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microgrid operation optimization

In this study, we developed a collaborative scheduling model for electric vehicles (EVs) in
smart microgrids by integrating charging pile operational monitoring data, photovoltaic (PV)
output sensor data, and grid state sensing information. To address the operational optimization
challenges of microgrids with high distributed energy penetration, we established an EV
scheduling model. The system dynamics were characterized using a Markov decision process
framework, and the proximal policy optimization algorithm was applied to optimize strategies
that target maximum PV utilization. Research findings indicate that the coordinated charging of
a growing EV fleet, guided by price response patterns, serves to absorb excess solar power and
enhance PV utilization rates. These results validate the pivotal role of multimodal sensor data
fusion in enabling the flexible regulation of power systems, while providing methodological
support for optimizing sensor network deployment in the Internet of Energy Things.

1. Introduction

As the global energy structure undergoes accelerated transformation toward clean and
intelligent systems, the widespread adoption of electric vehicles (EVs) and the large-scale
integration of distributed renewable energy resources are profoundly reshaping traditional power
system operations.). While EVs represent a critical flexible load resource, their charging
behavior exhibits significant spatiotemporal randomness.?) Photovoltaic (PV) generation, being
weather-dependent, demonstrates inherent output volatility. The combined effect of these two
factors imposes substantial challenges on smart microgrids, including intensified difficulties in
supply—demand matching and the widening of load peak-valley disparities.) In this context, by
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leveraging advanced sensing and intelligent scheduling, collaborative optimization has emerged
as a pivotal solution for enhancing microgrid flexibility and renewable energy utilization.

The rapid advancement of sensor technologies provides innovative solutions to these
challenges.®”) In recent years, significant performance improvements have been achieved in
charging pile monitoring sensors, PV output sensing devices, and grid state perception
terminals.® For instance, high-precision current/voltage sensors (JSMSEMI: SACS756/AHBV-
4K/L3) enable the real-time monitoring of power demand fluctuations at charging stations.(®)
Environmental sensors with meteorological parameter monitoring functions can provide
accurate PV power generation forecasts, such as the seven-element weather sensor TH-WQX7.(7)
Smart meters further enhance system awareness by delivering real-time grid load feedback.®
The deployment of these sensing devices empowers microgrids to acquire multi-dimensional,
high-resolution operational data, thereby establishing the foundation for refined scheduling and
optimized energy management.®)

Current research in the field of EV charging scheduling primarily focuses on strategies
driven by a single data source. Demand response mechanisms form a core research direction,
extensively utilizing price elasticity coefficient matrices to establish correlations between user
behavior and price signals, guiding optimized charging behavior through dynamic pricing.(19 In
terms of modeling approaches, static planning methods are employed for the simplified analysis
of grid operational states and PV generation output, providing fundamental decision support for
system scheduling.(!) Traditional price-response mechanisms predominantly adopt linear
approximations or fixed elasticity coefficients to characterize the relationship between electricity
prices and charging demand, establishing an initial coupling framework between user behavior
and market signals.!? Regarding microgrid operational characteristics, current research has
examined the impact of PV’s intermittent generation patterns and the spatiotemporal randomness
of EV charging demands on system power balance, with studies analyzing their superposition
effects.(!3 In terms of technical implementation, a multi-data fusion framework integrating
charging pile operational data, PV sensor information, and grid state parameters is currently
being developed, with dynamic adaptive real-time scheduling strategies emerging as a key
research focus to enhance microgrid operational stability under complex conditions.

Deep reinforcement learning (DRL) has emerged as a cutting-edge tool for energy system
optimization due to its advantages in dynamic decision-making problems.!¥ Algorithms such as
Q-learning and Deep Deterministic Policy Gradient (DDPG) have been applied in scenarios
including residential energy management and microgrid economic dispatch.(!>) For example,
Xiong et al.'®) demonstrated significant performance improvements in community microgrid
regulation using the DDPG algorithm with an actor-critic framework for continuous action space
optimization. However, traditional DRL methods suffer from overestimation bias, which leads
to unstable policy convergence. To address this limitation, the twin delayed DDPG algorithm
enhances training stability through dual critic networks and delayed policy updates.!”-!®) The
applicability of the proximal policy optimization (PPO) algorithm for coordinated EV-PV
scheduling needs to be further validated in an energy system environment.

The rapid advancement of sensor technologies and materials has been instrumental in
addressing these challenges. For instance, high-precision current/voltage sensors, which utilize
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semiconductor-based sensing materials, enable the real-time monitoring of power fluctuations at
charging stations. Similarly, environmental sensors such as the multi-parameter weather sensor,
which incorporates advanced hygroscopic and thermosensitive materials, provide accurate
meteorological data essential for PV generation forecasting. These sensors, coupled with smart
meters equipped with micro-electromechanical systems (MEMS), form a robust sensing
infrastructure that captures high-resolution, multi-dimensional operational data. In this study,
we leverage such multi-source sensor data—including charging pile operational status, PV
output, and grid load—to drive the collaborative scheduling of EVs, thereby enhancing the
reliability and efficiency of microgrid operations.

In this study, we propose a collaborative scheduling model for EVs in smart microgrids. By
integrating multi-source sensor data, the model optimizes EV charging behavior under
electricity price response constraints, aiming to achieve the dual objectives of maximizing local
PV consumption and minimizing grid load peak-valley differences. Research findings validate
the potential of multi-source sensor data fusion in enabling flexible power system regulation,
offering new insights for optimal sensor network deployment and intelligent scheduling
algorithm design within the Internet of Energy Things framework. The contributions are as
follows:

* In this study, we constructed a collaborative EV scheduling model for smart microgrids,
integrating charging pile operational data, PV output sensor information, and grid state
parameters into a multi-source data-driven framework for coordinated optimization. Building
upon this foundation, a real-time scheduling strategy is proposed, which combines Markov
decision process (MDP) modeling with the PPO algorithm, enabling dynamic optimization
toward maximizing PV utilization.

* By developing an ordered EV charging model, we compared load peak-valley differences and
PV utilization rates under various EV charging patterns and penetration levels, offering
insights for system optimization.

The remaining sections are as follows. In Sect. 2, we describe the development of an EV
dispatch model considering the electricity price. In Sect. 3, we develop and solve the Markov
decision model. In Sect. 4, we conduct a detailed case study and analyze the simulation results.
In Sect. 5, we summarize the conclusions and outlook.

2. System Model

The smart microgrid system studied in this work contains PV generation, base load, and EV
charging load.

2.1 EV dispatch model considering electricity price laws
2.1.1 EV disordered charging distribution under the Monte Carlo method

The Monte Carlo method forms the analytical foundation for simulating and modeling the
stochastic charging behavior of EVs. Key determinants of EV load profiles include the vehicle
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owner’s daily travel distance, charging initiation time, and charging termination time. Statistical
analysis reveals that the probability density function governing EV daily mileage adheres to a
normal distribution pattern, as mathematically expressed in Eq. (1).
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The necessary charging power is calculated on the basis of daily travel distance, while the
corresponding charging duration is subsequently determined using this power value and the
charging efficiency, as mathematically represented in Eq. (2).
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The anticipated charging initiation time exhibits a normal distribution pattern, with its

corresponding probability density function mathematically represented as
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Then, the charging end time is

lend = tstare + Tcharge' (4)

2.1.2 EV user demand response model

Under the demand response framework, the charging behavior of EV clusters exhibits
spatiotemporal shifting characteristics affected by electricity price signals. To quantify the
dynamic correlation between electricity price and demand, in this section, we construct an
elasticity coefficient matrix.

Assume that the scheduling period is divided into 7 intervals, with the electricity price vector

-
denoted as pt=[pt’l,pt’2...pt’T] and the EV charging demand vector as

-
¢ [ 1 12 t,T
PEy _[pEV’pEV“'pEV] . The element ¢; of the elasticity coefficient matrix EeRPT

represents the intensity of the effect of electricity price change at interval j on the demand at
interval 7.
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Here, ¢; denotes the self-elasticity coefficient, ¢; denotes the cross-elasticity coefficient, and
P;;"IV and pt’j represent the load and price variations at time i, respectively.

By collecting historical data from charging stations over N days, we construct a sample
matrix. Within the scheduling period 7, with a time interval of 1 h, the load-price elasticity
coefficient matrix EPR based on real-time electricity prices is formulated as

1 &2 vt ér
g 6‘ oo g
EPR |72 722 2T ©6)
éry érp o érr
The change in user load after node i participates in DR is
Ap™
71
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where APf, is the load change matrix for DR users, AlelV is the load change at time ¢ = 1 for
node i, pglV is the initial load of node 7 at time ¢ = 1, and Apt’1 and p"! are the load change and
initial electricity price, respectively, after the user participates in DR at time # = 1.

The relationship between the electricity price after user participation in DR and the initial
electricity price, as well as the relationship between the active load after response and the initial
active load, is

t,i _ oL AL
PEv.pr = PEv —APgy

1 t,1 t,1 ®)
Ppr=P +—DP »

where pr’V pr and ptD’l}e represent the active power and electricity price after participating in
demand response, respectively.

2.2 Force modeling and constraints
2.2.1 PV generation model

The PV generation model serves to simulate the operational behavior and energy output
characteristics of solar PV systems. Under real-world operating conditions, the power output of
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PV systems is predominantly affected by ambient temperature and solar irradiance levels. The
mathematical relationship governing the output power generation can be expressed as

P15V ZAPVSGUr[l—VPV(Ts _Tst)]v ©)

where the output power Pp, of the PV generation system is determined by the following
parameters: the installed area of the PV array A py; the actual solar irradiance incident on the PV
module surface S;, the system’s reference efficiency and its temperature coefficient ypy, the
operating surface temperature of the PV cell 7, and the standard temperature 7,.

The difference between the PV power generation and the total load of electricity consumption
is reduced through EV charging scheduling, thus maximizing the PV consumption as shown in
the following equations:

23

Py = Z 5(P1§V — Bouq — Pry ): (10)
=0

l, Py =Pl —Phy >0
52{ ’ PV load EV > (11)

0, PIt’V _Pltoad _P]:t’V <0

where Pfy, is the amount of EV charging at the moment 7, B}, , is the base load of the microgrid
at the moment ¢, and ¢ ensures that the load will not be negative.

2.2.2 Constraints
2.2.2.1 Power balance constraint

The instantaneous generated power must equal the electrical load demand at all times.

Plf)ad +P}§V +PI§V,d =P12V +P]§ur (12)

is the amount of power purchased by

Here, Ppy 4 is the abandoned solar power amount and P,

the microgrid from the higher grid.
2.2.2.2 Electricity price constraint

Electricity tariffs must be bound within a defined range to equitably safeguard the interests
of both microgrid operators and EV users.

Poin < P' < Pinax (13)
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2.2.2.3 EV charging constraints

The EV charging load during the time period t must not exceed the predefined maximum
value, as mathematically constrained by Eq. (11). To guarantee that user charging requirements
are fully met, the aggregate charging power of EVs participating in demand response programs
must maintain equivalence with the baseline scenario without demand response participation.
Furthermore, the load shifting rate is subject to operational limits defined by Eqgs. (12) and (13),
while the EV charging power parameter is confined within specified operational boundaries as
per Eq. (14).

PIi‘V < Pli“V,max (14)
4 12 a t
ZPEV,regular = ZPEV,disregular (15)
t=0 t=0
Pey < PEV max (16)
SOCEV,W-,, <SOCp), < SOCEV,max 17)

3. PPO-based Markov Decision Model Solving
3.1 MDP formulation

The dynamic dispatch problem of EVs absorbing PV power discussed in Sect. 3 is formulated
as a MDP, a framework for modeling sequential decision-making under uncertainty. The core
components of our MDP framework and their interactions are defined as follows. The Agent (the
PPO-based scheduling algorithm) interacts with the Environment (the smart microgrid
comprising PV, base load, and EVs). At each time step, the Agent observes the complete state of
the environment (including load demand, PV output, and electricity price), based on which it
selects an Action (setting the dynamic electricity price and PV curtailment level). The
environment transitions to a new state, and the Agent receives a Reward that evaluates the
action’s effectiveness in maximizing PV consumption and minimizing grid fluctuations. This
cyclic interaction of state — action — reward — next state enables the agent to learn an optimal
scheduling policy through trial and error.

3.1.1 State design

In the dynamic scheduling problem of smart microgrids with EVs, the environmental state
space comprises load demand Pfoad, renewable energy generation output P,t;V, aggregate EV
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charging demand Pj,, real-time electricity price p, and PV curtailment quantity PIi,,, 4 The state
of the dynamic dispatch problem of EVs absorbing PV power is denoted as

S :[BZad’P}erplgVapt’P;’V,d}‘ (18)

3.1.2 Action design

The agent’s objective is to determine optimal electricity pricing p’ and PV curtailment levels
P}t’V,d’ accounting for EV charging demand being functionally dependent on electricity pricing.

o =0 Py 19

Here, actions a, € 4 satisfy all constraints of the EV dispatch problem P1. The electricity price p’
maintains operational integrity through Eq. (10)-enforced bounds p’ € [ Phiins Phiax ]

3.1.3 Reward function design

The agent receives a reward r, post-action @,, Dynamic EV scheduling leverages this
instantaneous incentive to

1 =P 1100 = 1,07, /1000, (20)

where P;i”” denotes total PV consumption and oy%md represents load standard deviation. Weight
coefficients 7, 7, balance the relative importance of these objectives, with value scaling factors
/100 and /1000. The constraints inherently satisfied during action execution are excluded from
the formulation. To minimize the exploration of constraint-violating decisions during agent
learning, violations of Eqs. (12)—(17) trigger substantial negative penalties: a large negative
constant is added to Eq. (20)’s instantaneous reward for the corresponding timestep.

3.2 PPO-based solution scheme
3.2.1 Policy interaction and trajectory generation

The PPO algorithm generates training data through real-time interactions between the agent
and the environment. At each time step ¢, the agent samples an action a, from the probability
distribution (typically assumed as Gaussian) output by the current policy network nty(a|s), given

the state s,.

a, ~mg(|s,) 2D
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Unlike off-policy algorithms, PPO adopts an on-policy learning mechanism, requiring the
historical interaction data to be cleared after each policy update and replaced with newly
collected trajectories 7 ={s,,q,,7,s,.;}. While this imposes higher demands on real-time
exploration, it avoids distributional shifts induced by experience replay mechanisms.

3.2.2 Advantage estimation and objective function design

The core of PPO lies in its clipped surrogate objective, which stabilizes policy updates by
constraining the divergence between old and new policies. First, the state value is estimated
using the critic network Vj(s), and the generalized advantage estimation computes the advantage
values.

T—t
A =00 6, 8, =1+ V(5,1 Vy(s,) (22)
[=0

Here, A €[0,1] balances bias and variance, and y is the discount factor.
The policy update objective restricts the ratio of new-to-old policy probabilities to prevent
abrupt policy changes.

LM (6) =T, minL—“"(“”sf) /Alt,clip(—ne(a’|St)),l—e,l+e}1:1tJ 23)

6, (a,[s) 6, (a5

Here, € is the clipping threshold that truncates extreme probability ratios to ensure smooth policy
updates. The critic network is optimized by minimizing the mean squared error of the value
function.

T—t
2" ($)=E, [(V¢ ()~ R, )2} Ro=Y 7" (24)
1=0

To enhance exploration, an entropy regularization term H(my(-|s,)) can be incorporated,
forming a composite loss function.

L= 4o £ — ), [H(mp(|5,)] (25)

3.2.3 Mini-batch multi-epoch parameter updates

PPO employs the mini-batch multi-epoch gradient ascent to improve data efficiency.
Specifically, complete trajectories are divided into mini-batches, and gradients are computed
iteratively over 3—4 epochs to fully exploit the data. This mechanism mitigates the low data
efficiency inherent in on-policy algorithms while preventing overfitting through limited update
cycles.



850 Sensors and Materials, Vol. 38, No. 2 (2026)

4. Case Analysis
4.1 Basic data

In this study, we employed real-world operational data from a Hebei Province, China
microgrid (2023) with 24 h dispatch cycles (7' = 24) at 1 h resolution. PV generation, base load,
electricity pricing, and EV charging datasets represent actual recorded values. To assess PPO
algorithm robustness within this framework, a solar curtailment penalty of 0.6 CNY/kWh is
implemented. To quantify the interdependencies between different EVs, the correlation
coefficients are presented in Table 1. The EV maximum load transfer rate is set to 0.3,
considering the factor of EV charging satisfaction. The electricity price for uncoordinated
charging is 0.8 CNY/(kWh).

4.2 Training process

All experiments were executed with a fixed random seed (42) applied to Python, NumPy, and
PyTorch; the dataset comprises real operational records from a Hebei Province microgrid in
2023 covering 24 h dispatch cycles (7= 24) at 1 h resolution, including PV generation, base load,
electricity price, and EV charging. The data processing pipeline is as follows: PV power is
obtained from hourly irradiance/temperature measurements and converted via the PV model;
load series are normalized (per-unit) with short gaps linearly interpolated to maintain hourly
alignment; electricity price follows recorded time-of-use tariffs with any missing values linearly
interpolated; and EV charging demand is generated via a Monte Carlo procedure consistent with
observed travel distance, arrival time, and charging duration distributions. These steps enable
the faithful replication and extension of our results under identical settings.

The simulations in this study are executed in Python 3.9.19 on a computer with an Intel Core
15-12400F @2.50 GHz CPU and 16 GB of RAM. The proposed PPO algorithm employs two
deep neural networks: an actor network for stochastic policy parameterization and a critic
network for state-value estimation. Both networks share identical hidden layer architectures,
consisting of an input layer, two fully connected hidden layers with 200 neurons each, and
rectified linear unit activation functions. The actor network processes the state space vector and
outputs parameters of a Gaussian distribution—specifically, the mean and log standard deviation

Table 1

EV parameters.

Parameter Value Unit
Average charge/discharge power 5 KW
Charge and discharge efficiency 0.9 %
Maximum daily mileage 350 kM
Battery capacity 45 kWh
Power consumption 7.5 km/kWh
socy) 100 %

sockr 20 %
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for each action dimension. The mean values are linearly activated to span the continuous action
space, while the log standard deviation is optimized independently to control exploration. Key
hyperparameters include a discount factor y = 0.99, a generalized advantage estimation
coefficient 1 = 0.95, and a clipping threshold € = 0.2 to constrain policy updates. The actor and
critic networks utilize Adam optimizers with learning rates of 3 x 107* and 1 x 1073, Entropy
regularization with a coefficient of 0.01 is applied to encourage exploration, penalizing overly
deterministic policies. Training proceeds via mini-batch gradient ascent over four epochs per
iteration, with a batch size of 64 trajectories. Observation normalization is implemented using
running mean and standard deviation to mitigate input scaling sensitivity, while early stopping
halts training if the average reward plateaus within a 1% tolerance for 10 consecutive epochs.
Figure 1 shows the convergence of the PPO scheduling algorithm through the training reward
curve. During initial exploration, the agent yields low immediate rewards due to the limited
prior knowledge of the environment. As training progresses, accumulated state-action
experience drives gradual performance improvement. The reward curve stabilizes after 1000
episodes, maintaining an average value of —1300, which confirms policy optimization
convergence and indicates the successful derivation of a near-optimal EV scheduling strategy.

4.3 Case setting

In this study, we established two scenarios with 400 and 600 EVs to analyze the impact of EV
quantity on PV consumption. By comparing two strategies within each scenario, we investigate
how different charging strategies affect PV utilization. The analysis employs PV generation
profiles and baseline load data from a typical summer day.

Strategy 1: Coordinated EV charging based on time-of-use electricity pricing

Strategy 2: Uncoordinated EV charging

=1100 -

~1200

=1300 1

-1400 4

reward

-1500

=1600

=1700 -

=1800 + original award
average reward

0 2500 5000 7500 10000 12500 15000 17500 20000
episode

Fig. 1. (Color online) Reward curve for the training process.
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In this section, we present simulation results of both uncoordinated and coordinated EV
charging loads. A comparative analysis is conducted to evaluate variations in PV consumption
levels and load peak-valley differences across distinct charging scenarios.

In this study, the peak load is defined as the maximum hourly load within the 24 h dispatch
cycle, and the valley load is the minimum hourly load value within the same cycle. No additional
smoothing was applied. The PV consumption was calculated as the total PV energy absorbed by
EV charging and base load, integrated over the entire 24 h scheduling horizon.

Figure 2 shows the load curves and charging volumes under coordinated and uncoordinated
charging cases for both EV fleet sizes. In Fig. 2(a), uncoordinated charging exhibits concentrated
power demand during 18:00-20:00 when the PV output is minimal, resulting in underutilized
solar generation. The coordinated strategy effectively shifts charging activities to midday peak
PV production hours, enhancing solar consumption efficiency. Figure 2(b) shows that with
increased EV adoption, the disparity between coordinated and uncoordinated load profiles
widens further, as higher charging volumes amplify the PV consumption improvement achieved
through strategic scheduling.

Quantitative evaluations of key performance indicators are presented in Table 2, using annual
charging cost data and summer seasonal load profiles. Uncoordinated charging exacerbates
peak-hour congestion by aligning with existing residential demand patterns, creating dual-peak
stress on grid operations. The late-evening peak tariff period (highest electricity price)

= =Load* eS| es—S3 [ |EV orderly charging [Jll EV disorderly charging

6000 | O 3000
=
E
=
o
=

~4000 1 — N

6000 - el mmnd RN

0 1 3 4 5 6 8 9 10 11 13 14 15 16 18 19 20 21 23
@
T g Ly pp—7 [ |EV orderly charging [Jll EV disorderly charging |

6000 ] 3000

4000 < 2500
= 1 =
'§ 2000 1 2000 c:é
3]
= 0 ] 11500 2
g l o0 ©
B~ _2000 - S < 1000

Q000 oo —Llr s EEENI (8§ 500

6000 Ll R iy s

0 1 3 4 5 6 8 9 10 11 13 14 15 16 18 19 20 21 23
Time/h
(b)

Fig. 2. (Color online) Comparison of different strategic load profiles and EV charging in two scenarios. (a) 400
EVs. (b) 600 EVs.
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Table 2

Comparison of parameters in different scenarios.

Parameter Strategy 1 (case 1)  Strategy 2 (case 1)  Strategy 1 (case 2)  Strategy 2 (case 2)
Annual costs for EV

users (CNY) 6088865 6488540 10058325 10805825

PV consumption (kWh) 18119 15605 21912 18324

PViin situ consumption 54.84 47.23 66.32 55.46
rate (%)

Peak load (kW) 3944 4554 4170 4880

Load valley (kW) 1091 801 1128 780

—— optimal price|

Price/eny
Power/kw

Time'h
Fig. 3. (Color online) Dynamic tariffs under strategy 1.

contributes to elevated charging costs, with total uncoordinated charging expenses reaching
6488540 CNY in case 1. Figure 3 shows the 24 h dynamic pricing under Strategy 1, showing
significant charging load migration to 11:00—13:00 when both solar generation and pricing are
optimal. This dual optimization achieves 2514 kW incremental PV consumption and 610 kWh
peak load reduction compared with Strategy 2, while decreasing the peak-valley difference by
900 kW. The coordinated approach demonstrates dual benefits: 399675 CNY cost savings
through valley-hour charging utilization and enhanced grid stability via peak-shaving and
valley-filling effects. These results confirm that strategic EV charging management
simultaneously improves renewable integration and operational efficiency in power systems.

Building upon case 1, case 2 further increases the number of EVs. With the growth of
charging load, the prescheduling PV consumption rate in case 2 rises to 55.46%, higher than
47.23% in case 1. However, uncoordinated charging leads to further elevation of grid load peaks.
After superimposing disorganized EV charging, the total load peak in case 2 reaches 4880 kW.
Through the scheduling and management of EV charging loads, the total peak load decreases to
4170 kW, while the PV consumption rate improves to 66.32%, representing a 10.86% increase
compared with the unscheduled condition. With the expansion of total schedulable loads, the
potential for PV consumption shows significant enhancement. Therefore, the increased EV
penetration rate in this region contributes to improved PV consumption levels.
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In summary, uncoordinated EV charging creates peak-on-peak phenomena in the power grid,
imposing higher requirements for supply stability and reliability. As an excellent adjustable load
resource, EVs demonstrate multiple functions when fully utilizing their load characteristics. The
reasonable scheduling of EV charging times can simultaneously enhance PV utilization and
reduce grid peak-valley differences. The comparative analysis of scheduling results under
different EV charging mode ratios and penetration rates indicates that coordinated charging
based on electricity price response mechanisms, when combined with increased EV adoption,
will further enhance the PV consumption ratio.

5. Conclusions

In this study, we proposed a multi-source sensor data-driven coordinated scheduling
framework for EVs in smart microgrids to address operational challenges posed by high-
penetration distributed energy resources. On the basis of charging station operational data, EV
mobility patterns under the effects of electricity price were derived. By integrating PV output
sensor data and grid status parameters, the MDP-based EV scheduling model was designed to
optimize system dynamics under various renewable energy conditions. Using the PPO algorithm,
the proposed framework maximizes local PV consumption while maintaining grid stability.
Comparative analyses were conducted on PV consumption ratios and load peak-valley
differences across different EV charging modes and penetration rates. The key conclusions are
summarized as follows:

(1) The PPO-based MDP framework demonstrates exceptional adaptability in dynamic
environments, exhibiting rapid convergence characteristics during training: The algorithm’s
reward values stabilized after approximately 1000 training episodes in test scenarios,
highlighting DRL’s potential for complex energy management tasks.

(2) Uncoordinated EV charging exacerbates grid load peak-valley differences by 23.98%, while
coordinated charging management not only mitigates this disparity but also enhances PV
consumption by 2514 kWh. The potential for PV consumption further increases with higher
EV penetration rates.

In conclusion, in this research, we established theoretical foundations and practical pathways
for smart microgrid flexibility through the deep integration of multi-source sensor data and EV
scheduling models. Future investigations will focus on developing more effective EV incentive
mechanisms and optimizing energy storage configurations to achieve higher renewable energy
utilization rates.
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