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	 Currently, regional integrated energy systems are crucial for achieving low-carbon 
transformation and enhancing resilience in energy systems. In this paper, we address the 
challenges presented by high proportions of renewable energy integration and single large load 
scenarios, including temporal mismatches in multi-energy complementarity, insufficient 
coordination in multi-time-scale scheduling, and the complex nature of multi-objective 
optimization problems. First, a multi-time-scale collaborative scheduling framework for power-
thermal-cold multi-energy flexible interaction under a single large load is proposed. This 
framework introduces a dynamic prioritization mechanism for power-thermal-cold multi-energy 
flows, which considers load peak-to-valley differences and energy transmission delays. Second, 
a collaborative scheduling strategy that integrates day-ahead forecasting, intraday rolling 
adjustments, and real-time feedback corrections is proposed, which is driven by multi-source 
sensing information. The pervasive sensor data serves as the foundation for the accurate day-
ahead forecasting of renewable energy and loads, provides the basis for intraday rolling 
adjustments to correct forecast deviations, and enables real-time feedback control to mitigate the 
impact of sudden disturbances, particularly from the single large load. This closed-loop, data-
driven scheduling process is central to enhancing system flexibility and resilience. Furthermore, 
the multi-objective optimization algorithm is improved by incorporating elite cooperation and 
crowded distance sorting to improve its search capabilities and convergence performance with 
respect to the complex “economic-low carbon-high load” Pareto frontier. Simulation results 
indicate that the proposed optimization strategy leads to a 9.1% reduction in operating costs for 
the regional integrated energy system, a 9.9% decrease in carbon emissions, and a significant 
23.9% reduction in gas costs. These findings effectively validate the superiority of the proposed 
method in improving system economy, environmental performance, and operational resilience, 
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providing a theoretical basis and practical solutions for the coordinated optimization of regional 
integrated energy systems in complex scenarios.

1.	 Introduction

1.1.	 Research background and significance

	 In the context of “dual carbon” goals, the Regional Integrated Energy System (RIES) plays a 
crucial role in the coupling of electricity, cooling, and heating, which facilitates the integration 
of renewable energy and reduces carbon emissions.(1,2) By incorporating distributed 
photovoltaics, wind power, and other renewable sources, along with energy storage and diverse 
loads such as cooling and multi-type demands, RIES enhances system flexibility. However, as 
application scenarios expand, challenges in IES development are intensified by factors such as 
extreme weather, the high penetration of renewable generation, and the integration of multiple 
entities. These challenges include incomplete resilience assessment, discontinuous time-scale 
modeling, and difficulties in accurately representing large single-category loads.(3,4) Li et al. 
argued that unplanned electric vehicle (EV) charging, for instance, leads to overlapping 
residential and EV load peaks, increasing the grid peak-to-valley difference by more than 30%.
(5) Moreover, owing to the coupling characteristics of heating and cooling energy, conventional 
IES models are inadequate for a multi-energy coupled regional IES.(6)

1.2.	 Literature review

	 Existing studies on resilience and coordination in distribution networks and RIES have 
notable limitations. Dwivedi et al. improved the resilience of the Institute of Electrical and 
Electronics Engineers 123-node system from 56 to 93% by incorporating complex network 
topology and electrical parameters but did not consider multi-energy complementarity or multi-
time-scale correction in IES.(1) Liu et al. used a three-stage stochastic robust approach to 
enhance RIES robustness but overlooked scenarios with large single loads and significant peak-
valley differences.(2) Chen and Li developed a super-network model integrating fossil fuel 
networks with transport networks and introduced variational inequalities for dispatch path 
adjustment, yet they ignored renewable energy contributions, multi-energy storage, and real-
time sensor feedback.(3) Jin et al. enhanced electricity-thermal coordination accuracy by 
increasing source-side output but failed to account for the dynamics and real-time feedback of 
cooling networks.(4) Li et al. proposed an enhanced temporal convolutional network-bidirectional 
long short-term memory prediction model combined with a three-stage control short-term 
energy storage approach to reduce overlap between EV charging and residential loads, achieving 
a 27% reduction in load overlap and PV curtailment,(5) but this approach was criticized for 
neglecting heating-cooling energy coordination. Li et al. pointed out that conventional models 
fail to account for thermal and cooling energy storage losses, resulting in overestimated capacity 
evaluations.(7) Wang et al. indicated that maintenance protocols neglect the inspection and repair 
of heat pumps and chillers, leading to increased failure rates.(8) Both Li et al. and Wang et al. 
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pointed out that conventional models fail to account for thermal and cooling energy storage 
losses, resulting in overestimated capacity evaluations. Fathy developed a Superb Fairy-wren 
Optimization Algorithms (SFOA) model to address uncertainties in multi-energy microgrids, 
using Beta/Weibull distributions to quantify renewable energy fluctuations and reducing EV 
scheduling costs by 17.28% through demand response,(9) but it remains limited to microgrid 
scheduling and lacks multi-energy, multi-time-scale IES integration.
	 Existing studies on RIES collaborative optimization face challenges in scenario matching 
and scheduling precision. Lu et al. developed a bi-level optimization model for community IES, 
achieving a 9.6% cost reduction by optimizing energy procurement, storage, and equipment 
output.(10) However, it neglected cooling systems, inter-community trading, and the concentrated 
demand characteristics of large single loads. Wu et al. adopted a cooperative game approach to 
balance stakeholder benefits in multi-stakeholder scheduling but failed to quantify the impact of 
thermal/cooling energy transport delays.(11) Wang et al. implemented categorized energy 
demand scheduling to reduce carbon emissions by 16.8% across industrial, commercial, and 
residential scenarios but did not emphasize the high response speed required by large single 
loads.(12) Li et al. proposed a day-ahead, intra-day, and real-time scheduling framework to 
balance energy supply and demand but ignored the priority of multi-energy complementarity.(13) 
Wang et al. employed flow response superposition to decompose flow demand but lacked real-
time sensor feedback for dynamic accuracy.(14) Liu et al. introduced a bi-level game model to 
reduce operational costs through multi-agent coordination but showed limited applicability to 
large single loads. Overall, these studies exhibit gaps in comprehensive scenario integration and 
precise scheduling mechanisms.
	 In summary, existing studies generally lack integrated approaches for multi-energy 
complementarity across multiple time scales, effective strategies for large single loads, and the 
fusion of multi-agent and sensor feedback, hindering the coordinated management of large 
single loads within a multi-energy, multi-time-scale framework.

1.3.	 Innovation and contributions

	 Current RIES research has explored multi-time-scale scheduling and multi-energy 
complementarity, but challenges remain in handling complex scenarios with varying renewable 
energy integration and large singular loads. Most studies lack targeted strategies for sudden 
large load impacts during extreme weather, and improvements are needed in algorithm 
convergence and solution quality for high-dimensional nonlinear multi-objective optimization 
problems. In this paper, we address these issues with the following innovations and contributions:
•	� A multi-source sensing information-driven collaborative scheduling framework for 

electricity, thermal, and cold under large load scenarios is proposed. This framework relies 
on real-time sensor data to accurately assess the supply-demand status and identify critical 
bottlenecks. The dynamic priority sorting and cross-energy support mechanisms are 
activated and guided by this continuous sensor feedback, enabling proactive load shifting and 
enhancing resilience to balance supply and demand in extreme cases.

•	� The multi-objective great wall construction algorithm (MGWCA) is improved with elite 
collaborative optimization and crowding distance sorting, balancing global exploration and 
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local development to efficiently solve high-dimensional nonlinear multi-objective problems.
•	� A bi-level scheduling optimization model based on MGWCA is constructed to enable 

collaborative decision-making among stakeholders. Case studies validate its effectiveness in 
reducing costs, minimizing emissions, and enhancing extreme load response capabilities.

	 The following sections are organized as follows. In Sect. 2, we build the RIES framework 
and discuss multi-time-scale scheduling. MGWCA improvements are described in detail in Sect. 
3. Section 4 covers bi-level scheduling. In Sect. 5, we validate the framework via case studies. 
Findings and limitations are summarized in Sect. 6.

2.	 Formulation of Multi-source Sensing Information-driven Flexibility and 
Resilience Optimization Model of Regional Integrated Energy System

2.1	 Multi-source sensing information-driven structural framework of RIES

	 RIES operates on the basis of user energy demands. Sensors collect real-time data on energy 
supply, demand, and equipment status. This coordination integrates renewable energy (wind and 
solar) with traditional sources (gas turbines and boilers) to meet diverse loads (electricity, 
heating, and cooling). Energy storage devices mitigate renewable fluctuations and optimize 
distribution. The system involves three main participants: energy producers, energy managers, 
and the RIES itself. Managers purchase energy from producers, set real-time pricing, and 
distribute it downstream. Bidirectional collaboration with external grids ensures supply during 
shortfalls and allows surplus energy feedback, enhancing reliability and efficiency. Figure 1 
shows the optimization framework of RIES.
	 The real-time operation of RIES depends on a sensor network at critical nodes in energy 
production, conversion, storage, and end-user load sectors. The network includes four types of 
sensing node: environmental nodes (monitoring wind speed, sunlight, temperature, and 
humidity), electrical nodes (measuring voltage, current, and power), thermal nodes (monitoring 
temperature, flow rate, and pressure), and status nodes (tracking equipment states and faults). 
The sampling period for all sensors is uniformly set at Δt = 5 min to meet optimization 
requirements. The general sensor model is 
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where ,ˆk ty  is the measured value transmitted by the sensor, yk,t is the true value of the physical 
quantity being measured, ,

bias
k tχ  indicates the system bias, ,

noise
k tχ  represents random noise, and αk 

signifies the relative deviation coefficient.
	 The accuracy requirements for sensor data necessitate the quantification and correction of 
measurement errors by introducing parameters such as systematic bias, random noise, and 
relative deviation coefficients. The real-time requirements stipulate a unified sampling period of 
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Δt = 5 min for all sensors in the system, enabling the capture of rapid and stochastic fluctuations 
in renewable energy output (such as photovoltaic and wind power) and various loads. The 
combination of the unified Δt = 5-min sampling cycle and accuracy requirements collectively 
forms the “sensory neural network” of the regional integrated energy system. By integrating 
high-precision, real-time multi-source sensing data, the regional integrated energy system 
achieves dynamic, responsive, and adaptive operational capabilities, laying the foundation for 
flexibility and resilience optimization in complex scenarios such as single large loads and the 
high penetration of renewable energy integration.

Fig. 1.	 (Color online) Framework diagram of multi-source sensing information-driven RIES.
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2.2	 Mathematical model for RIES

	 The top-level model of the RIES developed in this study integrates key components such as 
renewable energy sources, combined heat and power (CHP) systems, multi-energy coupling 
conversions, and energy storage, through the mathematical modeling of energy production, 
conversion, storage, and load segments.
	 The equipment in the integrated energy system includes photovoltaic panels, wind turbines, 
gas turbines, and electric chillers. The equipment modeling is described in detail in Ref. (15). 
The revenue from energy sales and operational costs comprise the objective function for energy 
producers, while the objective function for energy managers includes only the profits from 
electricity trading.(16)

	 The electrical balance constraint model for IES is 

	 1 2 3 54 7( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ),

disc
W W W W W

LOAD EV MOV SOC cc

WD t D t D t D t D t D t
D t D t D t D t−

+ + + + +

= + + +
	 (2)

where DW1(t) is the wind power generation, DW2(t) denotes the PV power generation, DW3(t) 
indicates the power output from GT, DW5(t) is the amount of electricity purchased from energy 
managers, 7 ( )disc

WD t  is the discharge quantity, DLOAD(t) signifies the electrical load demand, 
DEV–MOV(t) indicates the amount of transferred electricity, and Dcc(t) is the power consumption 
of the carbon capture system.
	 The thermal load balance constraint model for IES is 

	 ( ) ( ) ( ) ( ) ( ) ( ),G H
B R BUY L LOAD CHARE t E t E t E t E t E t+ + + = + 	 (3)

where ELOAD(t) is the thermal load demand, ( )G
BE t  is the power output of the gas boiler, EBUY(t) 

is the quantity of heat purchased, ( )H
RE t  is the power output of the heat recovery boiler.

	 The cold load balance constraint for IES is 

	 ( ) ( ) ( ),QL D
O OEC t C t C t+ = 	 (4)

where ( )L
OC t  is the cooling power of the absorption chiller, ( )Q

EC t  denotes the cooling power 
produced by the electric chiller, and ( )D

OC t  indicates the total demand for cooling load.
	 The power balance constraint for energy producers is 
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where EEP(t), ( )EP
PVE t , and ( )EP

GTE t  represent the power outputs of GWT, PV, and GT, respectively. 
( )EP

DISCE t  and EP
CE  denote the discharge and charge capacities of the energy storage devices, 
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respectively. EP
SWE  indicates the amount of electricity fed into the grid, ( )GT

EPP t  represents the 
amount of heat generated by GT and processed through the heat recovery boiler, and ( )DISC

EPP t
and ( )C

EPP t  signify the amount of heat released and stored by the thermal storage devices, 
respectively, with ( )SW

EPP t  specifically denoting the amount of heat sold.
	 The energy management provider (EMP) acts as a “mediator” between energy producers and 
the integrated energy system. The constraints applicable to the EMP, as related to energy 
producers and the integrated energy system (including electrical transmission lines and thermal 
networks), are described in Ref. (16)

2.3	 Multi-time-scale collaborative scheduling framework for power-thermal-cold multi-
energy flexible interaction under a single large load

	 Under extreme weather and large single-load integration, regional integrated energy systems 
face significant operational challenges. Traditional load scheduling methods, limited to a single 
energy form, are inadequate for addressing large-scale power deficits. In this paper, we propose 
a multi-time-scale collaborative scheduling framework for power-thermal-cold multi-energy 
flexible interaction. The strategy integrates various energy flows, leveraging the spatiotemporal 
transfer potential and complementary characteristics of electrical, thermal, and cooling loads to 
enhance system resilience and economic efficiency under extreme conditions.
	 The implementation of this strategy relies on the accurate assessment of the overall supply-
demand situation and the identification of critical bottlenecks. An integrated model of joint 
deficits for electricity, thermal , and cooling loads is essential to fully capture system pressures. 
This model reflects the absolute deficits of each energy subsystem and introduces weighting 
factors to account for differences in scheduling priorities, conversion costs, and reliability 
requirements of various energy sources.

	 ( ) max(0, ( ) ( )) max(0, ( ) ( )) max(0, ( ) ( ))d s d s d s
total e e e h h h c c cP t P t P t P t P t P t P tα α α∆ = ⋅ − + ⋅ − + ⋅ − 	 (6)

Here, ΔPtotal(t) is the weighted total load deficit; αe, αh, and αc denote the weighting coefficients 
for electricity, thermal, and cooling, respectively. P.d and P.s represent the demand and supply 
capacities for electricity, thermal, and cooling, respectively.
	 On the basis of this model, the maximum joint deficit of the system at time T can be 
determined through the optimization model:

	 arg max ( ).total
t T

T P t
∈

= ∆ 	 (7)

Moment T represents the most vulnerable point in the system during the scheduling period and 
is the target that the cooperative scheduling strategy aims to stabilize. Once the critical time 
point T is identified, the core of the strategy is to use resources from preceding time periods for 
“proactive” load shifting. This approach leverages the inertial characteristics and energy storage 
potential of thermodynamic systems, allowing thermal and cooling energy to be transferred and 
stored over time at a relatively low cost.
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	 To achieve unified scheduling across different energy sources, it is necessary to convert the 
surplus energy for electricity, thermal, and cooling at all times (t < T) into a comparable baseline 
value. In this paper, the “equivalent electrical energy surplus” at time t is defined as

	 ( ) ( ) ( ) ( ),surplus e e h h e c cE t S t S t S tη η→ →= ∆ + ⋅∆ + ⋅∆ 	 (8)

where Esurplus(t) is the equivalent electrical energy surplus, and ΔS.(t) denotes the net surplus of 
each energy type. The coefficients ηe→h and ηe→c represent the conversion efficiencies from 
electrical energy to thermal and cooling energy, respectively, facilitating the homogeneous 
treatment of diverse energy sources within the scheduling decision-making process.
	 To prevent new supply–demand imbalances in preceding time periods, load transfer amounts 
must follow principles of systemic balance and proportionality. The amount of load transferred 
from time t to the critical moment T is determined as
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where ΔPtransfer is the amount of load transferred and φ is the energy storage loss coefficient. 
This allocation mechanism ensures that the transferred load in each time period is proportional 
to its energy buffer, thereby optimizing the allocation of system resources over time while 
distributing risk.
	 To address insufficient self-regulation capacity in a single energy subsystem during extreme 
scenarios (e.g., large load integration), in this strategy, we introduce a deeper cross-energy 
complementarity mechanism. When the thermal (or cooling) load deficit at time T exceeds the 
capacity of its own energy storage and transfer, an unresolvable power gap emerges. In such 
cases, the highly controllable electrical energy system acts as a critical flexible resource, 
providing support through energy conversion devices such as CHP units, heat pumps, and 
electric chillers.
	 To realize this complementary process, the remaining flexibility after meeting electrical 
scheduling demands must first be determined. Then, electrical energy can be converted into 
thermal or cooling energy via coupling devices. The amount of conversion is constrained by 
available electrical power, conversion efficiency, and the actual demand gap, as defined by

	 ,
,
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( ) min ( ), ,h gap

e h e avail
e h

P T
P T P t
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∆ 
∆ = ∆ 
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where ΔPe,avail is the remaining flexibility that can be utilized after meeting the scheduling 
demands for electrical energy and ΔPh,gap denotes an unresolvable power gap. This mechanism 
essentially establishes a bidirectional mutual support network among the electrical, thermal, and 
cooling subsystems. When one subsystem experiences extreme pressure, the other subsystems 
can provide effective flexibility support, thereby significantly enhancing the overall robustness 
of the integrated energy system.
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	 The proposed cooperative scheduling strategy is a systematic approach with hierarchical 
levels and responsive actions. It includes global state awareness to identify critical periods, 
multi-energy coordinated optimization for load transfer based on equivalent surpluses, and 
cross-subsystem mutual support through electrical energy conversion when needed. This forms 
a comprehensive scheduling defense system for extreme load scenarios. Its theoretical value lies 
in extending load flexibility from the temporal to the energy category dimension, offering an 
innovative solution for the efficient, safe, and economical operation of integrated energy 
systems. Future research will focus on developing stochastic optimization models and distributed 
solving algorithms for this strategy under uncertain environments. Figure 2 shows the 
framework of the proposed strategy.

3.	 Muit Great Wall Construction Algorithm (MGWCA)-based Solving Method

	 In RIES scheduling, the coupling of multi-energy flows and source-load uncertainties 
introduces significant dynamic disturbances and solution complexity. Traditional optimization 
algorithms such as the genetic algorithm often struggle with high-dimensional, strongly 
nonlinear, and multi-objective problems. The great wall construction algorithm (GWCA), 
inspired by the hierarchical logic and collaborative defense mechanisms of the great wall’s 
construction, demonstrates strong robustness, high search accuracy, and a lower risk of being 
trapped in local optima, making it well suited for multi-objective optimization in complex 
energy systems. The mathematical model of GWCA is described in detail in Ref. (17).
	 In the original GWCA, the labor movement form is fixed, which can lead to the premature 
convergence of the population, and the algorithm lacks effective global exploration. To address 
these shortcomings and enhance the adaptability of the solution model, an elite collaborative 
optimization strategy is proposed to update the position of labor, as defined by 

Fig. 2.	 (Color online) Framework diagram of the proposed strategy.
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	 ( 1) ( ) (1, ) ,i iL t L t elite rand dim mry+ = + ∗ + 	 (12)

where elite is the elite guiding component, mry denotes the individual memory component, and 
w1 and w2 are the guiding weights for the elite and individual memory, respectively. Li(t) is the 
position of the ith laborer, and Lbest(t) refers to the best position of the laborer. vi(t) signifies the 
position of the ith engineer, Li(t + 1) is the position of the ith laborer, and dim denotes the 
dimensionality of the problem.
	 The elite collaborative optimization strategy balances global search and local development 
capabilities, significantly improving convergence speed. On this basis, MGWCA incorporates 
crowded distance sorting and an external archiving mechanism. The detalis of the multi-
objective optimization process are shown in Ref. (16). 
	 The framework diagram of MGWCA is shown in Fig. 3. First, set the algorithm parameters 
and the basic parameters of the repository, then calculate the initial fitness values of all 

Fig. 3.	 (Color online) Framework diagram of MGWCA.
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populations, and, finally, select the best individual as the leader to guide the population 
individuals to move towards its position. Next, calculate the index. When the index is 1, the 
population updates positions using the engineer’s method; when it is 2, the soldier’s method is 
used; and when it is 3, the worker’s method is applied. After the population update, compare the 
fitness values of engineers, soldiers, and workers, select the population position corresponding 
to the optimal fitness value, and store it in the repository. This process is repeated until the 
maximum number of iterations is reached. If the repository becomes full, priority is given to 
individuals with lower densities and higher fitness values. Finally, the best individual is selected 
from the repository as the optimal solution.

4.	 Optimization Process of Multi-source Sensing Information-driven Flexibility 
and Resilience Optimization Model of RIES

	 The process is shown in Fig. 4. In RIES, stakeholders have different goals: energy producers 
balance trading revenue and costs to maximize benefits, energy managers focus on trading 
profits, and the integrated energy system aims to minimize comprehensive costs (trading, 
operations, and collaborative optimization). The system uses a bi-level framework: the upper 

Fig. 4.	 (Color online) Bi-level energy optimization process of RIES.
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level sets trading rules via dynamic pricing by producers and managers, whereas the lower level 
handles equipment scheduling and collaborative operations. Implementation includes publishing 
dynamic prices, initial output optimization using mixed-integer linear programming, secondary 
energy interactions via distributed optimization, producers adjusting output plans with linear 
programming, and managers settling economic returns. The model is solved using a hybrid 
strategy: upper-level optimization with MGWCA for pricing parameters and lower-level 
optimization with the Gurobi solver. As presented in Fig. 4, the specific solution process is as 
follows:
(1)	The main program is initiated, completing the overall initialization, which includes data and 

parameter settings, as well as establishing the corresponding device models for the integrated 
energy system.

(2)	Initial values are assigned to key variables, including equipment output power and trading 
quantities with the energy manager.

(3)	Multiple operational constraints are set, encompassing power balance, output ranges for 
equipment, ramping capabilities, and capacity restrictions.

(4)	An optimized scheduling of the equipment output within the integrated energy system is 
performed. The Gurobi solver is called to calculate the specific output of each device and 
trading quantities with the energy manager. Optimization results are then outputted to 
provide data support for strategic adjustments at the upper level.

(5)	In constructing the optimization objective function for the integrated energy system, multiple 
factors such as energy costs, equipment operating expenses, and environmental benefits are 
comprehensively considered to achieve the economic operation of the system. 

(6)	Additionally, the objective function is dynamically adjusted on the basis of feedback 
information from the lower tier to ensure the accuracy and adaptability of the optimization 
process.

(7)	By employing MGWCA, the optimal output of each device within the system and the 
corresponding trading quantities with the energy manager are derived, thereby achieving the 
efficient economic operation of the integrated energy system and optimizing resource 
allocation.

5.	 Case Studies

	 To evaluate the effectiveness of the algorithms and strategies proposed in this study, three 
case studies have been designed as follows: Case 1 integrates MGWCA into RIES and compares 
its solving capacity and superiority against SFOA, the Multi-objective Multi-verse Optimizer 
(MOMVO) algorithm, and the original algorithm. Case 2 verifies the flexible electricity-
thermal-cold collaborative strategy through a comparison of scenarios with high and medium 
shares of renewable energy. Case 3 assesses the overall performance of the integrated energy 
system, aiming to analyze the multi-energy flexibility between electricity, thermal, and cooling, 
and validates the effectiveness of the multi-time-scale collaborative scheduling strategy under 
extreme load conditions.



Sensors and Materials, Vol. 38, No. 2 (2026)	 899

	 The key parameters for the core equipment within RIES (such as photovoltaic panels, wind 
turbines, gas turbines, combined heat and power systems, energy storage devices, and energy 
conversion units), along with the associated cost coefficients and technical constraints, are 
described in detail in Appendix A.

5.1.	 Case 1: Numerical and solving model validation of MGWCA

	 To verify the feasibility of MGWCA discussed in this paper, we selected two multi-objective 
algorithms: SFOA and MOMVO, along with the unmodified original GWCA for comparative 
analysis. The iterative relationship between the optimization results and the revenues of the three 
major operators under different algorithms are presented in Fig. 5.
	 Figure 5(a) presents the optimal solutions during the iterations of the four algorithms. 
Notably, MOMVO records an EM loss of $−3382, while SFOA reports an EM revenue of $7123, 
both of which are illogical results. In contrast, MGWCA shows the lowest IES cost at $882.2, 
demonstrating reductions of 51.93, 38.09, and 38.65% compared with the IES costs of SFOA, 
GWCA, and MOMVO, respectively. This indicates a significant advantage of MGWCA in 
reducing IES costs. Simultaneously, the EP cost for MGWCA is $15530, which is 0.13% higher 
than that of GWCA, suggesting that MGWCA slightly improves the EP revenue compared with 
the original algorithm. Overall, under the multi-time-scale collaborative framework of multi-
energy flexibility at a single high load, MGWCA showcases superiority in both reducing IES 
costs and enhancing the EP revenue.

Fig. 5.	 (Color online) Iterative relationship between optimization results and revenues of three major operators 
under different algorithms.
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5.2	 Case 2: Feasibility verification of load scheduling strategies under different 
proportions of renewable energy

	 Case 2 validates the flexible electricity-thermal-cold collaborative strategy by comparing 
scenarios with high and medium shares of renewable energy. The findings indicate that this 
strategy effectively transforms the temporal and spatial mismatch of “green electricity and waste 
heat” into a layered defense of “energy storage and external procurement”, ensuring that IES 
operates economically and resiliently under any proportion of green electricity.
	 Figure 6 reveals the energy balance under a high proportion of renewable energy integration. 
Figure 6(a) shows the electrical balance within 24 h: at 18:00, the load dropped sharply by 
1048.48 kW and the remaining power was prioritized for storage in the battery. From 10:00 to 
15:00, the peak output of photovoltaic power was 3116.389 kW, combined with 987.102 kW of 
wind power. The total power generation was much higher than the load. The system immediately 
initiated the “cross-energy compensation” decision - when the real-time electricity price was less 
than 0.35 $/kWh and the storage SOC was greater than 80%, it was determined as “surplus 
electricity”. According to the measured efficiency curves of ηe→h = 0.9 (weighted by electric 
boiler +COP 3.0 heat pump) and ηe→c = 0.7 (COP 4.0 of the electric chiller and taking into 
account the loss of the refrigerant pipeline), the excess electricity was respectively converted into 
hot water and chilled water. The hot water was stored in the 85 ℃ storage tank and the chilled 
water was stored in the 7 ℃ cold storage tank. From 00:00 to 04:00, when the heat tank was 
fully filled, heat was sold to the outside. From 09:00 to 13:00, the surplus electricity from the 
photovoltaic system was used for heating or cooling and sold externally. At 14:00, when the heat 
tank dropped to 30%, the gas boiler was triggered to replenish heat. At 19:00, when the peak 
heat load was 769.891 kW and the heat tank was still insufficient, the heat pump was called first 
in the “electricity-heat priority order” and then natural gas was purchased. This strategy realizes 
the horizontal complementarity of “electricity-thermal-cold”, convert the time deviation of 
renewable energy into the energy sales revenue, and enhance economic efficiency and flexibility.

Fig. 6.	 (Color online) Energy balance under high and low proportions of renewable energy integration.
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	 Figure 6(b) shows the low-renewable scenario: at 22:00, the wind and solar power output was 
only 329.821 kW. The system determined that the electricity price was greater than 0.65 $/kWh 
and the electricity shortage was greater than 1 MW. It immediately shut down the electric boiler 
and electric refrigeration machine, stopped the conversion from electricity to heat or electricity 
to cold, and released 544.825 kW of pre-stored electricity and purchased 1250.85 kW of 
electricity. At 13:00, the heat tank was at 25% and there was no electricity surplus. Therefore, 
according to the rule “purchase 151.964 kW of heat when the heat shortage is greater than 150 
kW”, 151.964 kW of heat was purchased to avoid inefficient electricity-to-heat conversion. The 
total photovoltaic power was 2077.59 kW and the wind power was 693.331 kW, which were 
1038.79 and 293.771 kW lower than the high-renewable scenario, respectively. However, the 
cross-compensation logic of “efficient conversion when there is excess electricity and stopping 
conversion when there is insufficient electricity” maintained the energy supply balance, 
verifying the robustness and universality of ηe→h and ηe→c based on the measured efficiency of 
the equipment for the system under different renewable penetration rates.
	 In conclusion, Case 2 achieved flexible load transfer and multi-energy coordination by 
dynamically determining the timing of “electricity-to-thermal or electricity-to-cool” conversion 
and using measured efficiency values. This significantly enhanced the economic efficiency and 
flexibility of RIES under extreme load and renewable fluctuation conditions.

5.3	 Case 3: Validation of the effectiveness of multi-energy flexibility in multi-time-scale 
cooperative scheduling

	 Case 3 aims to evaluate the overall performance of the integrated energy system, analyzing 
the multi-energy flexibility between electricity, thermal, and cooling. This case seeks to validate 
the effectiveness of the multi-time-scale cooperative scheduling strategy under extreme load 
conditions. As shown in Table 1, a comparative analysis is conducted on various indicators, 
including economic costs, pollution penalty costs, operational and maintenance costs, gas costs, 
and carbon emissions for IES and EP before and after cooperative scheduling. 
	 As shown in Table 1, the implementation of multi-energy flexibility and multi-time-scale 
cooperative scheduling for electricity, thermal, and cooling in IES has led to significant 
improvements in economic and environmental performance. The economic cost of IES 
decreased from $2723.32 to $474.34 (a reduction of approximately 9.1%), while carbon emissions 
dropped from 2744.57 to 2472.31 kg (a decline of 9.9%). Gas consumption and costs also 

Table 1
Various indicators of IES and EP before and after collaborative scheduling.
Objective IES IES after collaboration EP EP after collaboration
Feco ($) 2723.32 2474.34 14443.94 14340.43
Fpoll ($) 507.26 505.69 299.17 250.13
Fom ($) 1232.21 1210.59 236.06 185.95
Fgas ($) 974.12 741.15 782.69 692.30
Qec (kg) 686.94 694.12 411.52 382.15
Pec (kg) 228.98 230.53 198.04 204.73
carbon (kg) 2744.57 2472.31 1881.06 1705.34
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decreased, with gas costs falling from $974.12 to $741.15 (a reduction of about 23.9%). The 
electricity consumption of the IES’s electric chiller increased slightly from 228.98 to 230.53 kg 
(0.7%), whereas its cooling output decreased from 686.94 to 649.12 kg (5.5%), indicating stable 
power output and reliable cooling support. For EP, the economic cost decreased from $14443.94 
to $14340.43, operational and maintenance costs dropped from $236.06 to $185.95, carbon 
emissions fell by 9.3%, and pollution costs decreased by 16.4%. These results demonstrate that 
the scheduling strategy optimizes the energy structure, enhances low-carbon operations, and 
improves the overall resilience and collaborative efficiency of IES and EP, achieving a dual win 
in economic viability and environmental friendliness.
	 Figure 7 presents the energy storage equipment of the integrated energy system, along with 
the variation curves of electrical balance, thermal balance, and new energy in EP.
	 Figure 7 shows that the IES’s electrical storage charges from 1:00 to 10:00 and discharges 
during peak use (10:00–13:00), and resumes charging after 20:00. Thermal storage maintains 
stability for reliable heat supply. At 19:00, flexible electrical demand is reduced, and multi-
energy scheduling helps mitigate shortfalls through load shifting. The thermal balance at 19:00 
shows cross-subsystem collaboration to alleviate thermal pressure. The output of renewable 
energy exhibits distinct peak periods: photovoltaic generation peaks between 8:00 and 18:00, 
while wind power peaks from 14:00 to 22:00. Load demand also shows specific peaks, with 
electrical load peaking during 5:00–9:00 and 18:00–21:00, and thermal load peaking at 2:00, 
17:00, and 22:00. Energy storage is crucial for load smoothing. Wind power’s variability means 
that reliable thermal storage is needed during thermal load peaks to ensure heating, highlighting 
the system’s resilience.

Fig. 7.	 (Color online) Changing curves of different situations.
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	 As observed in Fig. 7 during the thermal load peak at 19:00, cross-energy compensation is 
not a simple energy substitution but a systematic flexibility support mechanism. This process is 
governed by energy conversion efficiencies (ηe→h and ηe→c), defined as the ratio of useful 
thermal (or cooling) energy output to electrical energy input. The decision to convert electrical 
energy into heating or cooling energy at an extreme load moment T, such as 19:00 in Fig. 7, 
follows a structured, cost-driven optimization logic embedded within the scheduling model. A 
high conversion efficiency acts as a flexibility multiplier. For instance, when ηe→h = 3.5, 1 kW of 
electrical flexibility can mitigate a 3.5 kW thermal load deficit. This significantly enhances the 
system’s persistence elasticity, enabling it to maintain operation under extreme loads for a longer 
duration.
	 In conclusion, through the implementation of the multi-energy flexibility and multi-time-
scale cooperative scheduling strategy—enabling spatiotemporal load transfer, energy storage 
peak regulation, and cross-subsystem collaboration—the system maintains stable operation 
under extreme loads, thereby enhancing overall collaborative efficiency.

6.	 Conclusions

	 In this study, we addressed the challenges faced by RIES in multi-time-scale collaborative 
scheduling and response to singular large loads, proposing a comprehensive solution. The main 
research conclusions are as follows.
•	� A multi-time-scale collaborative scheduling framework for multi-energy flexibility is 

proposed. A collaborative scheduling framework for electricity, thermal, and cold energy has 
been constructed. This framework establishes a dynamic priority mechanism that accounts 
for peak-valley load differences and energy transmission delays, facilitating multi-time-scale 
coordination. In extreme load scenarios, a conversion mechanism that transforms electrical 
energy into thermal and cooling energy provides emergency cross-energy support, 
significantly enhancing system resilience. The results indicate a 9.1% reduction in operating 
costs, a 9.9% decrease in carbon emissions, and a 23.9% decline in gas costs.

•	� An improved MGWCA is developed, which effectively addresses the premature convergence 
issue of the original algorithm by introducing an elite collaborative strategy and crowding 
distance sorting. Case 1 validates that MGWCA outperforms the original GWCA concerning 
the uniformity distribution metric on the ZDT3 function, with an increase of 81.4%. 
Additionally, it optimizes the operating cost of IES to 882.2$ in real scheduling problems, 
achieving a reduction of 38.1 to 51.9% compared with benchmark algorithms, demonstrating 
superior solution performance and stability.

•	� The strategy adaptability across different scenarios is analyzed. A comparative analysis of 
scenarios with high and medium proportions of renewable energy integration validates that 
the proposed strategy can maintain stable system operation across various renewable 
penetration rates, showcasing good robustness and practicality.

•	� Furthermore, the pivotal role of multi-source sensing information as the foundation of the 
proposed framework is underscored. The pervasive deployment of sensors across RIES 
provides the critical real-time data on renewable energy output, load fluctuations, and 
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equipment operational status. This high-fidelity data stream is indispensable for the accuracy 
of day-ahead forecasts, the timeliness of intraday rolling adjustments, and the precision of 
real-time feedback corrections. Ultimately, it is this sensor-enabled situational awareness and 
closed-loop control that allows the dynamic priority mechanism and cross-energy support to 
function effectively, ensuring the system’s enhanced economic efficiency, low-carbon 
performance, and operational resilience under the stress of a single large load.

	 It is important to reaffirm that the reported optimization improvements—including the 9.1% 
reduction in operating costs, the 9.9% decrease in carbon emissions, and the 23.9% decline in 
gas costs—are fundamentally underpinned by the multi-source sensing information-driven 
approach. The pervasive sensor network provides the essential data fidelity and timeliness 
required for the accurate state awareness, forecasting, and closed-loop control that define the 
proposed collaborative scheduling framework.
	 However, this study’s model rests on the assumption of fully reliable sensor data, which may 
diverge from real-world complexities where data packet loss, communication delays, and sensor 
faults can occur. Therefore, addressing the uncertainties and reliability of sensor data themselves 
presents a critical direction for future work. Subsequent research will focus on constructing a 
stochastic robust optimization model that explicitly considers multi-source data uncertainties, 
alongside exploring a distributed parallel computing framework to enhance the algorithm’s 
practical application and scalability in ultralarge-scale RIES engineering contexts.
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Appendix A

Table A1
Key equipment parameters.

Equipment Capacity (kW) Running cost
($/kW) Efficiency Charge/discharge 

power (kW) Reference

Photovoltaic 2500 0.009 — — (16)
Wind turbine 1500 0.015 — — (16)
Gas turbine 1000 0.05 0.35 (electrical) — (2)
Gas boiler 500 0.075 0.90 — (15)
Electric chiller 800 — — — (15)
Electrical storage 1200 (kWh) 0.008 0.95 250 (2)
Thermal storage 1000 (kWh) 0.18 0.90 200 (16)
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