic performance are verified, as shown in Table 1.

In Table 1, at low renewable penetration, IES1 depends mostly on the purchased electricity
(33.4%) owing to high peak demand, with wind and photovoltaic power contributing 21.2 and
32.5%, respectively, but limited energy storage discharge (4.5%). IES2 better utilizes renewables
(58.6%), relying less on the grid and using energy storage discharge (15.9%) to cut costs. IES3
has the highest grid purchase share (50.2%) yet the lowest renewable utilization (29.5%),
alongside insufficient energy storage.

Figure 7 shows the impact of gas turbine failures in IES1 and IES3 on system operation,
including unit availability under faulty conditions, along with the corresponding output
performance and power balance results.

In Fig. 7, under equipment fault conditions, IES1 and IES3 exhibit notable differences. IES1’s
power generation remains stable, operating between 66.7 and 87.5% utilization due to redundant
design and strong fault resistance, enabling it to sell electricity to the grid at 99.27 kW (20:00)
and 65.48 kW (22:00). In contrast, IES3 has a wider utilization range of 62.5-79.17% and is more
reliant on external electricity during specific periods, indicating insufficient redundancy. IES3
adopts a conservative strategy to limit output fluctuations. These differences can be attributed to
variations in equipment configuration, load characteristics, and control strategies.

Table 2 presents a comparison of the economic details and carbon emissions for the energy
entities I[ESs and EP under gas turbine fault conditions (“Breakdown”) and after full equipment
recovery (“Recovery”).

Table 1
Electricity consumption situations of different IES groups under a certain proportion of new energy integration.

Source of connected electrical energy

IE

S group BUY (%) PV (%) WT (%) GT (%) DIS (%)
IESI 33.4 32.5 212 83 45
IES2 12.6 35.5 23.1 12.9 15.9

1IES3 50.2 18.8 10.7 10.5 9.8
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Fig. 7. (Color online) Electric balance of gas turbine and unit availability.

Table 2
Details of RIES economic composition and carbon emissions during equipment failure and after recovery.
Items Feco ($) Fpoll ($) Fom ($) Fgas ($) Carbon (KG)
IESI Breakdown 22031.65 449.98 744.62 4705.82 3044.34
Recovery 20164.95 595.09 690.07 6593.21 3588.99
IES2 Breakdown 4878.12 521.38 445.11 5663.19 2930.18
Recovery 4143.85 937.90 508.11 13299.80 4614.23
IES3 Breakdown 17984.31 446.04 1178.81 4916.84 2672.84
Recovery 15607.15 756.80 1127.93 9538.66 4025.54
EP Breakdown 35959.30 — 308.26 — 1469.57
Recovery 48391.02 1691.23 955.06 23031.68 7863.67

In Table 2, during the fault period, different IES groups show how distinct fuel cost and
carbon emission changes, linked to equipment, loads, and control strategies. IES3’s fuel cost
drops to $4916.84 owing to its energy-saving equipment configuration during partial shutdowns,
but rises to $4621.82 post-recovery as energy demand increases. IES1’s external energy
purchases decrease by 8.5% from $22031.65 to $20164.95, possibly owing to its redundant
system. Carbon emissions for IES1, IES2, and TES3 decrease by $544.65, $1684.05, and $1352.70,
respectively, during the fault period. The post-recovery carbon emission surge highlights the IES
groups’ reliance on gas turbines to meet load demands, closely related to control strategies
adjusting equipment operation modes post-recovery.

In summary, although gas turbine faults reduce fuel costs and carbon emissions in the short
term, the system operates stably after recovery with optimized energy purchase costs, which is
more conducive to the long-term economy of IESs.
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6. Conclusions

In this study, we developed a physics data hybrid-driven dynamic reliability assessment
framework to address the challenges posed by high RE penetration and component failures in
power systems. Key findings are as follows:

» [ES2 discharges 15.9% of its stored electricity, with 98.9% used for equipment operation and
only 1.1% sold, indicating significant load demand and a need for better electricity selling
strategies.

» IES3 exhibits unit availability fluctuating between 62.5 and 79.17% during failures, with a
lower variability than IES1, demonstrating more stable fault response capabilities.

Innovative contributions include the following:

* a novel quantitative reliability assessment and uncertainty mapping strategy for high
renewable penetration systems and

* a sensor physics data hybrid-driven dynamic fault rate perception strategy, integrating
equipment physical degradation mechanisms with real-time monitoring data to construct
time-varying, state-sensitive failure rate functions.

This study has limitations, such as not fully accounting for environmental impacts on RE
output and focusing only on single-component failures. Future research will address the issues
as follows.

* Incorporation of multi-component failure scenarios: future work will extend the current
model to account for simultaneous failures of multiple components. This will involve
developing advanced probabilistic failure models to assess cascading effects and system
resilience under complex fault conditions.

» Integration of environmental uncertainty models: weather-dependent RE generation models
will be incorporated to better capture the variability and uncertainty of solar and wind power
outputs, based on environmental changes and system operating conditions, to improve
forecasting accuracy and dynamic reliability assessment.

* Experimental validation in large-scale systems: The proposed framework will be tested in
larger and more diverse RIESs to validate its scalability and generalizability.

These improvements aim to enhance the operational strategy for RIESs, supporting their
transformation toward sustainability and reliability.
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Appendix of Mathematical Symbols
MEgp Economic revenue of the energy producer My Energy producers’ operating costs
Mo Income from energy sales o Weighting factor for the respective cost
components.
. Weighting factor for the respective cost . Real-time unit price at which the energy
2 components ™Mby manager purchases electricity from producers
. Amount of electricity sold by energy producers| Real-time unit price at which the energy
t,sell  to the energy manager My  manager purchases heat
A Amount of heat sold by energy producers to < Unit price at which the energy manager
Eisenl the energy manager M by purchases electricity from the external grid
< Amount of electricity sold by energy producers Operation and maintenance costs of various
Elsell to the external grid My om equipment of energy producers
Penalty fees for pollutant emissions by energy Cost of natural gas purchased by energy
M.p producers Mt gas  producers
Comprehensive economic revenue of the . Economic revenue from selling electricity and
Mo energy manager sell  heat to the IES
. Cl?rsctl:::ilrllrrz(lietc)zrit?iet ezztigl};er;agiire\::ren Unit price at which the energy manager sells
My, P & y gy €, sell electricity to the IES
producers
Unit price at which the energy manager sells ps- Amount of electricity purchased by the first
By sein heat to the IES Ei by 1ES from the energy manager
IES—2 Amount of electricity purchased by the second Es_3 Amount of electricity purchased by the third
Eipuwy”  1ES from the energy manager t,buy  1ES from the energy manager
Jes-  Amount of heat purchased by the first IES IEs_, Amount of heat purchased by the second IES
Hipuy'  from the energy manager Hipuy™  from the energy manager
JEs_3 Amount of heat purchased by the third IES Unit price at which the energy manager
Hipuy”  from the energy manager ©,buy purchases electricity from energy producers
Unit price at which the energy manager 1ES Output of generation units excluding
Py by purchases heat from energy producers B eise photovoltaic and wind power
IES i IES i
B Photovoltaic output P Wind power output
. Daily average reliable renewable generation c Energy deficit rate
capacity
IES i IES i
B riage Power deficit PEs, Load required by the IES
ptf Forecasted value P’ Actual value
Correlation coefficient of regional wind and .
Aj Failure rate
Pxy solar
Ao Baseline failure rate 200 Physical degradation model
Zi(t) Real-time state vector h(x) Feature extraction function
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AT,

Z/0)

Ainitial

b>a

i
select

Covariate weight vector

Failure cycle count under the current stress

Material constant

Temperature variation amplitude during the
m-th start—stop cycle

Baseline value at the initial state

Unit output power

An indicator function

Initial value of the convergence factor

Current iteration number

Archive composed of nondominated solutions

Solution b dominates solution a

Number of objective functions

Minimum value

Values of the neighboring solutions of solution
i in the p-th objective function.

Selection probability of solution i

Ne()

Ao (?)
Tmax

Zj,max

lmax
Xo

i
Cdistance

max
£y

Cumulative number of mechanical cycles

Material constant

Real-time stress amplitude

Maximum temperature change during start—
stop

Allowable limit state threshold

A 24-h period

Convergence factor

Modulation coefficient

Maximum number of iterations

Initial population

Crowding distance of solution 7

Maximum value

Total number of solutions in the current
nondominated front

Values of the neighboring solutions of solution
i in the p-th objective function.

Nondomination rank




