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Automation systems play a critical role in modern industry, enabling efficient, precise, and
large-scale operations across sectors such as manufacturing and smart infrastructure. These
systems rely heavily on Al to process data, optimize decision-making, and enhance system
reliability. As automation increasingly depends on distributed data from numerous devices,
federated learning (FL) has emerged as an attractive solution. However, in real-world
deployments of FL, client dropout attacks are commonly encountered, which significantly
degrade the performance of automation systems employing FL. To mitigate the impact of
dropouts on the training process, we propose a blockchain-integrated FL architecture with an
adaptive fallback mechanism (BFL-AF). By leveraging the transparency and immutability of the
blockchain, the system can effectively verify client participation and securely record model
updates during each training round. Furthermore, an adaptive fallback mechanism is introduced,
which utilizes clients’ historical model weights to enhance training stability and recovery
capability. Experimental results demonstrate that the proposed method significantly improves
convergence speed and robustness under various abnormal dropout scenarios, offering strong
resilience and a practical solution for a building privacy-preserving and security-enhanced FL-
based automation system.

1. Introduction

Automation systems play a critical role in modern industry, enabling efficient, precise, and
large-scale operations across domains such as manufacturing, healthcare, and smart
infrastructure. These systems rely heavily on vast amounts of distributed sensor and device data
to support real-time monitoring, decision-making, and control. However, traditional centralized
learning approaches, which require transferring data from edge devices to a central server,
introduce significant challenges. They not only create heavy communication overhead and
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single points of failure but also raise serious privacy concerns and may violate regulations such
as the General Data Protection Regulation (GDPR).

To address these issues, federated learning (FL) has gained increasing attention. FL is a
decentralized machine learning framework that enables multiple clients to collaboratively train a
global model without sharing raw data. This architecture preserves data privacy, reduces
communication costs, and leverages distributed computing resources. As a result, FL has been
successfully applied in smartphones,) IoT devices,® and the healthcare domain, and is
increasingly considered a promising solution for automation systems that demand secure,
efficient, and large-scale coordination across heterogeneous and geographically distributed
environments. However, the decentralized nature of FL brings new challenges concerning, for
example, client heterogeneity, communication efficiency, and system security. In real-world
deployments, particularly in automation systems, clients often differ in hardware, network
conditions, and data distribution, making model convergence difficult and unstable.
Furthermore, there are also several attacks occurring in the FL framework, such as poisoning
attack, backdoor attack and privacy attack.3=>). In this study, we focus on a new attack, termed
client dropout attack,®”) in FL and propose an architecture that integrates blockchain technology
with an adaptive fallback mechanism. The goal is to enhance model stability and robustness in
environments with high participation variability, which is especially critical for automation
systems that rely on consistent and reliable model performance. The proposed framework
maintains model accuracy during abnormal dropouts and defends against targeted attacks on
high-contribution clients. First, a blockchain-based participation verification mechanism is
introduced to store the model updates of all clients. Blockchain’s immutability and traceability
ensure the secure logging of model updates and the verification of client participation,® which
enhances trust and defends against malicious behavior.®*'9 Second, we design an adaptive
fallback mechanism that uses clients’ historical model updates as a surrogate, thus maintaining
system stability while reducing the impact of dropouts. This approach outperforms traditional
averaging aggregation algorithms by improving convergence and accuracy. Experimental results
on real-world datasets show that the proposed method improves model accuracy and convergence
in several dropout scenarios, demonstrating a higher resilience than baseline methods. The
integration of the blockchain and adaptive fallback mechanism provides a practical and secure
solution for future FL-based automation system design.

2. Related Works

FL is an emerging decentralized machine learning paradigm designed to address challenges
in data privacy and model training in distributed automation systems. Unlike traditional
centralized approaches, FL keeps data on end devices for local training and only exchanges
model parameters after each training round. This design not only safeguards user privacy but
also complies with privacy regulations such as GDPR, and it has been widely applied in
scenarios including smartphones, IoT devices, vehicular networks, and edge computing. This
section comprises a description of the background and work related to this study.
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2.1 FL architecture

In an automation system, a typical FL training process involves the following steps:
First, the central server initializes the global model parameters w(0) and broadcasts them to all
clients for the first local training round. Here, clients denotes the edge devices in a distributed
automation system. Each client then trains this initial model on its local dataset, D,, for several
iterations to produce an updated model, using a standard loss function such as cross-entropy or
mean squared error (MSE). Once training is complete, clients send their updated parameters or
gradients back to the server. The server collects updates from all participating clients and
performs weighted averaging to produce the new global model expressed by

1+ 1 t
Wémztlz =ﬁZiNzlwi( ), 1)

where N denotes the number of clients involved in the current round. Finally, the updated global
model is broadcast again to all clients, initiating the next training round, and the above process
repeats until the model converges or the predefined number of rounds is reached. Equation 1
represents an FL aggregation approach, namely, federated averaging (FedAvg), which is
regarded as the most representative of FL aggregation algorithms.(!) Its main operation involves
aggregating all updated local model parameters via weighted averaging to produce the global
model. However, FedAvg is highly sensitive to data distribution homogeneity (IID assumption)
and the number of local training epochs. In cases where data is non-IID or clients have
inconsistent training conditions, the model may diverge or become unstable. To address these
issues, the federated proximal (FedProx) algorithm was proposed as an extension of FedAvg.(1?)
FedProx incorporates a proximal term into the local training objective to penalize deviations
between the local and global models, thereby improving convergence stability. This method is
particularly well suited to heterogeneous environments where client computational capacities,
data volumes, or communication frequencies vary.

2.2 Blockchain

Blockchain is a decentralized distributed ledger technology that leverages cryptography and
consensus algorithms to ensure the traceability and immutability of information across
nodes.1? Each transaction or event is stored in the form of a block, which is linked to previous
blocks through a hash function, as illustrated in Fig. 1, ensuring that historical records in the
chain cannot be arbitrarily altered.(!*!13) This technology effectively reduces the risk of model
poisoning or data tampering, thereby enhancing the overall security and stability of the system.

For data integrity verification in blockchain, the Merkle Tree structure is often employed to
validate model updates, ensuring that data remains unaltered while enabling fast consistency
checks. Private blockchain refers to a blockchain network in which read, write, and verification
rights are restricted to specific participants. It is commonly used for internal data sharing and
trusted communication within enterprises, institutions, or closed-loop systems. Kim et al.(1°)
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have proposed blockchain FL to serve as the storage and query basis for recording client model
updates in FL.

Compared with a public blockchain, a private blockchain exhibits several characteristics: (1)
controlled node permissions—only authorized devices or user nodes are allowed to participate
in block creation and validation, making it suitable for applications that require identity
authentication; (2) high transaction processing efficiency—the limited number of nodes reduces
resource consumption and excessive validation procedures, thereby shortening consensus time
and increasing transaction throughput; and (3) enhanced data privacy—model parameters and
records are exchanged only between authorized nodes, strengthening the credibility and security
of the model update process. In the system design of this research, after completing local model
training, each client uploads the updated weight parameters to a miner node, which encapsulates
these updates into a block and appends it to the chain.

Proof of work (PoW), one of the most widely used consensus mechanisms in blockchain
systems,17) was originally introduced by Bitcoin to ensure the uniqueness of block generation
and the immutability of network data. The core concept of PoW is that nodes (miners) must
repeatedly perform computations to find a nonce such that, when combined with the block
header and hashed, the result meets a predefined difficulty condition. In this mechanism, each
miner packages the pending transaction data into a block data structure and computes its hash
value. If the resulting hash is less than the target value specified by the system, the miner
successfully mines the block and broadcasts it to the network, where other nodes verify its
validity before adding it to the chain.

3. Proposed FL Framework
The architecture proposed in this study, as illustrated in Fig. 2, integrates blockchain

technology into the FL process to enhance the FL system’s defense capability and resilience
against abnormal behaviors and potential attacks. The overall workflow is summarized as
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Fig. 2. (Color online) Integrated system architecture.

follows. At the beginning of FL, the server distributes the global model parameters to all
participating clients for local training. After completing local model training, each client submits
its updated model parameters to the blockchain module. The server subsequently retrieves the
collected model updates from the latest block and aggregates them to generate the updated
global model, which is then redistributed to the clients in the next FL round. Throughout this
process, the blockchain module is responsible for verifying the legitimacy of submitting clients,
recording the metadata of model updates into the blocks, and finalizing the block addition to the
blockchain. In this blockchain module, the ledger in a miner stores all confirmed blocks
containing clients’ model update records, serving as a tamper-resistant historical audit log.
Smart contracts are used to verify the legitimacy of clients, ensuring secure and policy-
compliant participation in FL.(!®) Validation refers to the PoW consensus mechanism, in which
miners perform computational work to validate new blocks and maintain synchronization
through the longest-chain rule, thereby ensuring the consistency and trustworthiness of the
system. In cases of persistent or random client dropout attacks, the server can rely on the FL
fallback mechanism and retrieve historical model update records from the blockchain, which
serves as a tamper-resistant log to maintain the integrity and continuity of global model updates.
Hence, the proposed FL framework is composed of two core components, a blockchain module
and an FL algorithm enhanced with an adaptive model fallback mechanism. The details of the
proposed FL framework for automation systems are presented as follows.

3.1 Blockchain module design

In this design, a blockchain architecture centered on blocks and miners is adopted, operating
in a private-chain mode specifically for recording the local model update history in FL. As
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shown in the overview of our proposed blockchain-based FL framework, after completing local
training, each client sends update information—including the client ID, model weight
parameters, and timestamp—to its associated miner. Once the miner has received updates from
the clients, it encapsulates them into the block body and creates a new block according to
predefined threshold conditions (e.g., when the total weight reaches a predefined threshold).

Each block consists of a block body and a block header. In addition to the metadata illustrated
in Fig. 1, each block stores multiple model update records, the computed historical weights
described in Eq. (5), the current hash digest, and a hash pointer in the block header that links to
the previous block, forming a chain structure that prevents data tampering. To ensure tampering
resistance and secure auditability, each block in the blockchain module also produces a fixed-
length hash digest that uniquely represents the encapsulated header and body data, using a
cryptographic hash function (e.g., SHA-256).

Following the PoW mechanism, the newly created block is broadcast to all miners and
appended to the ledger. Every miner maintains its own local chain and uses the longest-chain
rule to remain synchronized with other miners, ensuring the integrity, transparency, and
trustworthiness of model update records. Figure 3 illustrates the logical architecture of the
blockchain module in our proposed FL framework. If a client fails to submit its update within a
communication round, it is considered disconnected. The system then retrieves the client’s last
historical update parameters from the blockchain as a fallback mechanism, thereby maintaining
the integrity and continuity of global model update records even under client dropout conditions.

3.2 FL algorithm based on adaptive fallback mechanism
In the adaptive fallback mechanism, when a client drops out in a given round, the system
retrieves its historical model weights from the blockchain to serve as substitutes. If the client

successfully uploads updates in the current round, the system performs a weighted fusion of the
current and historical weights to smooth the update curve and enhance training stability.
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Fig. 3. (Color online) Logical architecture of the blockchain module in FL.
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O +(1-B)- AW for normal case
AWi(,):{ﬁ 4 (=) AW, 5)

AW, for dropout case

* AW represents the updated weight of client i after aggregation in round z.

* ¥/ denotes the weight obtained from client local training in the current round ¢.

o AW refers to the historical weight of client i retrieved from the blockchain for round #—1.

* f is the exponential decay factor, serving as the decay coefficient, and is set to the
recommended value of 0.8 in this study.

Algorithm 1

Blockchain-integrated FL with adaptive fallback

Require: Total rounds 7, Clients C = {C}, C», ..., Cy}, Decay parameter g, Dropout round 7y, Local
epochs E, Proximal coefficient u

Ensure: Final global model weights Wga)bal’ accuracy logs
Initialize global model weights ng)gbaz
Initialize blockchain
fort=1to T'do
for each client € C do
if C; is active then
w,-(t) « LocalTrain(wg,;[l)ll ,D,,E )
Retrieve historical weights aw,(H) from blockchain
awy < Bowl) + (1= B)-an™)
else
Retrieve historical weights awl(t_l) from blockchain
awl(t) « awi(t_l)
end if
Record 4,,(!) to blockchain
end for
wg,lbal “— FedProxAggregation({awl(t) },,u)
Evaluate accuracy Acc?
Record Acc® to blockchain

end for

return Final global model weights Wgo)bal’ accuracy logs
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The blockchain-integrated FL algorithm is designed to address client disconnections and
network instability. By leveraging blockchain technology, each client’s model update history is
securely recorded, allowing the system to activate the adaptive fallback mechanism based on
historical weights. After completing local training, a client’s model parameters are combined
with its historical weights stored on the blockchain using the decay coefficient f. If a client
leaves for some reason in the current round, its historical weights are directly used for a surrogate
update, ensuring system stability.

During each training round, all client updates are recorded on the blockchain, and the central
server collects the model updates from the blockchain and aggregates them using the FedProx
aggregation algorithm to form the updated global model. This process maintains the stability
and consistency of the global model even under client disconnections or delayed updates, while
the immutability of the blockchain guarantees the traceability of historical updates, enhancing
the transparency and security of the FL system.

4. Performance Evaluations

The experimental design of this study is aimed at evaluating the resilience and stability of a
blockchain-integrated FL framework system under client dropout conditions, and to verify
whether the proposed adaptive fallback mechanism can effectively mitigate the negative impact
of dropouts on the global model’s accuracy. The experiments utilize widely used image datasets,
such as those from the Modified National Institute of Standards and Technology (MNIST) and
Canadian Institute for Advanced Research 10 (CIFAR-10), and organize data into five data
subsets to simulate the non-IID distributions commonly found in real-world environments. Each
data subset was assigned four clients, resulting in a total of 20 clients. For CIFAR-10, image
categories, such as vehicles and animals, were divided into five data subsets, while the MNIST
digits were grouped sequentially on the basis of their numerical order. Table 1 presents data
subset settings for CIFAR-10 and MNIST datasets. The model architecture employed in this
experiment is a convolutional neural network (CNN) featuring convolutional and pooling layers.
The total number of trainable parameters of the proposed CNN model is approximately 2.17
million (exact number: 2169770).

Table 1

Data subset settings and class names.

Dataset Data subset Class range Class names
Data Subset 1 0,1 Airplane, Automobile
Data Subset 2 2,3 Bird, Cat

CIFAR-10 Data Subset 3 4,5 Deer, Dog
Data Subset 4 6,7 Frog, Horse
Data Subset 5 8,9 Ship, Truck
Data Subset 1 0,1 Low digits
Data Subset 2 2,3 Small digits

MNIST Data Subset 3 4,5 Middle digits
Data Subset 4 6,7 Slightly Larger digits

Data Subset 5 8,9 Highest digits
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To evaluate the system’s stability under various dropout attack scenarios, we design three
client dropout conditions: Shapley-value-based dropout, persistent dropout, and random dropout.
During a given training round, certain clients will leave and not participate in FL. The aim of
this section is to effectively reflect the performance of our proposed FL framework under real-
world conditions, including unstable networks or targeted attacks against high-contribution
nodes. Next, we introduce the following three dropout attacks in this study:

* Random dropout serves as the most intuitive scenario, simulating sudden disconnections
caused by network instability, power interruptions, or device limitations. In each round, a
subset of active clients is randomly selected to drop out, while they may rejoin in subsequent
rounds, mimicking nonsystematic disconnections and their impact on global model accuracy
and model convergence.

* Persistent dropout refers to long-term disconnections owing to network failures, hardware
faults, or attacks, with two variants: the client cluster partial retention mode and client cluster
full dropout mode. The former is to ensure at least one active client per client cluster to test
the model performance under minimal participation, and in the latter, we attempt to
disconnect all clients in a selected client cluster to observe the effect of losing entire data
sources, particularly in non-1ID distributions or sparse class scenarios.

» Shapley-value-based dropout simulates a disconnection attack from an adversarial
perspective, where attackers are assumed to identify clients with high contributions to the
global aggregation in FL. Effectively quantifying the contributions serves as an important
basis for targeted attacks, such as contribution-based disconnection attacks.(!*29 Traditional
FL mechanisms typically assume that all clients have equal influence on model updates.
However, in real-world scenarios, some clients may hold more representative or critical data,
thereby contributing more significantly to the model’s convergence speed and final accuracy.
Here, each client’s marginal contribution is quantified using the Shapley value®!?? and
subsequently ranked. In designated rounds, high-contribution nodes are selected as attack
targets. This strategy includes three experimental scenarios. The first, contribution-ranked
dropout, selects clients solely on the basis of their Shapley values. The second, partial client
cluster retention mode, ensures that at least one client per client cluster is preserved. The
third, full client cluster dropout mode, disconnects all clients within the client cluster
exhibiting the highest average contribution among all client clusters. These simulations
facilitate the evaluation of the proposed fallback mechanism’s effectiveness against high-risk
targeted attacks, while also assessing system stability and resilience by analyzing both
accuracy degradation and recovery speed when critical nodes are lost.

The total number of training rounds is set to 50, with dropout events fixed at middle rounds
(e.g., round 25), allowing the model to train on complete data initially and then testing the
system’s resilience to missing data, as well as the immediate effect of the fallback mechanism
under client dropout conditions. For further analysis, in this section, we compare our proposed
blockchain-integrated FL with other FL variants, such as traditional FL and FL with a similarity
recovery mechanism, to assess model performance under various client dropout scenarios. To
evaluate the resilience of each FL variant, a baseline scenario is added, in which FL is performed
without any client dropouts. Table 2 gives the full description of various FL frameworks.
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Table 2
Description of various FL frameworks.
Method Explanation
This represents the ideal scenario where all clients fully participate in every training round without
FL-B any dropout. This approach serves as a baseline to evaluate the impact of client dropouts on model
performance.
FL This is a classic FL. It performs the FL algorithm without any recovery mechanism. It reflects the
system’s basic resilience.
This FL variant implements recovery based on the similarity between client models, attempting to
FL-S identify the parameters of a model with high similarity to the disconnected client and use them as a
surrogate.
BFL-AF This refers to our proposed blockchain-integrated FL with an adaptive fallback mechanism.

4.1 Random dropout

The experimental results in Fig. 4(a) show that under random dropout conditions, blockchain-
integrated FL architecture with an adaptive fallback mechanism (BFL-AF) achieves rapid
convergence on the MNIST dataset starting from round 10, with accuracy steadily approaching
that of FL-B. When the training rounds reach 25, random dropout is applied. As illustrated in
Fig. 4(a), the classical FL method exhibits significant accuracy fluctuations, while FL-S yields
inconsistent performance. In contrast, our proposed BFL-AF demonstrates strong stability and
robustness, achieving a level of accuracy comparable to that of FL-B. On the more challenging
CIFAR-10 task, BFL-AF still demonstrates strong resilience to random client dropout. In
contrast, both classical FL and FL-S suffer from the absence of local models and achieve a
substantially lower accuracy than BFL-AF. These results confirm the effectiveness of BFL-AF
in mitigating the impacts of dropout and maintaining reliable convergence. Furthermore, they
validate the soundness of our design choices for BFL-AF under such challenging conditions.

4.2 Persistent dropout

In this experimental setup, two scenarios with persistent dropout are analyzed. Here, a
suffering client cluster is defined as a client cluster affected by dropout attack. The first scenario
is that a suffering client cluster retains at least one active client when persistent dropout occurs,
termed cluster-aware dropout attack, while the second scenario is that all clients in the suffering
client cluster become completely offline, which is termed cluster-wide dropout attack. In the
first scenario, although some clients in the suffering client cluster are disconnected, at least one
data source remains active and can still contribute its features to the global model. In contrast,
the suffering client cluster in the second scenario cannot contribute its data feature of the client
cluster. Figure 5 shows the accuracy results of various FL methods in the first scenario. The
results indicate that both classical FL and FL-S exhibit weak resilience to persistent client
dropout. In contrast, our proposed BFL-AF leverages a fallback mechanism to maintain a stable
training process and achieves high accuracy on both the MNIST and CIFAR-10 tasks,
outperforming other methods. In the second scenario, as shown in Fig. 6, classical FL. and FL-S
suffer significant accuracy degradation and struggle to recover compared with their performance
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in the first scenario. In contrast, BFL-AF effectively continues the learning process and
gradually improves its model performance, demonstrating strong resilience and reliable
compensation, particularly on the CIFAR-10 dataset.

In this study, two scenarios under persistent dropout simulation are analyzed: one where each
client cluster retains at least one active client and another where an entire client cluster becomes
completely offline. In the first scenario, although some clients are disconnected, the data source
is not entirely lost. BFL-AF maintains stable training and high accuracy on both MNIST and
CIFAR-10 tasks, outperforming other methods. In the second more extreme scenario where an
entire client cluster drops out, FL and FL-S suffer significant accuracy degradation and struggle
to recover. In contrast, BFL-AF effectively continues the learning process and gradually
improves model performance, demonstrating strong resilience and reliable compensation,
especially on the CIFAR-10 dataset.

4.3 Contribution-based dropout

We investigate three targeted dropout attack scenarios based on client contribution. The first
is the dropout attack of the highest-contributing individual clients, which is termed contribution-
based dropout. The second one is a client cluster dropout attack with at least one active client
retained per client cluster, termed contribution-based cluster-aware dropout attack. The final one
is a complete dropout attack of high-contribution client clusters, termed contribution-based
cluster-wide dropout attack. Experiments on MNIST and CIFAR-10 demonstrate that BFL-AF
consistently delivers strong resilience and stability across all cases.

As shown in Fig. 7, in the first scenario, FL and FL-S methods show significant performance
degradation when key clients are disconnected, while BFL-AF quickly recovers and approaches
the performance of the FL-B model. In the second scenario, where each client cluster retains at
least one active client, BFL-AF achieves smoother accuracy curves and outperforms other
methods in overall precision, as shown in Fig. 8. In the most extreme case, as shown in Fig. 9,
where all high-contribution client clusters are disconnected, BFL-AF still maintains training
continuity and mitigates severe accuracy drops.
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Fig. 7. (Color online) Accuracy under contribution-based dropout attack.
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5. Conclusions

FL-based automation systems are gaining increasing attention owing to their benefits in
privacy preservation and communication cost reduction. However, a new type of attack has
emerged, arising from abnormal client connection dropouts. Hence, in this study, we conducted
a systematic analysis and empirical evaluation of the stability and defense capabilities of FL
systems facing client dropout and malicious behavior. By designing three dropout scenarios—
random, persistent, and contribution-aware targeted dropouts—we compared multiple
remediation strategies and their effects on the performance metrics of global models, such as
convergence speed and prediction accuracy. From the results of our experiments, we observed
that concentrated dropout in critical client clusters causes significantly more harm to model
convergence than evenly distributed dropout. Our experiment results demonstrated that the



884 Sensors and Materials, Vol. 38, No. 2 (2026)

proposed BFL-AF mechanism, which leverages historical weight information, effectively
mitigates performance degradation caused by client dropout. Even under severe conditions—
such as the dropout of high-contribution clients or substantial data loss—BFL-AF exhibits
strong recovery capability and stable performance. Additionally, the integration of blockchain
technology enhanced system security and data integrity by ensuring the traceability and
trustworthiness of model updates while also helping our framework filter out malicious clients.
Hence, we proposed a FL solution that combines robustness and security, offering a dependable
foundation for the deployment of distributed intelligent systems.
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