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	 Automation systems play a critical role in modern industry, enabling efficient, precise, and 
large-scale operations across sectors such as manufacturing and smart infrastructure. These 
systems rely heavily on AI to process data, optimize decision-making, and enhance system 
reliability. As automation increasingly depends on distributed data from numerous devices, 
federated learning (FL) has emerged as an attractive solution. However, in real-world 
deployments of FL, client dropout attacks are commonly encountered, which significantly 
degrade the performance of automation systems employing FL. To mitigate the impact of 
dropouts on the training process, we propose a blockchain-integrated FL architecture with an 
adaptive fallback mechanism (BFL-AF). By leveraging the transparency and immutability of the 
blockchain, the system can effectively verify client participation and securely record model 
updates during each training round. Furthermore, an adaptive fallback mechanism is introduced, 
which utilizes clients’ historical model weights to enhance training stability and recovery 
capability. Experimental results demonstrate that the proposed method significantly improves 
convergence speed and robustness under various abnormal dropout scenarios, offering strong 
resilience and a practical solution for a building privacy-preserving and security-enhanced FL-
based automation system.

1.	 Introduction

	 Automation systems play a critical role in modern industry, enabling efficient, precise, and 
large-scale operations across domains such as manufacturing, healthcare, and smart 
infrastructure. These systems rely heavily on vast amounts of distributed sensor and device data 
to support real-time monitoring, decision-making, and control. However, traditional centralized 
learning approaches, which require transferring data from edge devices to a central server, 
introduce significant challenges. They not only create heavy communication overhead and 
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single points of failure but also raise serious privacy concerns and may violate regulations such 
as the General Data Protection Regulation (GDPR).
	 To address these issues, federated learning (FL) has gained increasing attention. FL is a 
decentralized machine learning framework that enables multiple clients to collaboratively train a 
global model without sharing raw data. This architecture preserves data privacy, reduces 
communication costs, and leverages distributed computing resources. As a result, FL has been 
successfully applied in smartphones,(1) IoT devices,(2) and the healthcare domain, and is 
increasingly considered a promising solution for automation systems that demand secure, 
efficient, and large-scale coordination across heterogeneous and geographically distributed 
environments. However, the decentralized nature of FL brings new challenges concerning, for 
example, client heterogeneity, communication efficiency, and system security. In real-world 
deployments, particularly in automation systems, clients often differ in hardware, network 
conditions, and data distribution, making model convergence difficult and unstable. 
Furthermore, there are also several attacks occurring in the FL framework, such as poisoning 
attack, backdoor attack and privacy attack.(3–5). In this study, we focus on a new attack, termed 
client dropout attack,(6,7) in FL and propose an architecture that integrates blockchain technology 
with an adaptive fallback mechanism. The goal is to enhance model stability and robustness in 
environments with high participation variability, which is especially critical for automation 
systems that rely on consistent and reliable model performance. The proposed framework 
maintains model accuracy during abnormal dropouts and defends against targeted attacks on 
high-contribution clients. First, a blockchain-based participation verification mechanism is 
introduced to store the model updates of all clients. Blockchain’s immutability and traceability 
ensure the secure logging of model updates and the verification of client participation,(8) which 
enhances trust and defends against malicious behavior.(9,10) Second, we design an adaptive 
fallback mechanism that uses clients’ historical model updates as a surrogate, thus maintaining 
system stability while reducing the impact of dropouts. This approach outperforms traditional 
averaging aggregation algorithms by improving convergence and accuracy. Experimental results 
on real-world datasets show that the proposed method improves model accuracy and convergence 
in several dropout scenarios, demonstrating a higher resilience than baseline methods. The 
integration of the blockchain and adaptive fallback mechanism provides a practical and secure 
solution for future FL-based automation system design.

2.	 Related Works

	 FL is an emerging decentralized machine learning paradigm designed to address challenges 
in data privacy and model training in distributed automation systems. Unlike traditional 
centralized approaches, FL keeps data on end devices for local training and only exchanges 
model parameters after each training round. This design not only safeguards user privacy but 
also complies with privacy regulations such as GDPR, and it has been widely applied in 
scenarios including smartphones, IoT devices, vehicular networks, and edge computing. This 
section comprises a description of the background and work related to this study.
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2.1	 FL architecture

	 In an automation system, a typical FL training process involves the following steps: 
First, the central server initializes the global model parameters w(0) and broadcasts them to all 
clients for the first local training round. Here, clients denotes the edge devices in a distributed 
automation system. Each client then trains this initial model on its local dataset, Di, for several 
iterations to produce an updated model, using a standard loss function such as cross-entropy or 
mean squared error (MSE). Once training is complete, clients send their updated parameters or 
gradients back to the server. The server collects updates from all participating clients and 
performs weighted averaging to produce the new global model expressed by
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where N denotes the number of clients involved in the current round. Finally, the updated global 
model is broadcast again to all clients, initiating the next training round, and the above process 
repeats until the model converges or the predefined number of rounds is reached. Equation 1 
represents an FL aggregation approach, namely, federated averaging (FedAvg), which is 
regarded as the most representative of FL aggregation algorithms.(11) Its main operation involves 
aggregating all updated local model parameters via weighted averaging to produce the global 
model. However, FedAvg is highly sensitive to data distribution homogeneity (IID assumption) 
and the number of local training epochs. In cases where data is non-IID or clients have 
inconsistent training conditions, the model may diverge or become unstable. To address these 
issues, the federated proximal (FedProx) algorithm was proposed as an extension of FedAvg.(12) 
FedProx incorporates a proximal term into the local training objective to penalize deviations 
between the local and global models, thereby improving convergence stability. This method is 
particularly well suited to heterogeneous environments where client computational capacities, 
data volumes, or communication frequencies vary. 

2.2	 Blockchain

	 Blockchain is a decentralized distributed ledger technology that leverages cryptography and 
consensus algorithms to ensure the traceability and immutability of information across 
nodes.(13) Each transaction or event is stored in the form of a block, which is linked to previous 
blocks through a hash function, as illustrated in Fig. 1, ensuring that historical records in the 
chain cannot be arbitrarily altered.(14,15) This technology effectively reduces the risk of model 
poisoning or data tampering, thereby enhancing the overall security and stability of the system. 
	 For data integrity verification in blockchain, the Merkle Tree structure is often employed to 
validate model updates, ensuring that data remains unaltered while enabling fast consistency 
checks. Private blockchain refers to a blockchain network in which read, write, and verification 
rights are restricted to specific participants. It is commonly used for internal data sharing and 
trusted communication within enterprises, institutions, or closed-loop systems. Kim et al.(16) 
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have proposed blockchain FL to serve as the storage and query basis for recording client model 
updates in FL.
	 Compared with a public blockchain, a private blockchain exhibits several characteristics: (1) 
controlled node permissions—only authorized devices or user nodes are allowed to participate 
in block creation and validation, making it suitable for applications that require identity 
authentication; (2) high transaction processing efficiency—the limited number of nodes reduces 
resource consumption and excessive validation procedures, thereby shortening consensus time 
and increasing transaction throughput; and (3) enhanced data privacy—model parameters and 
records are exchanged only between authorized nodes, strengthening the credibility and security 
of the model update process. In the system design of this research, after completing local model 
training, each client uploads the updated weight parameters to a miner node, which encapsulates 
these updates into a block and appends it to the chain.
	 Proof of work (PoW), one of the most widely used consensus mechanisms in blockchain 
systems,(17) was originally introduced by Bitcoin to ensure the uniqueness of block generation 
and the immutability of network data. The core concept of PoW is that nodes (miners) must 
repeatedly perform computations to find a nonce such that, when combined with the block 
header and hashed, the result meets a predefined difficulty condition. In this mechanism, each 
miner packages the pending transaction data into a block data structure and computes its hash 
value. If the resulting hash is less than the target value specified by the system, the miner 
successfully mines the block and broadcasts it to the network, where other nodes verify its 
validity before adding it to the chain.

3.	 Proposed FL Framework

	 The architecture proposed in this study, as illustrated in Fig. 2, integrates blockchain 
technology into the FL process to enhance the FL system’s defense capability and resilience 
against abnormal behaviors and potential attacks. The overall workflow is summarized as 

Fig. 1.	 Blockchain architecture.
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follows. At the beginning of FL, the server distributes the global model parameters to all 
participating clients for local training. After completing local model training, each client submits 
its updated model parameters to the blockchain module. The server subsequently retrieves the 
collected model updates from the latest block and aggregates them to generate the updated 
global model, which is then redistributed to the clients in the next FL round. Throughout this 
process, the blockchain module is responsible for verifying the legitimacy of submitting clients, 
recording the metadata of model updates into the blocks, and finalizing the block addition to the 
blockchain. In this blockchain module, the ledger in a miner stores all confirmed blocks 
containing clients’ model update records, serving as a tamper-resistant historical audit log. 
Smart contracts are used to verify the legitimacy of clients, ensuring secure and policy-
compliant participation in FL.(18) Validation refers to the PoW consensus mechanism, in which 
miners perform computational work to validate new blocks and maintain synchronization 
through the longest-chain rule, thereby ensuring the consistency and trustworthiness of the 
system. In cases of persistent or random client dropout attacks, the server can rely on the FL 
fallback mechanism and retrieve historical model update records from the blockchain, which 
serves as a tamper-resistant log to maintain the integrity and continuity of global model updates. 
Hence, the proposed FL framework is composed of two core components, a blockchain module 
and an FL algorithm enhanced with an adaptive model fallback mechanism. The details of the 
proposed FL framework for automation systems are presented as follows.

3.1	 Blockchain module design

	 In this design, a blockchain architecture centered on blocks and miners is adopted, operating 
in a private-chain mode specifically for recording the local model update history in FL. As 

Fig. 2.	 (Color online) Integrated system architecture.
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shown in the overview of our proposed blockchain-based FL framework, after completing local 
training, each client sends update information—including the client ID, model weight 
parameters, and timestamp—to its associated miner. Once the miner has received updates from 
the clients, it encapsulates them into the block body and creates a new block according to 
predefined threshold conditions (e.g., when the total weight reaches a predefined threshold).
	 Each block consists of a block body and a block header. In addition to the metadata illustrated 
in Fig. 1, each block stores multiple model update records, the computed historical weights 
described in Eq. (5), the current hash digest, and a hash pointer in the block header that links to 
the previous block, forming a chain structure that prevents data tampering. To ensure tampering 
resistance and secure auditability, each block in the blockchain module also produces a fixed-
length hash digest that uniquely represents the encapsulated header and body data, using a 
cryptographic hash function (e.g., SHA-256).
	 Following the PoW mechanism, the newly created block is broadcast to all miners and 
appended to the ledger. Every miner maintains its own local chain and uses the longest-chain 
rule to remain synchronized with other miners, ensuring the integrity, transparency, and 
trustworthiness of model update records. Figure 3 illustrates the logical architecture of the 
blockchain module in our proposed FL framework. If a client fails to submit its update within a 
communication round, it is considered disconnected. The system then retrieves the client’s last 
historical update parameters from the blockchain as a fallback mechanism, thereby maintaining 
the integrity and continuity of global model update records even under client dropout conditions.

3.2	 FL algorithm based on adaptive fallback mechanism 

	 In the adaptive fallback mechanism, when a client drops out in a given round, the system 
retrieves its historical model weights from the blockchain to serve as substitutes. If the client 
successfully uploads updates in the current round, the system performs a weighted fusion of the 
current and historical weights to smooth the update curve and enhance training stability.

Fig. 3.	 (Color online) Logical architecture of the blockchain module in FL.
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		�AWᵢ⁽t ⁾ represents the updated weight of client i after aggregation in round t.
		�Wᵢ⁽t ⁾ denotes the weight obtained from client local training in the current round t.
	•	� AWᵢ⁽t ⁻¹⁾ refers to the historical weight of client i retrieved from the blockchain for round t−1.
		�β is the exponential decay factor, serving as the decay coefficient, and is set to the 

recommended value of 0.8 in this study.
Algorithm 1 
Blockchain-integrated FL with adaptive fallback 
Require: Total rounds T, Clients C = {C1, C2, …, CN}, Decay parameter β, Dropout round Tdrop, Local 
epochs E, Proximal coefficient μ

Ensure: Final global model weights ( )T
globalw , accuracy logs

Initialize global model weights ( )0
globalw

Initialize blockchain

for t = 1 to T do

for each client ∈ C do

if Ci is active then
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end if

Record ( )t  
iaw  to blockchain

end for

( ) ( ){ }( )  FedProxAggregation ,t t
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Evaluate accuracy Acc(t)

Record Acc(t) to blockchain

end for

return Final global model weights ( )T
globalw , accuracy logs
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	 The blockchain-integrated FL algorithm is designed to address client disconnections and 
network instability. By leveraging blockchain technology, each client’s model update history is 
securely recorded, allowing the system to activate the adaptive fallback mechanism based on 
historical weights. After completing local training, a client’s model parameters are combined 
with its historical weights stored on the blockchain using the decay coefficient β. If a client 
leaves for some reason in the current round, its historical weights are directly used for a surrogate 
update, ensuring system stability.
	 During each training round, all client updates are recorded on the blockchain, and the central 
server collects the model updates from the blockchain and aggregates them using the FedProx 
aggregation algorithm to form the updated global model. This process maintains the stability 
and consistency of the global model even under client disconnections or delayed updates, while 
the immutability of the blockchain guarantees the traceability of historical updates, enhancing 
the transparency and security of the FL system.

4.	 Performance Evaluations

	 The experimental design of this study is aimed at evaluating the resilience and stability of a 
blockchain-integrated FL framework system under client dropout conditions, and to verify 
whether the proposed adaptive fallback mechanism can effectively mitigate the negative impact 
of dropouts on the global model’s accuracy. The experiments utilize widely used image datasets, 
such as those from the Modified National Institute of Standards and Technology (MNIST) and 
Canadian Institute for Advanced Research 10 (CIFAR-10), and organize data into five data 
subsets to simulate the non-IID distributions commonly found in real-world environments. Each 
data subset was assigned four clients, resulting in a total of 20 clients. For CIFAR-10, image 
categories, such as vehicles and animals, were divided into five data subsets, while the MNIST 
digits were grouped sequentially on the basis of their numerical order. Table 1 presents data 
subset settings for CIFAR-10 and MNIST datasets. The model architecture employed in this 
experiment is a convolutional neural network (CNN) featuring convolutional and pooling layers. 
The total number of trainable parameters of the proposed CNN model is approximately 2.17 
million (exact number: 2169770).

Table 1 
Data subset settings and class names.
Dataset Data subset Class range Class names

CIFAR-10

Data Subset 1 0, 1 Airplane, Automobile
Data Subset 2 2, 3 Bird, Cat
Data Subset 3 4, 5 Deer, Dog
Data Subset 4 6, 7 Frog, Horse
Data Subset 5 8, 9 Ship, Truck

MNIST

Data Subset 1 0, 1 Low digits
Data Subset 2 2, 3 Small digits
Data Subset 3 4, 5 Middle digits
Data Subset 4 6, 7 Slightly Larger digits
Data Subset 5 8, 9 Highest digits
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	 To evaluate the system’s stability under various dropout attack scenarios, we design three 
client dropout conditions: Shapley-value-based dropout, persistent dropout, and random dropout. 
During a given training round, certain clients will leave and not participate in FL. The aim of 
this section is to effectively reflect the performance of our proposed FL framework under real-
world conditions, including unstable networks or targeted attacks against high-contribution 
nodes. Next, we introduce the following three dropout attacks in this study:
	 •	� Random dropout serves as the most intuitive scenario, simulating sudden disconnections 

caused by network instability, power interruptions, or device limitations. In each round, a 
subset of active clients is randomly selected to drop out, while they may rejoin in subsequent 
rounds, mimicking nonsystematic disconnections and their impact on global model accuracy 
and model convergence. 

	 •	� Persistent dropout refers to long-term disconnections owing to network failures, hardware 
faults, or attacks, with two variants: the client cluster partial retention mode and client cluster 
full dropout mode. The former is to ensure at least one active client per client cluster to test 
the model performance under minimal participation, and in the latter, we attempt to 
disconnect all clients in a selected client cluster to observe the effect of losing entire data 
sources, particularly in non-IID distributions or sparse class scenarios.

	 •	� Shapley-value-based dropout simulates a disconnection attack from an adversarial 
perspective, where attackers are assumed to identify clients with high contributions to the 
global aggregation in FL. Effectively quantifying the contributions serves as an important 
basis for targeted attacks, such as contribution-based disconnection attacks.(19,20) Traditional 
FL mechanisms typically assume that all clients have equal influence on model updates. 
However, in real-world scenarios, some clients may hold more representative or critical data, 
thereby contributing more significantly to the model’s convergence speed and final accuracy. 
Here, each client’s marginal contribution is quantified using the Shapley value(21,22) and 
subsequently ranked. In designated rounds, high-contribution nodes are selected as attack 
targets. This strategy includes three experimental scenarios. The first, contribution-ranked 
dropout, selects clients solely on the basis of their Shapley values. The second, partial client 
cluster retention mode, ensures that at least one client per client cluster is preserved. The 
third, full client cluster dropout mode, disconnects all clients within the client cluster 
exhibiting the highest average contribution among all client clusters. These simulations 
facilitate the evaluation of the proposed fallback mechanism’s effectiveness against high-risk 
targeted attacks, while also assessing system stability and resilience by analyzing both 
accuracy degradation and recovery speed when critical nodes are lost.

	 The total number of training rounds is set to 50, with dropout events fixed at middle rounds 
(e.g., round 25), allowing the model to train on complete data initially and then testing the 
system’s resilience to missing data, as well as the immediate effect of the fallback mechanism 
under client dropout conditions. For further analysis, in this section, we compare our proposed 
blockchain-integrated FL with other FL variants, such as traditional FL and FL with a similarity 
recovery mechanism, to assess model performance under various client dropout scenarios. To 
evaluate the resilience of each FL variant, a baseline scenario is added, in which FL is performed 
without any client dropouts. Table 2 gives the full description of various FL frameworks.
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4.1	 Random dropout

	 The experimental results in Fig. 4(a) show that under random dropout conditions, blockchain-
integrated FL architecture with an adaptive fallback mechanism (BFL-AF) achieves rapid 
convergence on the MNIST dataset starting from round 10, with accuracy steadily approaching 
that of FL-B. When the training rounds reach 25, random dropout is applied. As illustrated in 
Fig. 4(a), the classical FL method exhibits significant accuracy fluctuations, while FL-S yields 
inconsistent performance. In contrast, our proposed BFL-AF demonstrates strong stability and 
robustness, achieving a level of accuracy comparable to that of FL-B. On the more challenging 
CIFAR-10 task, BFL-AF still demonstrates strong resilience to random client dropout. In 
contrast, both classical FL and FL-S suffer from the absence of local models and achieve a 
substantially lower accuracy than BFL-AF. These results confirm the effectiveness of BFL-AF 
in mitigating the impacts of dropout and maintaining reliable convergence. Furthermore, they 
validate the soundness of our design choices for BFL-AF under such challenging conditions. 

4.2	 Persistent dropout

	 In this experimental setup, two scenarios with persistent dropout are analyzed. Here, a 
suffering client cluster is defined as a client cluster affected by dropout attack. The first scenario 
is that a suffering client cluster retains at least one active client when persistent dropout occurs, 
termed cluster-aware dropout attack, while the second scenario is that all clients in the suffering 
client cluster become completely offline, which is termed cluster-wide dropout attack. In the 
first scenario, although some clients in the suffering client cluster are disconnected, at least one 
data source remains active and can still contribute its features to the global model. In contrast, 
the suffering client cluster in the second scenario cannot contribute its data feature of the client 
cluster. Figure 5 shows the accuracy results of various FL methods in the first scenario. The 
results indicate that both classical FL and FL-S exhibit weak resilience to persistent client 
dropout. In contrast, our proposed BFL-AF leverages a fallback mechanism to maintain a stable 
training process and achieves high accuracy on both the MNIST and CIFAR-10 tasks, 
outperforming other methods. In the second scenario, as shown in Fig. 6, classical FL and FL-S 
suffer significant accuracy degradation and struggle to recover compared with their performance 

Table 2 
Description of various FL frameworks.
Method Explanation

FL-B
This represents the ideal scenario where all clients fully participate in every training round without 
any dropout. This approach serves as a baseline to evaluate the impact of client dropouts on model 

performance.

FL This is a classic FL. It performs the FL algorithm without any recovery mechanism. It reflects the 
system’s basic resilience.

FL-S
This FL variant implements recovery based on the similarity between client models, attempting to 
identify the parameters of a model with high similarity to the disconnected client and use them as a 

surrogate.
BFL-AF This refers to our proposed blockchain-integrated FL with an adaptive fallback mechanism.
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Fig. 4.	 (Color online) Accuracy rates of global models in FL: (a) accuracy rate for MNIST and (b) accuracy rate for 
CIFAR-10.

Fig. 5.	 (Color online) Accuracy under cluster-aware dropout attack.

Fig. 6.	 (Color online) Accuracy under cluster-wide dropout attack.

(a) (b)
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in the first scenario. In contrast, BFL-AF effectively continues the learning process and 
gradually improves its model performance, demonstrating strong resilience and reliable 
compensation, particularly on the CIFAR-10 dataset.
	 In this study, two scenarios under persistent dropout simulation are analyzed: one where each 
client cluster retains at least one active client and another where an entire client cluster becomes 
completely offline. In the first scenario, although some clients are disconnected, the data source 
is not entirely lost. BFL-AF maintains stable training and high accuracy on both MNIST and 
CIFAR-10 tasks, outperforming other methods. In the second more extreme scenario where an 
entire client cluster drops out, FL and FL-S suffer significant accuracy degradation and struggle 
to recover. In contrast, BFL-AF effectively continues the learning process and gradually 
improves model performance, demonstrating strong resilience and reliable compensation, 
especially on the CIFAR-10 dataset.

4.3	 Contribution-based dropout

	 We investigate three targeted dropout attack scenarios based on client contribution. The first 
is the dropout attack of the highest-contributing individual clients, which is termed contribution-
based dropout. The second one is a client cluster dropout attack with at least one active client 
retained per client cluster, termed contribution-based cluster-aware dropout attack. The final one 
is a complete dropout attack of high-contribution client clusters, termed contribution-based 
cluster-wide dropout attack. Experiments on MNIST and CIFAR-10 demonstrate that BFL-AF 
consistently delivers strong resilience and stability across all cases. 
	 As shown in Fig. 7, in the first scenario, FL and FL-S methods show significant performance 
degradation when key clients are disconnected, while BFL-AF quickly recovers and approaches 
the performance of the FL-B model. In the second scenario, where each client cluster retains at 
least one active client, BFL-AF achieves smoother accuracy curves and outperforms other 
methods in overall precision, as shown in Fig. 8. In the most extreme case, as shown in Fig. 9, 
where all high-contribution client clusters are disconnected, BFL-AF still maintains training 
continuity and mitigates severe accuracy drops.

Fig. 7.	 (Color online) Accuracy under contribution-based dropout attack.
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5.	 Conclusions 

	 FL-based automation systems are gaining increasing attention owing to their benefits in 
privacy preservation and communication cost reduction. However, a new type of attack has 
emerged, arising from abnormal client connection dropouts. Hence, in this study, we conducted 
a systematic analysis and empirical evaluation of the stability and defense capabilities of FL 
systems facing client dropout and malicious behavior. By designing three dropout scenarios—
random, persistent, and contribution-aware targeted dropouts—we compared multiple 
remediation strategies and their effects on the performance metrics of global models, such as 
convergence speed and prediction accuracy. From the results of our experiments, we observed 
that concentrated dropout in critical client clusters causes significantly more harm to model 
convergence than evenly distributed dropout. Our experiment results demonstrated that the 

Fig. 8.	 (Color online) Accuracy under contribution-based cluster-aware dropout attack.

Fig. 9.	 (Color online) Accuracy under contribution-based cluster-wide dropout attack.
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proposed BFL-AF mechanism, which leverages historical weight information, effectively 
mitigates performance degradation caused by client dropout. Even under severe conditions—
such as the dropout of high-contribution clients or substantial data loss—BFL-AF exhibits 
strong recovery capability and stable performance. Additionally, the integration of blockchain 
technology enhanced system security and data integrity by ensuring the traceability and 
trustworthiness of model updates while also helping our framework filter out malicious clients. 
Hence, we proposed a FL solution that combines robustness and security, offering a dependable 
foundation for the deployment of distributed intelligent systems.
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