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	 The turnout switch rail is a type of variable-cross-section rail, and its irregular structural 
characteristics result in complex ultrasonic guided wave detection signals. When employing the 
reflection method to detect cracks in the rail base, the amplitude of the echo signal cannot 
represent the size of the crack. To quantitatively analyze the crack signals, a method that 
combines deep learning and ultrasonic guided wave technology is employed to quantitatively 
assess the depth of cracks in the rail base of the turnout switch rail. By applying wavelet 
transform to obtain wavelet time–frequency diagrams, four deep learning models—GoogLeNet, 
Mobilenetv1, Mobilenetv2, and Mobilenetv3—are utilized to classify the depth of cracks in the 
rail base, and the performance of these models is assessed using experimental data. The 
experimental results show that the combination of the Mobilenetv3 deep learning model and 
ultrasonic guided wave technology achieves a 95% recognition accuracy for the quantitative 
detection of cracks in the rail base of turnout switch rails. This research work provides a 
foundation for the feasibility and reliability of combining deep learning models with ultrasonic 
guided wave technology for the quantitative detection of crack depths in turnout switch rails.

1.	 Introduction

	 The turnout switch rail constitutes a critical element within railway track transition systems. 
During operational service, it experiences environmental temperature variations and train loads, 
which may frequently result in surface and internal defects. Among these, defects in the rail base 
are predominant and remain challenging to detect using conventional ultrasonic testing methods.
	 To prevent train derailment incidents, nondestructive testing methods are essential for 
assessing railway track safety conditions. Common rail damage detection methodologies include 
eddy current testing,(1,2) magnetic flux leakage testing,(3) machine vision,(4,5) radiographic 
testing,(6) laser ultrasonic testing,(7,8) and ultrasonic testing.(9) These techniques typically require 
extended inspection periods and may disrupt regular train operations.
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	 Ultrasonic guided wave technology(10,11) offers an extensive detection range with minimal 
attenuation, enabling long-range, large-area rail inspection. Although possessing a century-long 
history, its application to rail inspection has only emerged within the last two decades. Research 
in this domain has yielded significant advancements: de Abreu(12) and Mariani and co-
workers(13,14) designed air-coupled ultrasonic transducers to excite rail head guided waves and 
capture corresponding echo signals, employing data analysis techniques for feature extraction; 
di Scalea and Xuan(15,16) developed a methodology utilizing wheel–rail noise signals, applying 
deconvolution to eliminate stochastic effects and reconstruct stable track acoustic transfer 
functions for health monitoring, enabling defect detection in rail joints and welds; Lee et al.(17) 
established a nonlinear guided wave approach for steel fatigue crack identification using second-
harmonic-based nonlinear indices, demonstrating capability in detecting crack initiation and 
propagation at rail joints; Sadeghi and Rahimizadeh(18) formulated a novel rail condition index 
incorporating both surface/visual defects and all documented internal defects, utilizing data 
from visual inspections and automated ultrasonic measurements.
	 Given rail structural complexity, ultrasonic guided wave signals exhibit dispersion and mode 
conversion during propagation, necessitating signal processing to isolate specific modes. 
Established processing techniques include time-domain analysis, frequency-domain analysis, 
and wavelet transforms. The integration of deep learning(19) and machine learning algorithms(20) 
with ultrasonic guided wave technology represents an emerging research focus. Deng et al.(21) 
implemented segmented Principal Components Analysis (PCA) to extract features from 
ultrasonic guided waves received at multiple rail head positions, achieving classification and 
identification of rail head defects.
	 Compared with traditional machine learning, deep learning algorithms in image classification 
and rail defect detection bypass the need for manual feature extraction, instead autonomously 
learning features through networks. This substantially enhances algorithmic versatility and 
facilitates high-precision, efficient online rail damage assessment. We propose integrating deep 
learning models with ultrasonic guided wave technology to identify crack depths in turnout 
switch rail bases.

2.	 Detection Principle and Dataset Acquisition

2.1	 Detection principle

	 Turnout switch rails are characterized by a continuously varying cross section, which causes 
complex reflections, scattering, and mode conversions in propagating ultrasonic guided waves. 
These phenomena result in significant background clutter interference, thereby complicating the 
detection of defects. To overcome these challenges and effectively detect damage in critical 
areas, particularly the variable-cross-section working edges, the reflection wave method is 
employed. In this method, ultrasonic guided wave sensors are installed at the root end of the 
switch rail.
	 In the reflection wave method, ultrasonic sensors are placed on the same side of the rail to 
detect defects by capturing the echoes they generate, as illustrated in Fig. 1. When ultrasonic 
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guided waves encounter an abrupt change in the rail medium, such as a defect, an echo is 
produced. The extent of the damage can be determined by analyzing the energy of the defect 
echo. Furthermore, the location of the defect is determined from the time delay of the echo and 
the known propagation speed of the guided wave. Considering the limited length of the switch 
rail and the minimal requirement for precise crack localization, the primary focus of this work is 
the quantitative analysis of cracks in turnout switch rails.

2.2	 Dataset acquisition

	 Figure 2 shows a schematic of the experimental system for detecting rail damage using 
ultrasonic guided waves. The key components include a signal generator, power amplifier, 
transmitting sensor, rail, receiving sensor, signal conditioner, digital oscilloscope, and computer.
	 The system operates as follows. The signal generator produces a Hanning-modulated, five-
cycle sinusoidal excitation signal at a center frequency of 65 kHz. This signal is amplified by the 
power amplifier and sent to the transmitting sensor. The sensors employ piezoelectric ceramics 
as the energy conversion device, offering high sensitivity and efficient transduction for precise 
wave detection. They are mounted at a 45° incident angle on the rail bottom using metal fixtures 
with Vaseline as the coupling agent. The transmitting sensor generates ultrasonic guided waves 
that propagate along the rail. The receiving sensor detects these waves, which are then 
conditioned, acquired by the oscilloscope, and transferred to the computer for analysis.
	 In the experiment designed to detect cracks in the rail base of a turnout switch rail using 
ultrasonic guided waves, the switch rail was configured with a length of 8 m. Cracks were 
artificially introduced on the nonmachined side of the rail base, positioned at a distance of 2.3 m  
from the tip of the switch rail and 5.7 m from the excitation position. These cracks were 
configured as 90° through-cracks with depths of 0 mm (representing the undamaged condition) 
and from 1 to 12 mm in steps of 1 mm, with a uniform width of 1.0 mm. For each crack depth, 
200 sets of signal data were acquired. The process of damage is depicted in Fig. 3.
	 To simulate noise effects present under actual operating conditions, data augmentation was 
employed by incorporating Gaussian white noise with variances of 0.1, 0.2, and 0.3 into the 
original dataset. This process expanded the dataset to a total of 2,600 signal sets, encompassing 
both undamaged and damaged conditions. Subsequently, the augmented dataset was randomly 

Fig. 1.	 (Color online) Schematic diagram of the reflection wave method detection principle.
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divided into training and test sets in an 8:2 ratio, comprising 2080 and 520 signal sets, 
respectively. Furthermore, to validate the model’s accuracy, artificial damage was induced in 
another switch rail under identical conditions. Data were collected for 13 conditions, 
encompassing 12 damage types and the undamaged state, with 50 sets per type, totaling 650 
sets, which served as experimental validation sets.

3.	 Signal Processing Methods

3.1	 Wavelet transform algorithm

	 In comparison with the short-time Fourier transform (STFT), the wavelet transform algorithm 
transforms time-domain waveforms into time–frequency domain representations, offering 
enhanced capabilities for time–frequency analysis. Consequently, ultrasonic rail signals are 
converted into time–frequency domain images via the wavelet transform algorithm to facilitate 
the extraction of crack-related features in the rail base.

Fig. 2.	 (Color online) Schematic diagram of the turnout switch rail base crack detection system based on ultrasonic 
guided waves.

Fig. 3.	 Schematic diagram of crack processing in the rail base of the turnout switch rail.
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	 The selection of the wavelet basis function, denoted as X(t), is paramount in the wavelet 
transform algorithm. For continuous ultrasonic rail signals x(t), the continuous wavelet transform 
is mathematically expressed as 

	 *
( , )( , ) ( ) ( )xT x t X t dtα βα

α β
+∞

−
= ∫CW ,	 (1)

where a  represents the scale factor (a > 0), and β denotes the time-shift factor. X*(t) is the 
complex conjugate of the wavelet basis function X(t). The choice of an appropriate wavelet basis 
function is crucial when applying the continuous wavelet transform to ultrasonic rail signals, as 
it directly impacts the effectiveness of extracting crack features from the rail base.
	 Among the commonly used wavelet basis functions—such as Morlet, Coiflet (Coif), 
Daubechies 4 (Db4), and Meyer—we select the Coiflet wavelet basis function to transform 
ultrasonic rail signals into the time–frequency domain. This selection is based on its suitability 
for capturing the transient features of ultrasonic signals in rail damage detection.

3.2	 GoogLeNet learning model

	 The GoogLeNet network model,(22) which achieved victory in the 2014 ImageNet 
competition, incorporates the Inception module. This module improves the classification 
accuracy of the network model while decreasing the number of parameters, as illustrated in Fig. 
4. GoogLeNet enhances the Inception Model A to develop the improved Inception Model B 
[depicted in Fig. 4(b)]. Inception Model A primarily employs dense components to approximate 

Fig. 4.	 Inception model and improved inception model



862	 Sensors and Materials, Vol. 38, No. 2 (2026)

the optimal local sparse structure. In contrast, the enhanced Inception Model B significantly 
improves the feature extraction capability of convolutions without increasing the computational 
load of the model. Research results suggest that networks utilizing the Inception module can 
experience a 2–3-fold increase in operational speed.

3.3	 MobileNetv1 learning model

	 In 2017, Google developed the lightweight MobileNetv1 model to facilitate the real-time 
application of deep learning network models on mobile devices.(23) The MobileNetv1 model 
decreases computational complexity while preserving accuracy and detection speed. It utilizes a 
streamlined architecture, employing depthwise separable convolutions and incorporating 
hyperparameters a and β to improve model performance. For a 128 × 128 pixel, three-channel 
color image (dimensions: 128 × 128 × 3), conventional convolutional neural networks generally 
necessitate four convolutional layers with filters, generating four feature maps, as depicted in 
Fig. 5.
	 In contrast, depthwise convolution applies a separate filter to each input channel, processing 
each channel independently. For an input image of dimensions 128 × 128 × 3, depthwise 
convolution involves a two-dimensional convolution on each channel, producing a set of feature 
maps corresponding to each input channel, as illustrated in Fig. 6(a). Subsequently, pointwise 

Fig. 5.	 Schematic diagram of conventional convolution

Fig. 6.	 Schematic diagrams of (a) depthwise convolution and (b) pointwise convolution.
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convolution, utilizing 1 × 1 filters, combines these feature maps to generate the final output 
channels, a process akin to conventional convolution but with reduced complexity.
	 Depthwise separable convolution integrates these two steps: depthwise convolution to filter 
each input channel separately, followed by pointwise convolution to merge the resulting feature 
maps. The computational efficiency of this approach is demonstrated through the following 
calculations for a scenario with a 3 × 3 filter and four output channels.
	 Depthwise separable convolution consists of two steps: depthwise convolution and pointwise 
convolution, as illustrated in Fig. 6. The computational loads can be calculated as follows.
	 Computational load for conventional convolution: C = 4 × 3 × 3 × 3 = 108
	 Computational load for depthwise convolution: D = 3 × 3 × 3 = 27
	 Computational load for pointwise convolution: P = 1 × 1 × 3 × 4 = 12
	 Total computational load for depthwise separable convolution: S = D + P = 39
	 Thus, depthwise separable convolution reduces the computational load to approximately one-
third of that required by conventional convolution This significant reduction in computational 
complexity enables neural networks employing depthwise separable convolution to incorporate 
deeper architectures.

3.4	 MobileNetv2 learning model

	 The MobileNetV2 model,(24) an extension of the MobileNetV1 architecture, is designed to 
optimize performance for mobile and embedded vision applications. Traditional residual 
structures typically employ a compress-then-expand approach, reducing the number of channels 
in the feature map via convolutional layers and subsequently expanding them, as depicted in Fig. 
7(a). In contrast, MobileNetV2’s inverted residual structure utilizes an expand-then-compress 
strategy, characterized by narrower input and output dimensions with a wider intermediate 
dimension, as illustrated in Fig. 7(b).

Fig. 7.	 (a) Residual module. (b) Inverted residual module.
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	 MobileNetV2, similar to MobileNetV1, employs depthwise separable convolutions, which 
consist of depthwise and pointwise convolution operations. Furthermore, MobileNetV2 
incorporates the ReLU6 activation function within its inverted residual blocks, as defined below.

	 6 min(max(0, ))Relu x= 	 (2)

3.5	 MobileNetv3 learning model

	 In comparison with the block structure of MobileNetV2, as illustrated in Fig. 8(a), the block 
structure of MobileNetV3,(25) depicted in Fig. 6(b), incorporates a squeeze-and-excitation (SE) 
module and employs modified activation functions. The activation functions utilized in 
MobileNetV3 primarily consist of Hard-Swish and ReLU. Specifically, the Hard-Swish 
activation function serves as an optimized variant of the Swish activation function. Although the 
Swish activation function demonstrates superior performance relative to ReLU, it is 
characterized by increased computational complexity and greater resource demands. To address 
these challenges, MobileNetV3 employs the Hard-Swish activation function, which leverages 
ReLU6 to approximate Swish effectively, thereby mitigating precision loss during computation. 
This approach not only reduces computational complexity but also enhances inference speed and 
supports the quantization process of the MobileNetV3 model. The Hard-Swish activation 
function is expressed as

	 * ( )Swish x xσ= 	 (3)

	 6( 3)*
6

Relu xH Swish x +
− = .	 (4)

Fig. 8.	  Schematic diagrams of (a) MobileNet V2 module and (b) MobileNet V3 module.
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4.	 Data Processing and Results

	 As the crack depth in the rail base (0, 4, 8, 12 mm) changes, the signal waveforms of the 
received ultrasonic guided waves are as presented in Fig. 9. With increasing crack depth in the 
rail base of the switch rail from 0 to 12 mm, the temporal variations in the ultrasonic signal 
remain minimal. This phenomenon is primarily attributed to the dispersion of various wave 
modes during the propagation of ultrasonic guided waves in the rail, accompanied by mode 
conversions. These factors pose significant challenges to detecting cracks in the rail base 
employing ultrasonic guided wave techniques.
	 Figure 10 shows time-frequency diagrams generated from the application of wavelet 
transform to ultrasonic signals corresponding to four distinct crack depths (0, 4, 8, 12 mm) in the 

Fig. 9.	 (Color online) (a) Overall signal time-domain diagram and (b) local time-domain diagram of damage echo.

Fig. 10.	 (Color online) Wavelet time–frequency diagram (Coif).
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rail base of a switch rail. As depicted in Fig. 10, the energy distribution in the time–frequency 
spectrum of ultrasonic guided wave signals for various crack depths is predominantly 
concentrated around 65 kHz, with variations observed in the energy distribution across different 
time points. Despite discernible differences in the time–frequency spectrum energy distribution 
across crack depths, the precise quantification of crack depth remains challenging. Consequently, 
in this study, we utilize wavelet time–frequency diagrams as input data for deep learning models 
to facilitate the accurate identification of crack depths.
	 We employ four deep learning models—GoogLeNet, MobileNetv1, MobileNetv2, and 
MobileNetv3—to train on a simulated dataset for detecting cracks in the rail base of turnout 
switch rails.
	 Figure 11(a) shows the accuracy curves. The accuracy of all models rises with the number of 
training iterations. MobileNetv1 improves the slowest, reaching a maximum of 0.92 (Fig. 11, 
Table 1). MobileNetv2 increases faster and outperforms GoogLeNet. MobileNetv3 converges the 
fastest, achieving 0.975 (Fig. 11, Table 1).
	 Figure 11(b) presents the loss curves. The losses of all models decrease with the number of 
iterations. The loss of MobileNetv1 declines the slowest, reaching ~0.18. That of MobileNetv2 
decreases faster and is less than that of GoogLeNet. The loss of MobileNetv3 decreases the 
fastest, reaching 0.02.
	 As evidenced by Fig. 12, the MobileNetv3 model utilized in this investigation demonstrates 
superior stability and accuracy in identifying the depth of crack damage in the rail base of 

Fig. 11.	 (Color online) (a) Accuracy curves and (b) loss rate curfves of deep learning models GoogLeNet, 
MobileNetv1, MobileNetv2, and MobileNetv3.

Table 1
Performance of four deep learning models.
Algorithm performance Accuracy Precision Recall F1 Score
GoogLeNet 0.953 0.967 0.957 0.965
MobilenetV1 0.920 0.924 0.917 0.920
MobilenetV2 0.971 0.972 0.976 0.977
MobilenetV3 0.975 0.985 0.977 0.984

(a) (b)
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turnout switch rails. The overall performance of the models decreases in the sequence of 
MobileNetv3, MobileNetv2, GoogLeNet, and MobileNetv1. Consequently, the MobileNetv3 
deep learning model exhibits the highest recognition performance among the evaluated models.

5.	 Experimental Validation

	 Wavelet time–frequency diagrams derived from artificial damage data, collected under 
identical conditions from another switch rail on the same line, served as input for the deep 
learning models to identify cracks in the rail base. The final results, generated by the four deep 
learning models—GoogLeNet, MobileNetv1, MobileNetv2, and MobileNetv3—are presented in 
Fig. 13.

Fig. 12.	 (Color online) Performance metrics (accuracy, precision, recall, and F1 score) of GoogLeNet, MobileNetv1, 
MobileNetv2, and MobileNetv3 models.

Fig. 13.	 (Color online) Output results of four deep learning models.
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	 The experimental dataset comprises 50 sets of data for each damage type, totaling 650 sets of 
damage data. In terms of stability and accuracy in crack identification, the MobileNetv3 model 
demonstrates superior performance relative to the other models. Employing an expected 
prediction interval of ±0.3 mm of actual damage, the MobileNetv3 model achieves the highest 
prediction accuracy as measured by the root mean square error (RMSE). Table 2 lists the 
prediction accuracies of the four models, with their performances evaluated using the RMSE 
metric.

6.	 Conclusions

	 A method integrating the MobileNetv3 deep learning model with ultrasonic guided waves 
was proposed for the quantitative assessment of crack depth in the rail base of turnout switch 
rails. Initially, an ultrasonic guided wave detection system was established to acquire ultrasonic 
guided wave signals from the rail base. These signals were subsequently processed via wavelet 
transform to generate time–frequency diagrams. To enhance the generalization capability of the 
deep learning model and ensure robustness under real-world noise conditions, we employed data 
augmentation by incorporating Gaussian white noise with variances of 0.1, 0.2, and 0.3 into the 
original dataset. The augmented image samples were then randomly divided into training and 
test sets in an 8:2 ratio. Finally, the performance of four deep learning models—GoogLeNet, 
MobileNetv1, MobileNetv2, and MobileNetv3—was evaluated using experimental data from 
cracks in another switch rail of the same turnout. The results indicated that the proposed method, 
which combines the MobileNetv3 deep learning model with ultrasonic guided waves, 
demonstrates superior performance in the quantitative assessment of crack depth in the rail base. 
This approach facilitates the precise quantitative evaluation of crack depth in the rail base of 
turnout switch rails.
	 In future work, we plan to extend the validation of our method by incorporating field-
collected data from in-service turnout switch rails exhibiting natural cracks. These cracks, 
formed under long-term operational conditions involving temperature variations and dynamic 
train loads, may present more irregular morphologies. By augmenting the dataset with such real-
world samples, we aim to further assess and enhance the model’s robustness and practical 
relevance for railway safety monitoring.

Table 2
Model prediction accuracy and performance.
Algorithm performance Accuracy (±0.3 mm) RMSE
GoogLeNet 0.798 0.890
MobilenetV1 0.709 0.983
MobilenetV2 0.906 0.453
MobilenetV3 0.957 0.310
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