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	 In this study, we developed a collaborative scheduling model for electric vehicles (EVs) in 
smart microgrids by integrating charging pile operational monitoring data, photovoltaic (PV) 
output sensor data, and grid state sensing information. To address the operational optimization 
challenges of microgrids with high distributed energy penetration, we established an EV 
scheduling model. The system dynamics were characterized using a Markov decision process 
framework, and the proximal policy optimization algorithm was applied to optimize strategies 
that target maximum PV utilization. Research findings indicate that the coordinated charging of 
a growing EV fleet, guided by price response patterns, serves to absorb excess solar power and 
enhance PV utilization rates. These results validate the pivotal role of multimodal sensor data 
fusion in enabling the flexible regulation of power systems, while providing methodological 
support for optimizing sensor network deployment in the Internet of Energy Things.

1.	 Introduction

	 As the global energy structure undergoes accelerated transformation toward clean and 
intelligent systems, the widespread adoption of electric vehicles (EVs) and the large-scale 
integration of distributed renewable energy resources are profoundly reshaping traditional power 
system operations.(1) While EVs represent a critical flexible load resource, their charging 
behavior exhibits significant spatiotemporal randomness.(2) Photovoltaic (PV) generation, being 
weather-dependent, demonstrates inherent output volatility. The combined effect of these two 
factors imposes substantial challenges on smart microgrids, including intensified difficulties in 
supply–demand matching and the widening of load peak-valley disparities.(3) In this context, by 
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leveraging advanced sensing and intelligent scheduling, collaborative optimization has emerged 
as a pivotal solution for enhancing microgrid flexibility and renewable energy utilization.
	 The rapid advancement of sensor technologies provides innovative solutions to these 
challenges.(4) In recent years, significant performance improvements have been achieved in 
charging pile monitoring sensors, PV output sensing devices, and grid state perception 
terminals.(5) For instance, high-precision current/voltage sensors (JSMSEMI: SACS756/AHBV-
4K/L3) enable the real-time monitoring of power demand fluctuations at charging stations.(6) 
Environmental sensors with meteorological parameter monitoring functions can provide 
accurate PV power generation forecasts, such as the seven-element weather sensor TH-WQX7.(7) 
Smart meters further enhance system awareness by delivering real-time grid load feedback.(8) 
The deployment of these sensing devices empowers microgrids to acquire multi-dimensional, 
high-resolution operational data, thereby establishing the foundation for refined scheduling and 
optimized energy management.(9)

	 Current research in the field of EV charging scheduling primarily focuses on strategies 
driven by a single data source. Demand response mechanisms form a core research direction, 
extensively utilizing price elasticity coefficient matrices to establish correlations between user 
behavior and price signals, guiding optimized charging behavior through dynamic pricing.(10) In 
terms of modeling approaches, static planning methods are employed for the simplified analysis 
of grid operational states and PV generation output, providing fundamental decision support for 
system scheduling.(11) Traditional price–response mechanisms predominantly adopt linear 
approximations or fixed elasticity coefficients to characterize the relationship between electricity 
prices and charging demand, establishing an initial coupling framework between user behavior 
and market signals.(12) Regarding microgrid operational characteristics, current research has 
examined the impact of PV’s intermittent generation patterns and the spatiotemporal randomness 
of EV charging demands on system power balance, with studies analyzing their superposition 
effects.(13) In terms of technical implementation, a multi-data fusion framework integrating 
charging pile operational data, PV sensor information, and grid state parameters is currently 
being developed, with dynamic adaptive real-time scheduling strategies emerging as a key 
research focus to enhance microgrid operational stability under complex conditions.
	 Deep reinforcement learning (DRL) has emerged as a cutting-edge tool for energy system 
optimization due to its advantages in dynamic decision-making problems.(14) Algorithms such as 
Q-learning and Deep Deterministic Policy Gradient (DDPG) have been applied in scenarios 
including residential energy management and microgrid economic dispatch.(15) For example, 
Xiong et al.(16) demonstrated significant performance improvements in community microgrid 
regulation using the DDPG algorithm with an actor-critic framework for continuous action space 
optimization. However, traditional DRL methods suffer from overestimation bias, which leads 
to unstable policy convergence. To address this limitation, the twin delayed DDPG algorithm 
enhances training stability through dual critic networks and delayed policy updates.(17,18) The 
applicability of the proximal policy optimization (PPO) algorithm for coordinated EV-PV 
scheduling needs to be further validated in an energy system environment.
	 The rapid advancement of sensor technologies and materials has been instrumental in 
addressing these challenges. For instance, high-precision current/voltage sensors, which utilize 
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semiconductor-based sensing materials, enable the real-time monitoring of power fluctuations at 
charging stations. Similarly, environmental sensors such as the multi-parameter weather sensor, 
which incorporates advanced hygroscopic and thermosensitive materials, provide accurate 
meteorological data essential for PV generation forecasting. These sensors, coupled with smart 
meters equipped with micro-electromechanical systems (MEMS), form a robust sensing 
infrastructure that captures high-resolution, multi-dimensional operational data. In this study, 
we leverage such multi-source sensor data—including charging pile operational status, PV 
output, and grid load—to drive the collaborative scheduling of EVs, thereby enhancing the 
reliability and efficiency of microgrid operations.
	 In this study, we propose a collaborative scheduling model for EVs in smart microgrids. By 
integrating multi-source sensor data, the model optimizes EV charging behavior under 
electricity price response constraints, aiming to achieve the dual objectives of maximizing local 
PV consumption and minimizing grid load peak-valley differences. Research findings validate 
the potential of multi-source sensor data fusion in enabling flexible power system regulation, 
offering new insights for optimal sensor network deployment and intelligent scheduling 
algorithm design within the Internet of Energy Things framework. The contributions are as 
follows:
	 •	 In this study, we constructed a collaborative EV scheduling model for smart microgrids, 

integrating charging pile operational data, PV output sensor information, and grid state 
parameters into a multi-source data-driven framework for coordinated optimization. Building 
upon this foundation, a real-time scheduling strategy is proposed, which combines Markov 
decision process (MDP) modeling with the PPO algorithm, enabling dynamic optimization 
toward maximizing PV utilization.

	 •	 By developing an ordered EV charging model, we compared load peak-valley differences and 
PV utilization rates under various EV charging patterns and penetration levels, offering 
insights for system optimization.

	 The remaining sections are as follows. In Sect. 2, we describe the development of an EV 
dispatch model considering the electricity price. In Sect. 3, we develop and solve the Markov 
decision model. In Sect. 4, we conduct a detailed case study and analyze the simulation results. 
In Sect. 5, we summarize the conclusions and outlook.

2.	 System Model

	 The smart microgrid system studied in this work contains PV generation, base load, and EV 
charging load. 

2.1	 EV dispatch model considering electricity price laws

2.1.1	 EV disordered charging distribution under the Monte Carlo method

	 The Monte Carlo method forms the analytical foundation for simulating and modeling the 
stochastic charging behavior of EVs. Key determinants of EV load profiles include the vehicle 
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owner’s daily travel distance, charging initiation time, and charging termination time. Statistical 
analysis reveals that the probability density function governing EV daily mileage adheres to a 
normal distribution pattern, as mathematically expressed in Eq. (1).
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The necessary charging power is calculated on the basis of daily travel distance, while the 
corresponding charging duration is subsequently determined using this power value and the 
charging efficiency, as mathematically represented in Eq. (2).
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The anticipated charging initiation time exhibits a normal distribution pattern, with its 
corresponding probability density function mathematically represented as 

	
2

2
( )1( ) exp , 0 24.

2 2
start start

start start
start start

tf t tµ
σ σ

 −
= − ≤ ≤ 

π   
	 (3)

Then, the charging end time is

	 .end start charget t T= + 	 (4)

2.1.2	 EV user demand response model

	 Under the demand response framework, the charging behavior of EV clusters exhibits 
spatiotemporal shifting characteristics affected by electricity price signals. To quantify the 
dynamic correlation between electricity price and demand, in this section, we construct an 
elasticity coefficient matrix.
	 Assume that the scheduling period is divided into T intervals, with the electricity price vector 
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Here, εii denotes the self-elasticity coefficient, εij denotes the cross-elasticity coefficient, and 
,t i

EVp  and ,t jp  represent the load and price variations at time i, respectively.
	 By collecting historical data from charging stations over N days, we construct a sample 
matrix. Within the scheduling period T, with a time interval of 1 h, the load-price elasticity 
coefficient matrix EDR based on real-time electricity prices is formulated as
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The change in user load after node i participates in DR is
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where t
EVP∆  is the load change matrix for DR users, ,1t

EVp∆  is the load change at time t = 1 for 
node i, ,1t

EVp  is the initial load of node i at time t = 1, and ,1tp∆  and pt,1 are the load change and 
initial electricity price, respectively, after the user participates in DR at time t = 1.
	 The relationship between the electricity price after user participation in DR and the initial 
electricity price, as well as the relationship between the active load after response and the initial 
active load, is
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where ,
,

t i
EV DRp  and ,t i

DRp  represent the active power and electricity price after participating in 
demand response, respectively.

2.2	 Force modeling and constraints

2.2.1	 PV generation model

	 The PV generation model serves to simulate the operational behavior and energy output 
characteristics of solar PV systems. Under real-world operating conditions, the power output of 
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PV systems is predominantly affected by ambient temperature and solar irradiance levels. The 
mathematical relationship governing the output power generation can be expressed as

	 [ ]1 ( ) ,t
PV PV G r PV s stP A S T Tη γ= − − 	 (9)

where the output power t
PVP  of the PV generation system is determined by the following 

parameters: the installed area of the PV array APV, the actual solar irradiance incident on the PV 
module surface SG, the system’s reference efficiency and its temperature coefficient γPV, the 
operating surface temperature of the PV cell Ts, and the standard temperature Tst.
	 The difference between the PV power generation and the total load of electricity consumption 
is reduced through EV charging scheduling, thus maximizing the PV consumption as shown in 
the following equations:
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where t
EVP  is the amount of EV charging at the moment T, t

loadP  is the base load of the microgrid 
at the moment t, and δ ensures that the load will not be negative.

2.2.2	 Constraints

2.2.2.1 Power balance constraint

	 The instantaneous generated power must equal the electrical load demand at all times.

	 ,
t t t t t

load EV PV d PV purP P P P P+ + = + 	 (12)

Here, ,
t
PV dP  is the abandoned solar power amount and t

purP  is the amount of power purchased by 
the microgrid from the higher grid.

2.2.2.2 Electricity price constraint

	 Electricity tariffs must be bound within a defined range to equitably safeguard the interests 
of both microgrid operators and EV users.

	 ttt
min maxp p p< < 	 (13)
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2.2.2.3 EV charging constraints

	 The EV charging load during the time period t must not exceed the predefined maximum 
value, as mathematically constrained by Eq. (11). To guarantee that user charging requirements 
are fully met, the aggregate charging power of EVs participating in demand response programs 
must maintain equivalence with the baseline scenario without demand response participation. 
Furthermore, the load shifting rate is subject to operational limits defined by Eqs. (12) and (13), 
while the EV charging power parameter is confined within specified operational boundaries as 
per Eq. (14).

	 ,
t t
EV EV maxP P< 	 (14)
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3.	 PPO-based Markov Decision Model Solving

3.1	 MDP formulation

	 The dynamic dispatch problem of EVs absorbing PV power discussed in Sect. 3 is formulated 
as a MDP, a framework for modeling sequential decision-making under uncertainty. The core 
components of our MDP framework and their interactions are defined as follows. The Agent (the 
PPO-based scheduling algorithm) interacts with the Environment (the smart microgrid 
comprising PV, base load, and EVs). At each time step, the Agent observes the complete state of 
the environment (including load demand, PV output, and electricity price), based on which it 
selects an Action (setting the dynamic electricity price and PV curtailment level). The 
environment transitions to a new state, and the Agent receives a Reward that evaluates the 
action’s effectiveness in maximizing PV consumption and minimizing grid fluctuations. This 
cyclic interaction of state → action → reward → next state enables the agent to learn an optimal 
scheduling policy through trial and error.

3.1.1	 State design

	 In the dynamic scheduling problem of smart microgrids with EVs, the environmental state 
space comprises load demand t

loadP , renewable energy generation output t
PVP , aggregate EV 
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charging demand t
EVP , real-time electricity price pt, and PV curtailment quantity ,

t
PV dP . The state 

of the dynamic dispatch problem of EVs absorbing PV power is denoted as 

	 ,, , , , .t t t t t
t load PV EV PV ds P P P p P =   	 (18)

3.1.2	 Action design 

	 The agent’s objective is to determine optimal electricity pricing pt and PV curtailment levels 
,

t
PV dP , accounting for EV charging demand being functionally dependent on electricity pricing.

	 ,,t t
t PV da p P =   	 (19)

Here, actions a At ∈  satisfy all constraints of the EV dispatch problem P1. The electricity price pt 
maintains operational integrity through Eq. (10)-enforced bounds ,t t t

min maxp p p ∈ .

3.1.3	 Reward function design

	 The agent receives a reward rt post-action at. Dynamic EV scheduling leverages this 
instantaneous incentive to

	 2
1 2/100 /1000,sum

t pv loadr Pη η σ= − 	 (20)

where v
sum
pP  denotes total PV consumption and 2

loadσ  represents load standard deviation. Weight 
coefficients η1, η2 balance the relative importance of these objectives, with value scaling factors 
/100 and /1000. The constraints inherently satisfied during action execution are excluded from 
the formulation. To minimize the exploration of constraint-violating decisions during agent 
learning, violations of Eqs. (12)–(17) trigger substantial negative penalties: a large negative 
constant is added to Eq. (20)’s instantaneous reward for the corresponding timestep.

3.2	 PPO-based solution scheme

3.2.1	 Policy interaction and trajectory generation

	 The PPO algorithm generates training data through real-time interactions between the agent 
and the environment. At each time step t, the agent samples an action at from the probability 
distribution (typically assumed as Gaussian) output by the current policy network ( | )a sθπ , given 
the state st.

	 ( | )t ta sθ∼ π ⋅ 	 (21)



Sensors and Materials, Vol. 38, No. 2 (2026)	 849

Unlike off-policy algorithms, PPO adopts an  on-policy  learning mechanism, requiring the 
historical interaction data to be cleared after each policy update and replaced with newly 
collected trajectories 1{ , , , }t t t ts a r sτ += . While this imposes higher demands on real-time 
exploration, it avoids distributional shifts induced by experience replay mechanisms.

3.2.2	 Advantage estimation and objective function design

	 The core of PPO lies in its clipped surrogate objective, which stabilizes policy updates by 
constraining the divergence between old and new policies. First, the state value is estimated 
using the critic network Vϕ(s), and the generalized advantage estimation computes the advantage 
values.

	 1
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T t

l
t t l t t t t
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+ +
=
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Here, [0,1]λ∈  balances bias and variance, and γ is the discount factor.
	 The policy update objective restricts the ratio of new-to-old policy probabilities to prevent 
abrupt policy changes.
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Here, ϵ is the clipping threshold that truncates extreme probability ratios to ensure smooth policy 
updates. The critic network is optimized by minimizing the mean squared error of the value 
function.
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To enhance exploration, an entropy regularization term ( ( | ))tH sθπ ⋅  can be incorporated, 
forming a composite loss function.

	 [ ]1 2 ( ( | ))CLIP VF
t tc c H sθ= + − π ⋅    	 (25)

3.2.3	 Mini-batch multi-epoch parameter updates

	 PPO employs the mini-batch multi-epoch gradient ascent to improve data efficiency. 
Specifically, complete trajectories are divided into mini-batches, and gradients are computed 
iteratively over 3–4 epochs to fully exploit the data. This mechanism mitigates the low data 
efficiency inherent in on-policy algorithms while preventing overfitting through limited update 
cycles.
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4.	 Case Analysis

4.1	 Basic data

	 In this study, we employed real-world operational data from a Hebei Province, China 
microgrid (2023) with 24 h dispatch cycles (T = 24) at 1 h resolution. PV generation, base load, 
electricity pricing, and EV charging datasets represent actual recorded values. To assess PPO 
algorithm robustness within this framework, a solar curtailment penalty of 0.6 CNY/kWh is 
implemented. To quantify the interdependencies between different EVs, the correlation 
coefficients are presented in Table 1. The EV maximum load transfer rate is set to 0.3, 
considering the factor of EV charging satisfaction. The electricity price for uncoordinated 
charging is 0.8 CNY/(kWh).

4.2	 Training process

	 All experiments were executed with a fixed random seed (42) applied to Python, NumPy, and 
PyTorch; the dataset comprises real operational records from a Hebei Province microgrid in 
2023 covering 24 h dispatch cycles (T = 24) at 1 h resolution, including PV generation, base load, 
electricity price, and EV charging. The data processing pipeline is as follows: PV power is 
obtained from hourly irradiance/temperature measurements and converted via the PV model; 
load series are normalized (per-unit) with short gaps linearly interpolated to maintain hourly 
alignment; electricity price follows recorded time-of-use tariffs with any missing values linearly 
interpolated; and EV charging demand is generated via a Monte Carlo procedure consistent with 
observed travel distance, arrival time, and charging duration distributions. These steps enable 
the faithful replication and extension of our results under identical settings.
	 The simulations in this study are executed in Python 3.9.19 on a computer with an Intel Core 
i5-12400F @2.50 GHz CPU and 16 GB of RAM. The proposed PPO algorithm employs two 
deep neural networks: an actor network for stochastic policy parameterization and a critic 
network for state-value estimation. Both networks share identical hidden layer architectures, 
consisting of an input layer, two fully connected hidden layers with 200 neurons each, and 
rectified linear unit activation functions. The actor network processes the state space vector and 
outputs parameters of a Gaussian distribution—specifically, the mean and log standard deviation 

Table 1
EV parameters.
Parameter Value Unit
Average charge/discharge power 5 KW
Charge and discharge efficiency 0.9 %
Maximum daily mileage 350 kM
Battery capacity 45 kWh
Power consumption 7.5 km/kWh
SOCup

EV 100 %
SOCdown

EV 20 %
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for each action dimension. The mean values are linearly activated to span the continuous action 
space, while the log standard deviation is optimized independently to control exploration. Key 
hyperparameters include a discount factor γ = 0.99, a generalized advantage estimation 
coefficient λ = 0.95, and a clipping threshold ϵ = 0.2 to constrain policy updates. The actor and 
critic networks utilize Adam optimizers with learning rates of 3 × 10−4 and 1 × 10−3. Entropy 
regularization with a coefficient of 0.01 is applied to encourage exploration, penalizing overly 
deterministic policies. Training proceeds via mini-batch gradient ascent over four epochs per 
iteration, with a batch size of 64 trajectories. Observation normalization is implemented using 
running mean and standard deviation to mitigate input scaling sensitivity, while early stopping 
halts training if the average reward plateaus within a 1% tolerance for 10 consecutive epochs.
	 Figure 1 shows the convergence of the PPO scheduling algorithm through the training reward 
curve. During initial exploration, the agent yields low immediate rewards due to the limited 
prior knowledge of the environment. As training progresses, accumulated state-action 
experience drives gradual performance improvement. The reward curve stabilizes after 1000 
episodes, maintaining an average value of −1300, which confirms policy optimization 
convergence and indicates the successful derivation of a near-optimal EV scheduling strategy.

4.3	 Case setting

	 In this study, we established two scenarios with 400 and 600 EVs to analyze the impact of EV 
quantity on PV consumption. By comparing two strategies within each scenario, we investigate 
how different charging strategies affect PV utilization. The analysis employs PV generation 
profiles and baseline load data from a typical summer day.
	 Strategy 1: Coordinated EV charging based on time-of-use electricity pricing
	 Strategy 2: Uncoordinated EV charging

Fig. 1.	 (Color online) Reward curve for the training process.
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	 In this section, we present simulation results of both uncoordinated and coordinated EV 
charging loads. A comparative analysis is conducted to evaluate variations in PV consumption 
levels and load peak-valley differences across distinct charging scenarios.
	 In this study, the peak load is defined as the maximum hourly load within the 24 h dispatch 
cycle, and the valley load is the minimum hourly load value within the same cycle. No additional 
smoothing was applied. The PV consumption was calculated as the total PV energy absorbed by 
EV charging and base load, integrated over the entire 24 h scheduling horizon.
	 Figure 2 shows the load curves and charging volumes under coordinated and uncoordinated 
charging cases for both EV fleet sizes. In Fig. 2(a), uncoordinated charging exhibits concentrated 
power demand during 18:00–20:00 when the PV output is minimal, resulting in underutilized 
solar generation. The coordinated strategy effectively shifts charging activities to midday peak 
PV production hours, enhancing solar consumption efficiency. Figure 2(b) shows that with 
increased EV adoption, the disparity between coordinated and uncoordinated load profiles 
widens further, as higher charging volumes amplify the PV consumption improvement achieved 
through strategic scheduling.
	 Quantitative evaluations of key performance indicators are presented in Table 2, using annual 
charging cost data and summer seasonal load profiles. Uncoordinated charging exacerbates 
peak-hour congestion by aligning with existing residential demand patterns, creating dual-peak 
stress on grid operations. The late-evening peak tariff period (highest electricity price) 

Fig. 2.	 (Color online) Comparison of different strategic load profiles and EV charging in two scenarios. (a) 400 
EVs. (b) 600 EVs.

(a)

(b)
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contributes to elevated charging costs, with total uncoordinated charging expenses reaching 
6488540 CNY in case 1. Figure 3 shows the 24 h dynamic pricing under Strategy 1, showing 
significant charging load migration to 11:00–13:00 when both solar generation and pricing are 
optimal. This dual optimization achieves 2514 kW incremental PV consumption and 610 kWh 
peak load reduction compared with Strategy 2, while decreasing the peak-valley difference by 
900 kW. The coordinated approach demonstrates dual benefits: 399675 CNY cost savings 
through valley-hour charging utilization and enhanced grid stability via peak-shaving and 
valley-filling effects. These results confirm that strategic EV charging management 
simultaneously improves renewable integration and operational efficiency in power systems.
	 Building upon case 1, case 2 further increases the number of EVs. With the growth of 
charging load, the prescheduling PV consumption rate in case 2 rises to 55.46%, higher than 
47.23% in case 1. However, uncoordinated charging leads to further elevation of grid load peaks. 
After superimposing disorganized EV charging, the total load peak in case 2 reaches 4880 kW. 
Through the scheduling and management of EV charging loads, the total peak load decreases to 
4170 kW, while the PV consumption rate improves to 66.32%, representing a 10.86% increase 
compared with the unscheduled condition. With the expansion of total schedulable loads, the 
potential for PV consumption shows significant enhancement. Therefore, the increased EV 
penetration rate in this region contributes to improved PV consumption levels.

Table 2
Comparison of parameters in different scenarios.
Parameter Strategy 1 (case 1) Strategy 2 (case 1) Strategy 1 (case 2) Strategy 2 (case 2)
Annual costs for EV 
users (CNY) 6088865 6488540 10058325 10805825

PV consumption (kWh) 18119 15605 21912 18324
PV in situ consumption 
rate (%) 54.84 47.23 66.32 55.46

Peak load (kW) 3944 4554 4170 4880
Load valley (kW) 1091 801 1128 780

Fig. 3.	 (Color online) Dynamic tariffs under strategy 1.
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	 In summary, uncoordinated EV charging creates peak-on-peak phenomena in the power grid, 
imposing higher requirements for supply stability and reliability. As an excellent adjustable load 
resource, EVs demonstrate multiple functions when fully utilizing their load characteristics. The 
reasonable scheduling of EV charging times can simultaneously enhance PV utilization and 
reduce grid peak-valley differences. The comparative analysis of scheduling results under 
different EV charging mode ratios and penetration rates indicates that coordinated charging 
based on electricity price response mechanisms, when combined with increased EV adoption, 
will further enhance the PV consumption ratio.

5.	 Conclusions

	 In this study, we proposed a multi-source sensor data-driven coordinated scheduling 
framework for EVs in smart microgrids to address operational challenges posed by high-
penetration distributed energy resources. On the basis of charging station operational data, EV 
mobility patterns under the effects of electricity price were derived. By integrating PV output 
sensor data and grid status parameters, the MDP-based EV scheduling model was designed to 
optimize system dynamics under various renewable energy conditions. Using the PPO algorithm, 
the proposed framework maximizes local PV consumption while maintaining grid stability. 
Comparative analyses were conducted on PV consumption ratios and load peak-valley 
differences across different EV charging modes and penetration rates. The key conclusions are 
summarized as follows:
(1)	The PPO-based MDP framework demonstrates exceptional adaptability in dynamic 

environments, exhibiting rapid convergence characteristics during training: The algorithm’s 
reward values stabilized after approximately 1000 training episodes in test scenarios, 
highlighting DRL’s potential for complex energy management tasks.

(2)	Uncoordinated EV charging exacerbates grid load peak-valley differences by 23.98%, while 
coordinated charging management not only mitigates this disparity but also enhances PV 
consumption by 2514 kWh. The potential for PV consumption further increases with higher 
EV penetration rates.

	 In conclusion, in this research, we established theoretical foundations and practical pathways 
for smart microgrid flexibility through the deep integration of multi-source sensor data and EV 
scheduling models. Future investigations will focus on developing more effective EV incentive 
mechanisms and optimizing energy storage configurations to achieve higher renewable energy 
utilization rates.
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