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A distributed cooperative target tracking algorithm based on a convolutional bidirectional
long short-term memory (ConvBiLSTM) neural network is proposed to address the nonnegligible
and changing observation noise caused by previous passive maneuvering target tracking. The
algorithm improves the time difference of arrival/frequency difference of arrival (TDOA/
FDOA) measurement accuracy by utilizing the ConvBiLSTM neural network to correct the
sensor observations to adapt to the dynamically changing observation environment, as well as
combining with the weighted two-step least squares method to reduce the initial estimation
error. The experimental results show that the algorithm can be used to estimate the target
position and velocity more accurately in maneuvering target tracking environments with large
observation errors, and at the same time, improves the stability of target tracking.

1. Introduction

In traditional passive moving target tracking, the nonnegligible and time-varying nature of
observation noise represents the core bottleneck constraining tracking accuracy. Its root causes
can be attributed to three aspects. First is the inherent characteristic of sensor hardware: the
receivers used to collect time difference of arrival/frequency difference of arrival (TDOA/
FDOA) information exhibit time delay errors and frequency drift. Such hardware errors directly
accumulate in the observation data and cannot be fully eliminated through algorithms. The
second is interference from complex environments. During propagation, signals are affected by
multipath reflections, electromagnetic interference, and other factors. The intensity and
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distribution of these interferences dynamically fluctuate with target position, causing unstable
observation noise. The third aspect is the indirect effect of target maneuvering. When a target
accelerates, turns, or performs other maneuvers, its relative motion with respect to the
observation station changes. This induces Doppler shifts and dynamic adjustments to the signal
propagation path length, altering the noise characteristics of the TDOA/FDOA observations.
Theoretically, this noise characteristic cannot be ignored: The core of passive maneuvering
target tracking involves estimating target states through observation inversion. The presence of
observation noise directly amplifies state estimation errors. Ignoring noise or assuming constant
noise levels causes estimation results to deviate from true target states, potentially compromising
tracking validity. This limitation becomes particularly pronounced when noise dynamically
varies with environmental conditions and timing sequences, highlighting the inadequacy of
traditional fixed-noise models. Consequently, a tailored noise adaptation mechanism must be
designed.

Noisy sensor observations remain a central challenge in the passive tracking of maneuvering
emitters. In prior studies, either the observation model or the estimator has mainly been
improved. Zhou et al.(V developed a partially constrained weighted least squares (WLS) method
for TDOA/FDOA localization and reported accuracy gains; however, its performance degrades
when the observation noise statistics are unknown or poorly estimated. Li and Zhu® introduced
an extended Kalman filter that corrects the ranging model using received-signal-strength
information, but the intrinsic instability of received signal strength indicator (RSSI)-based
ranging can propagate large errors into the tracker. Li et al.®) used particle swarm optimization
to adaptively tune the covariance of the extended Kalman filter, aiming to improve accuracy; in
highly dynamic settings, however, rapid fluctuations of the fitness landscape can hinder
convergence and robustness for noisy, nonlinear motion models. Deng et al.® proposed a two-
step WLS (TSWLS) algebraic solution that jointly exploits DOA, TDOA, and FDOA by pseudo-
linearizing the nonlinear equations via auxiliary parameters, yielding refined position-and-
velocity estimates; the associated algebraic augmentation and repeated matrix operations,
however, can introduce nonnegligible computational overhead and latency in real-time tracking.

To clearly highlight the innovation of this research, we systematically compare the traditional
passive moving target tracking method with the distributed collaborative target tracking
algorithm proposed in this paper, using a convolutional bidirectional long short-term memory
(ConvBiLSTM) neural network. The comparison focuses on core principles, noise handling
capabilities, and positioning logic. In traditional methods, the TSWLS approach achieves
localization by linearizing nonlinear TDOA/FDOA equations. However, it relies on a fixed-
noise model to predefine the weight matrix, making it unsuitable for dynamically varying
observation noise in maneuvering target tracking. This mismatch between weights and noise
characteristics often leads to increased initial estimation errors. Extended Kalman filtering
achieves tracking through recursive target state updates, yet requires the linearization of
nonlinear models using the Jacobian matrix. This approach not only introduces truncation errors
but also exhibits sensitivity to non-Gaussian observation noise, resulting in significantly
degraded tracking stability during high-velocity target maneuvers. Although particle swarm
optimization is applied to extend the covariance matrix of the extended Kalman filter, it



Sensors and Materials, Vol. 38, No. 2 (2026) 821

struggles to cope with the rapid changes in fitness function in dynamic environments. Tracking
performance is prone to degradation under scenarios involving spatially heterogeneous or
fluctuating temporal noise.C~7)

In contrast, the core innovation of our work lies in constructing an integrated framework
combining deep learning correction, dynamic weighted estimation, and distributed collaborative
localization: First, we innovatively propose the ConvBiLSTM neural network. By utilizing
convolutional layers to extract spatial distribution features from multisensor observations, it
effectively suppresses sudden local spatial heterogeneous noise. Simultaneously, it leverages the
bidirectional temporal modeling capability of BiILSTM to precisely track noise evolution trends
over time, enabling the real-time dynamic correction of TDOA/FDOA observations. This
provides more reliable observation inputs for subsequent positioning. This design addresses the
gap in traditional methods that solely rely on signal processing algorithms without incorporating
observation data preprocessing. Second, building upon ConvBiLSTM-corrected observations,
advanced signal processing algorithms such as full-squared WLS are introduced. By
dynamically updating the weight matrix and re-estimating the noise covariance based on
corrected observations, initial estimation errors are reduced, overcoming the limitation of
traditional TSWLS static weights failing to adapt to time-varying the noise. Finally, leveraging a
distributed collaborative architecture to integrate multisensor measurement data, it combines the
advantages of TDOA/FDOA joint positioning models to fuse time-of-arrival and frequency-of-
arrival measurement techniques, further enhancing target positioning accuracy and reliability.
Traditional approaches often rely on isolated single sensors or positioning techniques, but fail to
achieve deep integration among sensor measurements, deep learning corrections, and signal
processing optimizations. The proposed method, through the aforementioned design, not only
suppresses dynamic noise and enhances observation reliability but also provides a more robust
logical foundation for target state estimation in complex maneuvering scenarios.

2. Positioning Model

The TDOA/FDOA joint positioning model employs two technologies: time difference of
arrival and frequency difference of arrival. The objective is to enhance the accuracy and
robustness of target positioning. This model utilizes the time and frequency differences of a
signal source arriving at different receiving stations to construct an optimization problem for
target position and velocity. This results in more accurate estimates of target position and
velocity.®-10)

TDOA technology is based on measuring the time difference of a signal source arriving at
different receiving stations and constructing hyperbolas or hyperboloids to estimate the target
position. In contrast, FDOA technology utilizes Doppler shift to estimate target velocity, thereby
further enhancing positioning accuracy. By combining the information from TDOA and FDOA,
the TDOA/FDOA joint positioning model can achieve more precise target positioning in
complex environments.
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The main focus of this study is the three-dimensional positioning scenario, where M mobile
receivers are randomly deployed as TDOA/FDOA joint positioning observation stations for the
target source Sz The position information of the mobile receivers is denoted as S;(x;, y;, z;) and
the velocity information as S;(x;, ¥, z,). In the typical scenario, the first receiver is chosen as the
reference, referred to as receiver 1, with its position denoted as S;(x;, ¥y, z;) and its velocity as
S1(¥1, ¥1, Z). The position and velocity of the mobile target radiation source are assumed to be
S7(x, y, z) and S;(x, ¥, Z), respectively. To determine the position and velocity information of the
mobile target radiation source, at least four receivers are required to simultaneously generate
three TDOA/FDOA parameters. Therefore, the problems of passive localization with time and
frequency differences discussed in this paper are mainly in scenarios where the number of
receivers is greater than 4.

We consider passive localization scenarios in which at least four receivers operate at the same
time. This configuration provides three independent measurements of TDOA and FDOA, which
together allow reliable estimations of the position and velocity of a moving emitter. When more
than four receivers are available, the additional observations strengthen the constraints and
generally improve the accuracy and robustness. Figure 1 illustrates a typical deployment in
which several spatially separated receivers collect the time and frequency difference
measurements that are used by the localization model and the solver. ,° is defined as the true
distance between the moving target radiant source and the I-th receiver.
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The positions of different receivers relative to the moving target radiation source are not the
same, resulting in different time delays in the signals received by different receivers. This also
reflects the difference in distance between the receivers and the moving target radiation source,
which can be expressed as
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Fig. 1. Joint positioning model.



Sensors and Materials, Vol. 38, No. 2 (2026) 823

= =’ =ty - @

Here, r;,° represents the distance difference between the i-th receiver and the reference receiver
(receiver 1), and ¢ represents the propagation speed of the electromagnetic wave signal.

After a simple mathematical transformation from Egs. (1) and (2), the following TDOA
equation can be obtained:

25 =5) Sp+2in’ =5I'S, =TS =1y =12, M. ®)

The TDOA equation can only calculate the position information of the mobile target radiation
source but cannot estimate the target speed. When there is relative motion between the mobile
target radiation source and the base station, the base station will measure the Doppler frequency
change, and by using the resulting frequency difference, it will be able to estimate the moving
speed of the target, while simultaneously improving the estimation of the position of the mobile
target radiation source.

Similarly, for the arrival frequency, the FDOA calculation formula can be derived using the
same mathematical method, as shown below.

(S =87} Sp+ (8, =) Sp+ni o+ =
“
TS =SS =V r) i=1,2,...M

1 1 1

First, the variable to be measured x = [Sy rlo Sy rivo] is defined, which includes the position and
velocity of the mobile target radiation source and the true distance and Doppler frequency
change between reference base station No. 1 and the mobile target radiation source, which can be
obtained by collapsing the TDOA and FDOA equations by association.

G°x=h" ®)

. 0 . . . .
Here, in G° and h°, r” and r” are both cases where there is noise interference in the actual
scenario, and if we consider the impact generated by the noise interference, then

Gx=h+eg, (6)

where ¢ is the error matrix associated with the TDOA/FDOA observation noise. At this point,
the cost function is expressed as

J=(Gx—=h) W(Gx—h). (7)
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This transforms the problem of locating a moving target radiation source into that of solving the
unknown variable x subject to minimizing the cost function J.

3. Observation Correction Method Based on ConvBiLSTM Neural Network

We aim to correct TDOA/FDOA values when environmental samples suffer from severe
noise interference and thereby achieve superior correction performance under high signal-to-
noise ratios. To this end, we combine data processing with deep learning models to correct
TDOA/FDOA values. In Fig. 2, we show the overall correction framework of this method, which
primarily comprises three modules: data preprocessing, TDOA/FDOA correction, and prediction
performance evaluation modules. The data preprocessing module cleans, transforms, and
normalizes raw data to enhance its quality and usability. The TDOA/FDOA correction module
corrects time and frequency differences within the positioning system to improve positioning
accuracy and precision. It can correct measurement data from observation stations in accordance
with actual conditions, eliminating errors and noise to enhance the positioning system’s
performance. The prediction performance evaluation module assesses and validates established
prediction models to determine their accuracy and reliability. This helps users understand the
model’s predictive capabilities and facilitates corresponding adjustments and improvements.

3.1 ConvBiLSTM neural network

The ConvBiLSTM neural network is an advanced deep learning architecture that combines
the strengths of both convolutional neural networks (CNNs) and BiLSTM networks. CNNs are
particularly adept at extracting spatial features from data, while BILSTMs are highly effective at
capturing long-term dependences in sequential data. The combination of these two components
enables the ConvBiLSTM to process both feature and sequential data simultaneously, providing
a robust solution for a range of complex tasks. The schematic diagram of the ConvBiLSTM
neural network is shown in Fig. 3.

The core of the longitudinal feature extraction module is the CNN, a deep learning model
that is particularly adept at capturing spatial and spectral features. In the TDOA/FDOA
correction model, the CNN performs convolutional operations on the received signals, extracting
crucial features that are essential for target localization. These include signal time-frequency
characteristics and spatial distribution features. These features provide important informational
support for subsequent target localization.

Data Processing Module TDOA/FDOA Correction Module Prediction and Evaluation Module
[ wse.
_______ | MSE.
training set - r H |
Data Resampling | CNN-BiLSTM | _ : RMSE. |
Original dataset [—>| [ Data Quantification —| - > | Correction Model | MAPE.
Normalization | |
| | R-squared and other |
Test set I assessments |

Fig. 2. TDOA/FDOA correction framework.
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Fig. 3.  (Color online) Schematic diagram of ConvBiLSTM neural network.

The role of the CNN in this model extends beyond feature extraction. It also plays a role in
the modeling of spatial information. Given that target localization involves signals received from
multiple observation stations, the spatial information in these signals is crucial for precise
positioning. The CNN learns the spatial relationships between different observation stations
through convolutional operations, effectively modeling the spatial information. This modeling
helps to reduce errors in TDOA/FDOA estimation, thereby enhancing the accuracy and
robustness of target localization. In summary, the CNN plays a pivotal role in the longitudinal
feature extraction module. It not only extracts rich signal features but also effectively models
spatial information, collectively improving the performance of the TDOA/FDOA correction
model. The structural diagram of the CNN is shown in Fig. 4.

The core of horizontal feature extraction is BiLSTM, which plays a key role in temporal
modeling in the model. BILSTM is unique in its ability to simultaneously process forward and
backward information in the input sequence, thereby capturing contextual information more
comprehensively. It consists of two independent LSTM layers, one focusing on processing
forward information and the other on analyzing backward information. Each LSTM layer has
independent hidden states and memory units, which can capture long-term dependences in the
sequence, enabling the effective modeling of sequential data. This bidirectional processing
approach enables BiILSTM to have advantages in understanding and analyzing sequential data,
providing strong support for improving the performance of the overall model.

In Fig. 5, x, represents the input at time ¢, 4, represents the hidden layer output at time ¢, C,
represents the memory cell at time ¢, C; represents the temporary memory cell, @ represents
elementwise addition, ® represents elementwise multiplication, and C, contains information
determined by the forget gate.

BiLSTM also plays an important role in information fusion. In the TDOA/FDOA correction
model, multisource information from different observation stations needs to be effectively
integrated to improve the accuracy of positioning and correction. BiLSTM, with its bidirectional
structure, can simultaneously consider past and future information, thereby better integrating
information from different observation stations and improving the overall performance of the
model. The structure of the BILSTM network is shown in Fig. 6.
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(Color online) BiILSTM network structure.
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BiLSTM’s other key role in the model is temporal modeling. The TDOA/FDOA correction
model needs to model the timing information of the input signal in order to accurately calculate
the time or frequency difference. BILSTM, as a neural network structure suitable for time series
data processing, can effectively learn and capture the timing patterns in the signal, thus
providing accurate timing modeling capabilities for the correction model.(!1:12)

3.2 Correction of TDOAFDOA values using ConvBiLSTM neural network

In traditional passive moving target tracking, the nonnegligible and time-varying nature of
observation noise represents the core bottleneck constraining tracking accuracy. Its root causes
can be attributed to three aspects. The first is the inherent characteristic of sensor hardware:
receivers used to collect TDOA/FDOA information exhibit time delay errors and frequency
drift. Such hardware errors directly accumulate in the observation data and cannot be fully
eliminated through algorithms. The second is interference from complex environments. During
propagation, signals are affected by multipath reflections, electromagnetic interference, and
other factors. The intensity and distribution of these interferences dynamically fluctuate with
target position, causing unstable observation noise. The third aspect is the indirect effect of
target maneuvering. When a target accelerates, turns, or performs other maneuvers, its relative
motion with respect to the observation station changes. This induces Doppler shifts and dynamic
adjustments of the signal propagation path length, consequently altering the noise characteristics
of TDOA/FDOA observations. Theoretically, this noise characteristic cannot be ignored; the
core of passive maneuvering target tracking involves estimating the target state through
observation inversion. The presence of observation noise directly amplifies state estimation
errors. Neglecting noise or assuming it to be constant leads to estimation results deviating from
the true target state, potentially even causing loss of tracking effectiveness. The limitations of
traditional fixed-noise models become particularly pronounced when noise dynamically varies
with environment and timing. Therefore, a targeted approach is essential. The hardware used for
TDOA/FDOA observation data acquisition in this study is a mobile receiver adaptable to RF or
acoustic signal reception. Specific deployment and observation procedures are based on the
“multistation collaborative positioning” framework defined in Sect. 2. We employ a mobile
receiver for TDOA/FDOA observation data acquisition, adaptable for both RF and acoustic
signal reception. The deployment and observation workflow adhere to the multistation
collaborative positioning framework defined in the positioning model. Multiple mobile
observation stations are deployed, with one designated as the reference station and the remainder
as nonreference stations. All stations must maintain time synchronization to ensure the accuracy
of TDOA and FDOA measurements. During observations, each station receives signals radiated
by the target in real time. The reference station and nonreference stations respectively record
signal arrival times and frequencies. By calculating the time and frequency differences between
nonreference stations and the reference station, raw TDOA and FDOA observation data are
obtained. On the basis of these sensor observations, ConvBiLSTM performs observation
correction through four steps.
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Step 1: Raw observations are preprocessed into an input dimension of “time steps X number
of stations x 2”, where the number 2 corresponds to TDOA and FDOA observations.
Normalization eliminates numerical scale differences between the two observation types.

Step 2: Spatial features are extracted via a convolutional module. Convolution kernels capture
the spatial distribution patterns of observation data across different stations, distinguishing
useful signals from spatially heterogeneous noise. Batch normalization, activation functions, and
pooling layers further optimize feature representation and reduce data dimensions.

Step 3: Temporal modeling is performed via a bidirectional long short-term memory module.
The forward memory layer learns future evolution trends of observation noise, while the
backward memory layer traces historical noise patterns. A gating mechanism filters temporal
noise.

Step 4: Corrected TDOA/FDOA observations are output through a fully connected layer,
providing more reliable input data for subsequent positioning algorithms.

4. TDOA/FDOA Localization Algorithm Based on Improved TSWLS
(ImTSWLS) Method

WLS demonstrates significant advantages in passive moving target TDOA/FDOA
positioning and tracking. Its core strengths lie in adaptability to observation data characteristics
and enhanced estimation accuracy. First, unlike ordinary least squares, which assumes uniform
error across all observations, WLS quantifies the reliability of different observations through a
weighting matrix. Then, higher weights are assigned to observations with lower noise and higher
precision while the interference of noisy, low-reliability observations on estimation results is
reduced. This fundamentally enhances the handling capability for nonuniform error
observations, making it particularly well suited to the practical scenario in TDOA/FDOA
positioning, where “observation errors vary across different stations and observation types”.
Second, the IMTSWLS further enhances this advantage by dynamically updating the weight
matrix and re-estimating noise covariance based on ConvBiLSTM-corrected observations. This
enables weights to be adapted in real time to the time-varying noise characteristics of moving
target tracking, addressing the limitations of traditional WLS methods with fixed weights that
struggle with dynamic noise and often lead to reduced estimation accuracy. Moreover, WLS
exhibits strong multidimensional observation fusion capabilities, effectively integrating diverse
observation types such as TDOA and FDOA. By adjusting weights to balance contributions
from both observation types, it fully leverages TDOA’s strengths in position estimation and
FDOA'’s advantages in velocity estimation, providing more comprehensive information support
for joint positioning. Finally, this method integrates efficiently with iterative optimization logic.
For instance, the IMTSWLS approach in this study employs a two-step iterative solution, using
WLS as the core to achieve gradual optimization from coarse to fine estimation. This effectively
reduces errors in solving nonlinear equations during TDOA/FDOA positioning, providing a
reliable algorithmic foundation for the precise estimation of target position and velocity in
complex maneuvering scenarios.(!?)
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To avoid lengthy derivations, the main text presents only the key expressions for the solution.
On the basis of the observation model described by Egs. (3) and (4) and the weighted cost of Egs.
(6) and (7), we linearize and employ WLS/Gauss—Newton iteration: the initial solution is
provided by the standard model. Subsequently, the covariance matrix R is reconstructed using
observation corrections and uncertainty provided by ConvBiLSTM, and the weight matrix is
updated to achieve two-step weighted convergence. Incremental solutions and update rules are
detailed in Egs. (9)—(13).

Therefore, the WLS estimate for X is

-1
Xy = (GzT w, Gz) GzT w,G, ©)
I 0 O 0
g,-|ST n 00 (10)
2o o 1 of

vl T
S on Sroh

The estimated position and velocity of the moving target radiation source at this time are

Sr=U| Y2 ()52 ()52 (3)JT +5,
)

T (1D
v X, (4) X, (5) X, (6 LT
T R0 @ e
U= diag[sgn(xu -5 )J (12)

x =[x(1) x(2) x(3)]. (13)

In summary, the best estimate of the observed target’s velocity and position can be achieved
by iteratively calculating the estimated values from the first and second steps until the calculation
error resulting from the two-step estimation falls below the predefined threshold or the algorithm
reaches the preset maximum number of iterations. This approach ensures the accuracy and
reliability of the estimated results.

The core logic of this method for achieving precise position and velocity estimations of
complex maneuvering targets lies in a three-tiered collaborative approach: “Observation
Correction—Dynamic Weighting—Iterative Optimization”. The first tier involves the precision
processing of observation data, where the ConvBiLSTM neural network corrects raw TDOA/
FDOA observations; the convolutional layer extracts spatial features from multistation data,
effectively suppressing localized, sudden spatial heterogeneous noise and enhancing the spatial
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consistency of observation data. The bidirectional LSTM layer employs two-way temporal
modeling to capture observation noise trends over time, filtering out the temporal noise
interference caused by target maneuvers. This process makes the corrected observation data
more closely resemble the true signal characteristics. The second stage involves the dynamic
adaptation of the weight matrix. On the basis of the corrected observations, the noise covariance
matrix is re-estimated. A dynamic weight matrix is then constructed following the principle that
“weights are inversely proportional to noise covariance. This design assigns higher weights to
high-confidence observations in the least squares solution while appropriately suppressing the
effect of low-confidence observations. This reduces initial estimation errors, laying the
foundation for precise positioning. The third level involves iterative error approximation
optimization, in which gradual refinement of estimates is achieved through a two-step iteration:
First, a coarse estimate of target position and velocity is computed using the dynamic weight
matrix. Second, a new linear equation is constructed in accordance with the mathematical
relationship between the coarse estimate and auxiliary variables, followed by a WLS solution for
fine estimation. Through multiple iterations, the estimation results gradually converge toward
the optimal solution, ultimately achieving the precise estimation of the target state. Furthermore,
ConvBiLSTM’s noise suppression capability enables the noise intensity of corrected observations
to decrease progressively with each iteration. This further ensures the stability of weight matrix
updates and drives the entire system toward convergence to the optimal estimate.

5. Simulation Experiment and Analysis

To further verify the noise suppression ability of the algorithm, simulation experiments were
conducted under Gaussian white noise and non-Gaussian white noise. Gaussian white noise is
output 1 and non-Gaussian white noise is output 2. CNN, CNN BiLSTM, and CNN BiLSTM
Attention were trained for experimental simulation. For the performance evaluation of the
proposed prediction model, mean absolute error (MAE), root mean square error (RMSE), mean
absolute percentage error (MAPE), and the coefficient of determination were used as evaluation
indicators to measure the prediction effect.(!415) The specific calculation process is as follows.

1 n
MAE:;Z‘Jyl- - pi (14)
i=1
1 n
RMSE = ;Z(y,. -p) (15)
i=1
MaPE =132 (16)
izl i
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The simulation results for Output 1 and Output 2 in Fig. 7 show that the evaluation metrics of
MAE, RMSE, and MAPE for the proposed improved prediction method are all lower than those
of the CNN model. This indicates that the prediction accuracy of the proposed model is higher
than those of the other two algorithms. In addition, the parameter value for Output 1 is 0.978,
whereas that for Output 2 is 0.986. The parameter is primarily used to assess the degree of fit of
the model, with values closer to 1 indicating higher model quality. Therefore, this confirms that
the proposed algorithm outperforms other algorithms in terms of prediction accuracy and model
quality.

5.1 Routine testing

To verify the localization accuracy and robustness of the algorithm presented in this paper,
Monte Carlo simulation experiments were performed. To quantify the difference in localization
performance between different algorithms, we selected three representative algorithms for
comparative analysis: the traditional TSWLS algorithm, its decentralized variant (DETSWLS)
that adapts to distributed scenarios, and the proposed ConvBiLSTM-based algorithm. Among
them, DeTSWLS is a distributed implementation of the TSWLS framework, which is consistent
with the distributed collaborative positioning background of this study and thus was selected as
one of the comparative baselines. We used the RMSE of the estimated target position as an
indicator of localization accuracy. RMSE is obtained by calculating the square root of the
average of the squares of the differences between the estimated value and the true value, which

[ IMAE .
0t Ervse s
g 8t 7.8825 [ IRMSE
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- MAPE I:l
sasse [ " [__IMAPE
8F 7sm
68625 6
5.2378
6 5
Ak 3.8417
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0.9637 097851 1k JI¢63 Loso
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CNN o CNN-BIiLSTM CNN .. CNN-BiLSTM
Output! Evaluation index Output2 Evaluation index

Fig. 7. (Color online) Prediction results for different models.
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can effectively reflect the localization accuracy and stability of the algorithm. Through Monte
Carlo simulation experiments, we can simulate different noise environments and target motion
trajectories to comprehensively evaluate the performance of the algorithm proposed in this
paper. The formulas are as follows.

N . 2
RMSE (S;) = %*ZHST—Sg (18)
i=1
1 o o
RMSE( 7 )= A N (19)

i=1

The performance of the IMTSWLS positioning algorithm was validated through simulation
experiments with the TDOA/FDOA correction model for convolutional long-short-term memory
neural networks, and the results were compared with those of several other models. The
simulation settings were as follows: Sy = [285, 325, 275], the position and velocity of the moving
target radiation source were set to Sy = [-20, 15, 40], and five mobile observation stations were
used to monitor the radiation source. The observation stations were distributed within a position
range of —100 to 500 m and a velocity range of —30 to 30 m/s, with noise variance set between
—20 and 20 dB. The parameter settings of the observation stations are detailed in Table 1.

Since the measurement errors of TDOA and FDOA are independent of each other, for
comparison with other models, it is assumed that the measurement error matrix of TDOA is O,
and the measurement error matrix of FDOA is 0.1Q, where the expression of Q is

1 05 --- 05
0.5 -. 05 :
2
=0 . . . . 20
© : .. 05 20)

05 - 05 1

To simulate the distance measurements of observation stations with noise, we add Gaussian
white noise with zero mean and variance ;> to the true value of the observation station distance.
In the simulation experiment, we set o; to 0.01 m. Similarly, to simulate the time difference
measurements with noise, we add Gaussian white noise with zero mean and variance o;” to the
true value of the time difference t;'°. In the simulation experiment, we set o; to 1 ns. The

Table 1

Mobile observation station position and velocity parameters.

Station number Station position x/y/z (m) Station velocity x/y/z (m/s)

1 300 100 150 30 —20 20
2 400 150 100 =30 10 20
3 300 500 200 10 —20 10
4 350 200 100 10 20 30
5 -100 -100 -100 —20 20 20
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introduction of these noises helps to more closely resemble the actual situation, thereby
evaluating the performance of the algorithm in the presence of noise interference.

From the results in Fig. 8, we can see that after detailed data analysis, the use of ConvBiLSTM
neural networks to improve the TDOA ranging model has achieved significant results in error
control. Compared with traditional TDOA ranging models, the improved model shows clear
advantages in both the weighted minimum two-part estimation error and the weighted minimum
estimation error. Through simulation verification, as the position error of the observation station
gradually increases, the algorithm proposed in this paper shows excellent positioning accuracy
stability in the face of the position error of the observation station. Even if there is uncertainty in
the position of the observation station, the algorithm can still accurately calculate the target
position. This is mainly because the algorithm effectively corrects the precise distance
information between the observation stations, which significantly reduces the effect of the
position error.

By using the ConvBiLSTM neural network to correct the measurement information, the
positioning accuracy of the algorithm in this paper has been significantly improved. In
particular, the more accurate the observation information is, the more significant the
improvement in the positioning accuracy of the algorithm in this paper. However, as the
observation error of the observation station gradually increases, the improvement in positioning
accuracy brought about by correcting the measurement information gradually weakens. When
the observation error of the observation station increases to a certain extent, the correction of the
measurement information by the ConvBiLSTM neural network limits the improvement in
positioning accuracy. Nevertheless, compared with other algorithms, the algorithm in this paper
can maintain high positioning accuracy even under large distance errors of observation stations.

In conclusion, through detailed data analysis, we have verified the advantages of using a
ConvBiLSTM-neural-network-enhanced TDOA ranging model in error control. This
improvement not only improves the accuracy and reliability of the positioning system, but also
increases the robustness of the model to noise.

Compared with other comparative algorithms, the algorithm proposed in this paper has
significant advantages in positioning accuracy. As the measurement error of time difference
decreases, the improvement of the positioning accuracy continues to increase, thus verifying the
effectiveness of our algorithm. However, as shown in Fig. 9, when the measurement error of time
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Fig. 8.  (Color online) Plots of position error.
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difference exceeds 10 dB, the positioning accuracy improvement rate of our algorithm weakens.
This is mainly because, as the measurement error of time difference increases, it gradually
becomes the dominant factor affecting the positioning accuracy. Although the introduction of
the distance information of the observation stations still helps to improve the positioning
accuracy at this time, its effect gradually weakens.

The simulation results show that the algorithm proposed in this study, which corrects the
TDOA/FDOA values using ConvBiLSTM, significantly improves the target tracking
performance compared with the original algorithm. In particular, the TDOA/FDOA values
corrected by ConvBiLSTM are closer to the Cramer—Rao lower bound, which proves the
effectiveness of the proposed algorithm in reducing the estimation error and improving the
target tracking accuracy. In conclusion, in this study, we have verified the superior performance
of the algorithm based on ConvBiLSTM for correcting TDOA/FDOA values in target tracking
through simulation experiments. This algorithm can effectively reduce estimation error and
improve target tracking accuracy. The simulation results are shown in Fig. 9 and Fig. 10.

5.2 High-speed tracking test

High-speed tracking tests are a key part of checking how well the ConvBiLSTM neural
network works in dynamic situations, especially in locating and tracking fast-moving targets.
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Fig. 9. (Color online) Plots of speed error.
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Fig. 10. (Color online) Position and speed of the algorithm for different observation station distances.
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These tests are meant to simulate the complex movements of fast-moving targets in real-world
situations. By comparing the model’s output with the actual trajectory, we can see how well the
network captures sudden changes and how stable it is over time. In the field of localization,
research with high-speed moving targets can verify the algorithm’s adaptability and
responsiveness to rapidly changing environments. Moreover, it can help enhance the dynamic
response capability of the localization system and its real-time data processing ability.
Additionally, a radiation source is defined as a high-speed moving target when its relative speed
with respect to Observation Station No. 1 exceeds 15 m/s. Five mobile observation stations were
employed to observe the radiation source, and the parameter settings of the observation stations
are presented in Table 2.

Compared with traditional algorithms such as TSWLS and DeTSWLS, the integrated
algorithm proposed in this study demonstrates considerable advantages in velocity and position
estimation accuracy under high-speed scenarios. When measurement noise is relatively low, the
velocity RMSE and position bias of the proposed algorithm are significantly smaller than those
of other methods, verifying the effectiveness of integrating CNN-based feature extraction and
BiLSTM-based temporal modeling. However, as shown in experiments, when measurement
noise exceeds approximately 15 dB, the algorithm’s accuracy improvement capability diminishes
because overwhelming measurement noise gradually becomes the dominant factor. Although
the CNN module still extracts robust features from noisy data and BiLSTM models motion
trends, their ability to compensate for considerable measurement distortion weakens as noise
intensity surges, reducing the gain over traditional methods. The simulation results are shown in
Fig. 11.

Table 2

Mobile observatory position and velocity parameter settings.

Station number Station position x/y/z (m) Station velocity x/y/z (m/s)

1 300 100 150 20 -20 20
2 400 150 100 -20 10 20
3 300 500 200 10 -20 10
4 350 200 100 10 20 20
5 -100 -100 -100 -20 10 10
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Fig. 11. (Color online) Error curves for state estimation of high-speed moving targets.
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5.3 Long-distance testing

The known emitter target position is [200, 220, 300] and its velocity is [-20, 15, 40]. During
the simulation, the ranging noise is set to 0.1. By continuously adjusting the size of the sensor
disturbance error, the noise variance is controlled within the range of —20-20 decibels. In
addition, targets with a spatial distance greater than or equal to 300 m between the emitter and
Observation Station 1 are defined as long-range targets. The parameter settings for the remaining
observation stations are shown in Table 1. The simulation results are shown in Fig. 12.
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Fig. 12. (Color online) Error curves for state estimation of long-distance targets.

For long-distance radiation source localization scenarios, we simulate the complex effects of
noise accumulation, signal time-varying distortion, and observation lag in long-distance
propagation by adjusting the logarithmic scale of observation noise intensity. The experiment
focuses on the RMSE of position estimation as the core indicator and compares the performance
of traditional and fusion algorithms with the theoretical optimal accuracy limit. In weak noise
environments (noise intensity logarithmic scale less than 5 decibels), the traditional algorithm
TSWLS shows sensitivity to noise, and the error gradually deviates from the theoretical optimal
accuracy limit. CNN DeTSWLS uses convolutional networks to extract multiscale noise
features, suppress the distortion of long-distance signals, and achieve accuracy closer to the
theoretical limit. CNN BiLstm DeT'SWLS, on the other hand, performs better by utilizing
bidirectional long short-term memory networks to mine the inertial laws of target motion and
further correct errors in single frame observations.

Upon entering a strong interference scenario, the error of traditional TSWLS skyrockets
sharply and its linear assumption completely fails under strong noise. Although CNN DeTSWLS
can suppress some noise, the error still deviates significantly from the theoretical limit owing to
the lack of modeling of “signal propagation lag”. CNN BiLstm DeTSWLS uses bidirectional
temporal modeling to predict the trajectory trend of the target in the forward direction and
compensate for signal delay interference in the backward direction, resulting in the smoothest
error growth.
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5.4 Algorithm timeliness analysis

The ConvBiLSTM-DeTSWLS algorithm proposed in this study is designed with a time
complexity centered on the principle of “adapting to the real-time requirements of actual moving
target tracking”. The specific complexity analysis is as follows.

(1) Position estimation in the algorithm: The computational load of this module is primarily
concentrated in matrix operations, with a time complexity of O(n?), where n represents the
dimension of the observation data. At this complexity level, the traditional TSWLS
demonstrates high computational efficiency, enabling the rapid linearization and solution of
nonlinecar TDOA/FDOA equations, thereby establishing the foundation for the overall
algorithm’s temporal performance.

(2) Time complexity of the newly added ConvBiLSTM inference module: The ConvBiLSTM
module is used for observation data correction. Although it sequentially performs
convolution, pooling, and bidirectional long short-term memory operations, computational
overhead is effectively controlled through optimized network structure parameters. Specific
optimization measures include the following: fixing the convolution kernel size to reduce the
number of spatial convolution operations, setting a reasonable number of hidden units to
avoid redundant temporal computations, and configuring an appropriate dropout ratio to
balance model performance and computational efficiency. Furthermore, network parameters
remain fixed during inference, eliminating the need for retraining. Only forward propagation
calculations on input observation data are required, keeping the additional time complexity
within a controllable range without exponential growth.

(3) Overall algorithmic time complexity: The total time complexity of the ConvBiLSTM-
DeTSWLS algorithm is the sum of the traditional TSWLS module complexity and the
ConvBiLSTM inference module complexity, with no additional redundant computations.
From an engineering perspective, this complexity design ensures that the algorithm’s total
runtime remains within the tolerance threshold for practical moving target tracking scenarios.
For high-speed maneuvering targets, the optimized ConvBiLSTM inference efficiency and
the improved iterative convergence speed of TSWLS still enable the overall duration to meet
real-time requirements. This prevents tracking performance degradation owing to
computational delays, satisfying the core demand for algorithmic time complexity in practical
applications.

6. Conclusions

In this work, we proposed a distributed cooperative tracking algorithm that couples a
ConvBiLSTM-based observation correction with a TSWLS estimator (DETSWLS) for joint
TDOA/FDOA localization. The network adapts measurements to time-varying noise by learning
spatial patterns across stations and temporal trends over time, yielding corrected observations
and uncertainty that drive dynamic weighting in the estimator. Simulations of routine, high-
speed, and long-distance scenarios show consistent reductions in position and velocity RMSE
compared with TSWLS/DeTSWLS baselines. Gains are strongest under moderate noise and
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taper when measurement errors become very large. End-to-end latency is modestly higher than
that of traditional TSWLS but remains within real-time bounds. In future work, we will explore
energy-aware implementations to extend node lifetime while maintaining tracking accuracy and
system reliability.
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