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The turnout switch rail is a type of variable-cross-section rail, and its irregular structural
characteristics result in complex ultrasonic guided wave detection signals. When employing the
reflection method to detect cracks in the rail base, the amplitude of the echo signal cannot
represent the size of the crack. To quantitatively analyze the crack signals, a method that
combines deep learning and ultrasonic guided wave technology is employed to quantitatively
assess the depth of cracks in the rail base of the turnout switch rail. By applying wavelet
transform to obtain wavelet time—frequency diagrams, four deep learning models—GoogLeNet,
Mobilenetvl, Mobilenetv2, and Mobilenetv3—are utilized to classify the depth of cracks in the
rail base, and the performance of these models is assessed using experimental data. The
experimental results show that the combination of the Mobilenetv3 deep learning model and
ultrasonic guided wave technology achieves a 95% recognition accuracy for the quantitative
detection of cracks in the rail base of turnout switch rails. This research work provides a
foundation for the feasibility and reliability of combining deep learning models with ultrasonic
guided wave technology for the quantitative detection of crack depths in turnout switch rails.

1. Introduction

The turnout switch rail constitutes a critical element within railway track transition systems.
During operational service, it experiences environmental temperature variations and train loads,
which may frequently result in surface and internal defects. Among these, defects in the rail base
are predominant and remain challenging to detect using conventional ultrasonic testing methods.

To prevent train derailment incidents, nondestructive testing methods are essential for
assessing railway track safety conditions. Common rail damage detection methodologies include
eddy current testing,1? magnetic flux leakage testing,®) machine vision,*> radiographic
testing,©®) laser ultrasonic testing,("® and ultrasonic testing.®)) These techniques typically require
extended inspection periods and may disrupt regular train operations.
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Ultrasonic guided wave technology!%!) offers an extensive detection range with minimal
attenuation, enabling long-range, large-area rail inspection. Although possessing a century-long
history, its application to rail inspection has only emerged within the last two decades. Research
in this domain has yielded significant advancements: de Abreu(!? and Mariani and co-
workers(13:19) designed air-coupled ultrasonic transducers to excite rail head guided waves and
capture corresponding echo signals, employing data analysis techniques for feature extraction;
di Scalea and Xuan(!>-19) developed a methodology utilizing wheel-rail noise signals, applying
deconvolution to eliminate stochastic effects and reconstruct stable track acoustic transfer
functions for health monitoring, enabling defect detection in rail joints and welds; Lee et al.(17)
established a nonlinear guided wave approach for steel fatigue crack identification using second-
harmonic-based nonlinear indices, demonstrating capability in detecting crack initiation and
propagation at rail joints; Sadeghi and Rahimizadeh("® formulated a novel rail condition index
incorporating both surface/visual defects and all documented internal defects, utilizing data
from visual inspections and automated ultrasonic measurements.

Given rail structural complexity, ultrasonic guided wave signals exhibit dispersion and mode
conversion during propagation, necessitating signal processing to isolate specific modes.
Established processing techniques include time-domain analysis, frequency-domain analysis,
and wavelet transforms. The integration of deep learning(!®) and machine learning algorithms2?
with ultrasonic guided wave technology represents an emerging research focus. Deng et al.?)
implemented segmented Principal Components Analysis (PCA) to extract features from
ultrasonic guided waves received at multiple rail head positions, achieving classification and
identification of rail head defects.

Compared with traditional machine learning, deep learning algorithms in image classification
and rail defect detection bypass the need for manual feature extraction, instead autonomously
learning features through networks. This substantially enhances algorithmic versatility and
facilitates high-precision, efficient online rail damage assessment. We propose integrating deep
learning models with ultrasonic guided wave technology to identify crack depths in turnout
switch rail bases.

2. Detection Principle and Dataset Acquisition
2.1 Detection principle

Turnout switch rails are characterized by a continuously varying cross section, which causes
complex reflections, scattering, and mode conversions in propagating ultrasonic guided waves.
These phenomena result in significant background clutter interference, thereby complicating the
detection of defects. To overcome these challenges and effectively detect damage in critical
areas, particularly the variable-cross-section working edges, the reflection wave method is
employed. In this method, ultrasonic guided wave sensors are installed at the root end of the
switch rail.

In the reflection wave method, ultrasonic sensors are placed on the same side of the rail to
detect defects by capturing the echoes they generate, as illustrated in Fig. 1. When ultrasonic



Sensors and Materials, Vol. 38, No. 2 (2026) 859

— =
e — S E—— =

o
T Side view of rail defect

—ri ==

Bottom view of rail

Fig. 1. (Color online) Schematic diagram of the reflection wave method detection principle.

guided waves encounter an abrupt change in the rail medium, such as a defect, an echo is
produced. The extent of the damage can be determined by analyzing the energy of the defect
echo. Furthermore, the location of the defect is determined from the time delay of the echo and
the known propagation speed of the guided wave. Considering the limited length of the switch
rail and the minimal requirement for precise crack localization, the primary focus of this work is
the quantitative analysis of cracks in turnout switch rails.

2.2 Dataset acquisition

Figure 2 shows a schematic of the experimental system for detecting rail damage using
ultrasonic guided waves. The key components include a signal generator, power amplifier,
transmitting sensor, rail, receiving sensor, signal conditioner, digital oscilloscope, and computer.

The system operates as follows. The signal generator produces a Hanning-modulated, five-
cycle sinusoidal excitation signal at a center frequency of 65 kHz. This signal is amplified by the
power amplifier and sent to the transmitting sensor. The sensors employ piezoelectric ceramics
as the energy conversion device, offering high sensitivity and efficient transduction for precise
wave detection. They are mounted at a 45° incident angle on the rail bottom using metal fixtures
with Vaseline as the coupling agent. The transmitting sensor generates ultrasonic guided waves
that propagate along the rail. The receiving sensor detects these waves, which are then
conditioned, acquired by the oscilloscope, and transferred to the computer for analysis.

In the experiment designed to detect cracks in the rail base of a turnout switch rail using
ultrasonic guided waves, the switch rail was configured with a length of 8 m. Cracks were
artificially introduced on the nonmachined side of the rail base, positioned at a distance of 2.3 m
from the tip of the switch rail and 5.7 m from the excitation position. These cracks were
configured as 90° through-cracks with depths of 0 mm (representing the undamaged condition)
and from 1 to 12 mm in steps of 1 mm, with a uniform width of 1.0 mm. For each crack depth,
200 sets of signal data were acquired. The process of damage is depicted in Fig. 3.

To simulate noise effects present under actual operating conditions, data augmentation was
employed by incorporating Gaussian white noise with variances of 0.1, 0.2, and 0.3 into the
original dataset. This process expanded the dataset to a total of 2,600 signal sets, encompassing
both undamaged and damaged conditions. Subsequently, the augmented dataset was randomly
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Fig. 2.  (Color online) Schematic diagram of the turnout switch rail base crack detection system based on ultrasonic
guided waves.

Receiver transducer and excitation "-
transducer positions

Fig. 3. Schematic diagram of crack processing in the rail base of the turnout switch rail.

divided into training and test sets in an 8:2 ratio, comprising 2080 and 520 signal sets,
respectively. Furthermore, to validate the model’s accuracy, artificial damage was induced in
another switch rail under identical conditions. Data were collected for 13 conditions,
encompassing 12 damage types and the undamaged state, with 50 sets per type, totaling 650
sets, which served as experimental validation sets.

3. Signal Processing Methods
3.1 Wavelet transform algorithm

In comparison with the short-time Fourier transform (STFT), the wavelet transform algorithm
transforms time-domain waveforms into time—frequency domain representations, offering
enhanced capabilities for time—frequency analysis. Consequently, ultrasonic rail signals are
converted into time—frequency domain images via the wavelet transform algorithm to facilitate
the extraction of crack-related features in the rail base.
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The selection of the wavelet basis function, denoted as X(f), is paramount in the wavelet
transform algorithm. For continuous ultrasonic rail signals x(f), the continuous wavelet transform
is mathematically expressed as

CWT (@)= [ X)X (s py (011 M

where a represents the scale factor (@ > 0), and § denotes the time-shift factor. X'(¢) is the
complex conjugate of the wavelet basis function X(¢). The choice of an appropriate wavelet basis
function is crucial when applying the continuous wavelet transform to ultrasonic rail signals, as
it directly impacts the effectiveness of extracting crack features from the rail base.

Among the commonly used wavelet basis functions—such as Morlet, Coiflet (Coif),
Daubechies 4 (Db4), and Meyer—we select the Coiflet wavelet basis function to transform
ultrasonic rail signals into the time—frequency domain. This selection is based on its suitability
for capturing the transient features of ultrasonic signals in rail damage detection.

3.2 GoogLeNet learning model

The GoogLeNet network model,(?? which achieved victory in the 2014 ImageNet
competition, incorporates the Inception module. This module improves the classification
accuracy of the network model while decreasing the number of parameters, as illustrated in Fig.
4. GoogLeNet enhances the Inception Model A to develop the improved Inception Model B
[depicted in Fig. 4(b)]. Inception Model A primarily employs dense components to approximate
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Fig. 4. Inception model and improved inception model
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the optimal local sparse structure. In contrast, the enhanced Inception Model B significantly
improves the feature extraction capability of convolutions without increasing the computational
load of the model. Research results suggest that networks utilizing the Inception module can
experience a 2—3-fold increase in operational speed.

3.3 MobileNetvl learning model

In 2017, Google developed the lightweight MobileNetvl model to facilitate the real-time
application of deep learning network models on mobile devices.*?) The MobileNetvl model
decreases computational complexity while preserving accuracy and detection speed. It utilizes a
streamlined architecture, employing depthwise separable convolutions and incorporating
hyperparameters a and £ to improve model performance. For a 128 x 128 pixel, three-channel
color image (dimensions: 128 x 128 x 3), conventional convolutional neural networks generally
necessitate four convolutional layers with filters, generating four feature maps, as depicted in
Fig. 5.

In contrast, depthwise convolution applies a separate filter to each input channel, processing
each channel independently. For an input image of dimensions 128 x 128 x 3, depthwise
convolution involves a two-dimensional convolution on each channel, producing a set of feature
maps corresponding to each input channel, as illustrated in Fig. 6(a). Subsequently, pointwise

3-channel input Filters*4 Image*4

"

Fig. 5. Schematic diagram of conventional convolution

[mmmmmm
3-channel input Filters*3

Fig. 6. Schematic diagrams of (a) depthwise convolution and (b) pointwise convolution.
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convolution, utilizing 1 x 1 filters, combines these feature maps to generate the final output
channels, a process akin to conventional convolution but with reduced complexity.

Depthwise separable convolution integrates these two steps: depthwise convolution to filter
each input channel separately, followed by pointwise convolution to merge the resulting feature
maps. The computational efficiency of this approach is demonstrated through the following
calculations for a scenario with a 3 x 3 filter and four output channels.

Depthwise separable convolution consists of two steps: depthwise convolution and pointwise
convolution, as illustrated in Fig. 6. The computational loads can be calculated as follows.

Computational load for conventional convolution: C =4 x 3 x 3 x 3 =108

Computational load for depthwise convolution: D =3 x 3 x 3 =27

Computational load for pointwise convolution: P=1 x 1 x3 x4 =12

Total computational load for depthwise separable convolution: S=D + P = 39

Thus, depthwise separable convolution reduces the computational load to approximately one-
third of that required by conventional convolution This significant reduction in computational
complexity enables neural networks employing depthwise separable convolution to incorporate
deeper architectures.

3.4 MobileNetv2 learning model

The MobileNetV2 model,>» an extension of the MobileNetV1 architecture, is designed to
optimize performance for mobile and embedded vision applications. Traditional residual
structures typically employ a compress-then-expand approach, reducing the number of channels
in the feature map via convolutional layers and subsequently expanding them, as depicted in Fig.
7(a). In contrast, MobileNetV2’s inverted residual structure utilizes an expand-then-compress
strategy, characterized by narrower input and output dimensions with a wider intermediate
dimension, as illustrated in Fig. 7(b).

Inverted Residusl Block

Fig. 7. (a) Residual module. (b) Inverted residual module.
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MobileNetV2, similar to MobileNetV1, employs depthwise separable convolutions, which
consist of depthwise and pointwise convolution operations. Furthermore, MobileNetV2
incorporates the ReLU6 activation function within its inverted residual blocks, as defined below.

Relu6 = min(max(0, x)) )

3.5 MobileNetv3 learning model

In comparison with the block structure of MobileNetV2, as illustrated in Fig. 8(a), the block
structure of MobileNetV3,2% depicted in Fig. 6(b), incorporates a squeeze-and-excitation (SE)
module and employs modified activation functions. The activation functions utilized in
MobileNetV3 primarily consist of Hard-Swish and ReLU. Specifically, the Hard-Swish
activation function serves as an optimized variant of the Swish activation function. Although the
Swish activation function demonstrates superior performance relative to ReLU, it is
characterized by increased computational complexity and greater resource demands. To address
these challenges, MobileNetV3 employs the Hard-Swish activation function, which leverages
ReLU6 to approximate Swish effectively, thereby mitigating precision loss during computation.
This approach not only reduces computational complexity but also enhances inference speed and
supports the quantization process of the MobileNetV3 model. The Hard-Swish activation
function is expressed as

Swish =x*o(x) 3)
H—Swish=x*w. “)

Fig. 8.  Schematic diagrams of (a) MobileNet V2 module and (b) MobileNet V3 module.
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4. Data Processing and Results

As the crack depth in the rail base (0, 4, 8, 12 mm) changes, the signal waveforms of the
received ultrasonic guided waves are as presented in Fig. 9. With increasing crack depth in the
rail base of the switch rail from O to 12 mm, the temporal variations in the ultrasonic signal
remain minimal. This phenomenon is primarily attributed to the dispersion of various wave
modes during the propagation of ultrasonic guided waves in the rail, accompanied by mode
conversions. These factors pose significant challenges to detecting cracks in the rail base
employing ultrasonic guided wave techniques.

Figure 10 shows time-frequency diagrams generated from the application of wavelet
transform to ultrasonic signals corresponding to four distinct crack depths (0, 4, 8, 12 mm) in the
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Fig. 9. (Color online) (a) Overall signal time-domain diagram and (b) local time-domain diagram of damage echo.
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rail base of a switch rail. As depicted in Fig. 10, the energy distribution in the time—frequency
spectrum of ultrasonic guided wave signals for various crack depths is predominantly
concentrated around 65 kHz, with variations observed in the energy distribution across different
time points. Despite discernible differences in the time—frequency spectrum energy distribution
across crack depths, the precise quantification of crack depth remains challenging. Consequently,
in this study, we utilize wavelet time—frequency diagrams as input data for deep learning models
to facilitate the accurate identification of crack depths.

We employ four deep learning models—GoogLeNet, MobileNetvl, MobileNetv2, and
MobileNetv3—to train on a simulated dataset for detecting cracks in the rail base of turnout
switch rails.

Figure 11(a) shows the accuracy curves. The accuracy of all models rises with the number of
training iterations. MobileNetvl improves the slowest, reaching a maximum of 0.92 (Fig. 11,
Table 1). MobileNetv2 increases faster and outperforms Googl.eNet. MobileNetv3 converges the
fastest, achieving 0.975 (Fig. 11, Table 1).

Figure 11(b) presents the loss curves. The losses of all models decrease with the number of
iterations. The loss of MobileNetvl declines the slowest, reaching ~0.18. That of MobileNetv2
decreases faster and is less than that of GoogleNet. The loss of MobileNetv3 decreases the
fastest, reaching 0.02.

As evidenced by Fig. 12, the MobileNetv3 model utilized in this investigation demonstrates
superior stability and accuracy in identifying the depth of crack damage in the rail base of
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Fig. 11. (Color online) (a) Accuracy curves and (b) loss rate curfves of deep learning models GoogLeNet,
MobileNetvl, MobileNetv2, and MobileNetv3.

Table 1

Performance of four deep learning models.

Algorithm performance Accuracy Precision Recall F1 Score
GoogLeNet 0.953 0.967 0.957 0.965
MobilenetV1 0.920 0.924 0.917 0.920
MobilenetV2 0.971 0.972 0.976 0.977

MobilenetV3 0.975 0.985 0.977 0.984
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turnout switch rails. The overall performance of the models decreases in the sequence of
MobileNetv3, MobileNetv2, GoogleNet, and MobileNetvl. Consequently, the MobileNetv3
deep learning model exhibits the highest recognition performance among the evaluated models.

5. Experimental Validation

Wavelet time—frequency diagrams derived from artificial damage data, collected under
identical conditions from another switch rail on the same line, served as input for the deep
learning models to identify cracks in the rail base. The final results, generated by the four deep
learning models—GooglLeNet, MobileNetvl, MobileNetv2, and MobileNetv3—are presented in
Fig. 13.

J-channel input Filters*4 Image*4

Fig. 12. (Color online) Performance metrics (accuracy, precision, recall, and F1 score) of GoogLeNet, MobileNetvl,
MobileNetv2, and MobileNetv3 models.
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Fig. 13. (Color online) Output results of four deep learning models.
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Table 2

Model prediction accuracy and performance.

Algorithm performance  Accuracy (0.3 mm) RMSE
GoogLeNet 0.798 0.890

MobilenetV1 0.709 0.983

MobilenetV2 0.906 0.453

MobilenetV3 0.957 0.310

The experimental dataset comprises 50 sets of data for each damage type, totaling 650 sets of
damage data. In terms of stability and accuracy in crack identification, the MobileNetv3 model
demonstrates superior performance relative to the other models. Employing an expected
prediction interval of £0.3 mm of actual damage, the MobileNetv3 model achieves the highest
prediction accuracy as measured by the root mean square error (RMSE). Table 2 lists the
prediction accuracies of the four models, with their performances evaluated using the RMSE
metric.

6. Conclusions

A method integrating the MobileNetv3 deep learning model with ultrasonic guided waves
was proposed for the quantitative assessment of crack depth in the rail base of turnout switch
rails. Initially, an ultrasonic guided wave detection system was established to acquire ultrasonic
guided wave signals from the rail base. These signals were subsequently processed via wavelet
transform to generate time—frequency diagrams. To enhance the generalization capability of the
deep learning model and ensure robustness under real-world noise conditions, we employed data
augmentation by incorporating Gaussian white noise with variances of 0.1, 0.2, and 0.3 into the
original dataset. The augmented image samples were then randomly divided into training and
test sets in an 8:2 ratio. Finally, the performance of four deep learning models—GoogLeNet,
MobileNetvl, MobileNetv2, and MobileNetv3—was evaluated using experimental data from
cracks in another switch rail of the same turnout. The results indicated that the proposed method,
which combines the MobileNetv3 deep learning model with ultrasonic guided waves,
demonstrates superior performance in the quantitative assessment of crack depth in the rail base.
This approach facilitates the precise quantitative evaluation of crack depth in the rail base of
turnout switch rails.

In future work, we plan to extend the validation of our method by incorporating field-
collected data from in-service turnout switch rails exhibiting natural cracks. These cracks,
formed under long-term operational conditions involving temperature variations and dynamic
train loads, may present more irregular morphologies. By augmenting the dataset with such real-
world samples, we aim to further assess and enhance the model’s robustness and practical
relevance for railway safety monitoring.
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