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Anisotropic etching of masked silicon single crystal wafers is widely used in 
micromachining technology. In this paprr it is argued that the structure evolving from an 
underetched convex mask corner can be perfectly understood and calculated by straightfor­
ward application of kinematic wave theory. Previous attempts to predict such structures 
failed because they were based on an algorithm that, although applicable to protruding and 
re-entrant vertices, is insufficient to describe saddlepoint vertices. It is important to realize 
that a convex mask comer is a disguised saddlepoint vertex. For the extended algorithm 
discussed in this paper, two principles are essential which are not generally recognized: 1) 
In 3D we have to distinguish protruding, re-entrant and saddletype point sources. The 
surface structure evolving from such a point source may contain one or more saddlepoint 
vertices. 2) Saddlepoint vertices can act as a (topological) velocity source. This behaviour 
can be recognized by the concurrence of more than three edges in the vertex. These new 
principles are applied to explain the structure of the underetched mask corner on a Si { 100} 
wafer etched in potassium hydroxide (KOH). Under specific conditions, this structure 
includes three velocity source saddlepoint vertices, three orctinary saddlepoint vertices and 
four protruding vertices. 
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1. Introduction

Orientation-dependent wet-chemical etching of single crystals is widely used as a tool 
in the fabrication of micro-mechanical devices such as mechanical sensors, actuators, and 
micropumps. Usually these devices are fabricated on flat single-crystalline substrates that 
are partly covered by a polygonized protecting mask, by exposing it to the etchant. The 
evolution of the shape of the crystal surface during the anisotropic etch process is 
determined by surface kinetics, and therefore it can be described mathematically by the 
kinematic wave theory as originally developed by FrankC1J and ChernovYl Essentially, this 
theory is a continuum description of the evolution of nonplanar surfaces, which may be 
considered as a generalisation of Huygens' principle for the evolution of wavefronts for 
orientation-dependent advance velocity R(n )_{3l A basic procedure in this theory is the 
Gibbs-Wulff construction, which produces the shape evolving from a point nucleus and 
also the shape developing from an edge (2D) and a vertex (3D). Algorithms for the 
numerical simulation of etched shapes can be based on this construction. Input data are the 
mask shape, substrate orientation and the etch rate function R(n). 

This paper is concerned with a curious phenomenon associated with the anisotropic­
etching technology which is, up to now, poorly understood: the contrast between the 
structures developed at convex and at concave mask corners. The structure developing 
from a concave corner consists of surfaces with minimum etch rate, in agreement with the 
3D Gibbs-Wulff construction. This construction, for this special case, is a direct and 
simple generalisation of the 2D Gibbs-Wulff construction described in many textbooks, 
which is also the basis of the construction of the underetch profile at a straight mask edge. 
Consequently, both this 2D profile and the 3D structure at a concave mask corner can be 
computed numerically from the R(n) function by a simple and straightforward algorithm, 
as described in the literature on this subject. c3-6l

In contrast, the structure developing from a convex mask corner, in many cases, has 
some complications. First of all, although there is not a sharp distinction, the structures 
sometimes appear to be more intricate than those developed from a concave corner, 
showing more edges and vertices. Figure 1 shows an example of such a structure: the 
underetched convex mask corner on a { 100} silicon surface with mask edges along <110> 
directions, as etched in KOH. Secondly, the occurring surfaces do not correspond either to 
minimum or maximum etch-rate orientations. Finally, part of the vertices occurring in 
these structures can be meeting points between more than three edges. This difference is 
topologically distinctive, but as far as we are aware it has not been mentioned before as 
typical for convex mask corners. This observation alone is proof of the fact that such >3-
edged vertices actually nucleate one or more new orientations, and as such it has been a 
clue to the development of the new algorithm. 

In this paper we will consider the structures developing at convex mask corners by 
underetching and we will develop a computer-executable algorithm which predicts them, 
on the basis of kinematic wave theory. In doing so, we will emphasize principles rather 
than elaborate on mathematics. We proceed by the following steps: 
1) We identify the concave mask corner as a disguised "protruding vertex", and the convex
mask corner as a disguised "saddlepoint vertex" in the initial surface (section 3).
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Fig. 1. AFM image of structure obtained by underetching a silicon (100) wafer below a convex 

mask comer. The mask edges are aligned in <110> and <10> directions and the anisotropic etchant 

is KOH (3 wt%, 80°C). Courtesy H. Schroder. 

2) We discuss the evolution of vertices in general. First we consider the 2D case of the
evolution of edges, as commonly explained in textbooks (section 4) and then transfer the
method to the 3D case of vertices (section 5). We explain how the structure evolving from
a saddlepoint vertex can be calculated in-a single time step, by a new algorithm, which
involves a sequence of calculations that reveal all vertices of the structure in succession.

·· New generations of saddlepoint vertices may arise.
3) In section 6 we will apply these new principles to explain an obvious example of an
underetched convex-mask comer structure which was investigated in detail by Schroder
and Obermeier7l and Schroder.C8l 

To our knowledge it has been overlooked so far that the 3D case of a vertex is not 
simply a straightforward generalisation of the 2D case of an edge. This is due to the fact 
that a vertex defined by three planar sectors (the 3D generalisation of an edge defined by 
two half-infinite lines) can occur in three species: protruding, re-entrant and saddletype. 
The properties, and therefore the construction principles, of protruding and re-entrant 
edges and vertices correspond closely, but the saddletype vertex has no 2D analog. 
Although most authors seem to be aware of the extra complexity of the saddlepoint case,c3-5•7•9l 

a suitable algorithm has not been published so far. In a recent study,C9l we have analyzed 
the case in detail and developed a new and consistent construction procedure. Two new 
geometrical principles are involved in this procedure, which will be discussed in this paper 
on an intuitive level: 

A) We argue that the character of a "point source" in this construction has to be
specified. We have to distinguish between a convex and a concave point source, for the 2D 
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case of a protruding and a re-entrant edge, or for the 3D case of a protruding and a re­
entrant vertex. For a saddlepoint vertex we have, by analogy, to deal with a saddletype 
point source. This implies that the surfaces which can occur in the developing structure are 
a priori restricted to those orientations which correspond with the appropriate similar 
saddletype parts of the "Gibbs-Wulff surface", derived from the R(n) function (in our 
notation, the QR surface). This topological observation considerably reduces the complex­
ity of the algorithm to be worked out for the numerical prediction. 

B) We argue that moving saddlepoint ve11ices have the unique ability to nucleate new 
orientations - which, if they do, is reflected in the topological characteristic of more than 
three edges meeting in the vertex. We show that the "conical Gibbs-Wulff construction" 
(explained in the appendix and more extensively in Ref. 9) can predict the nucleated 
orientations and consequently can be developed into an extended algorithm for calculating 
the structure of the evolving saddlepoint vertex. 

2. Notations and Conventions

The reader is assumed to be familiar with kinematic wave theory, which is standard 
textbook material in the fields of crystal growth and etching.00-t3J The point of departure of 
this geometrical description is the polar plot of the perpendicular advance rate R(n ), which 
can be defined in two as well as in three dimensions. Whereas Ris a scalar property, the 
polar representation of R for a certain orientation n is a vector in velocity space which can 
be written as nR(n ). For convenience we introduce the notation PR(n) = nR(n ), where Pis 
the "plotting operator". 

The Gibbs-Wulff construction is based on thePR(n) curve (2D) or surface (3D) for all 
n. At every point of this curve/smface, a line/plane perpendicular ton is drawn. The curfie/
surface tangent to all these lines/planes is called the Gibbs-Wulff curve/smface. It is easily
shown that the vector on the Gibbs-Wulff curve/surface, corresponding with a normal
vector n, can be written as QR(n) = PR(n) + dR(n)ldn, where Q is introduced as another
vector operator Q = I + d/dn, working on a scalar function of orientation n (I = identity
operator). We call it the Gibbs-Wulff operator. For a smoothly curved surface, an
infinitesimal area with orientation n follows a kinematic wave trajectory with the vector
velocity QR(n).

We will use a special convention for the signs of edges and vertices. One of the basic 
lemmas of kinematic wave theory concerns the relationship between surviving orientations 
and the types of edges and vertices (protruding or re-entrant): in the evolution of a 
protruding edge/vertex, the slowest orientations survive (and, conversely, the fastest 
01ientations survive in re-entrant edges/vertices). It is appropriate to choose a set of 
definitions in which the characteristic properties of the complementary types are identical 
in terms of growth and dissolution/etching conditions. To this end, we have to define the 
normal n of a surface to point in the direction in which the surface advances, rather than 
"from crystal to parent phase" as is perhaps more customary. This implies that if a ce1tain 
edge on a crystal is protruding towards a parent phase or etching liquid, it is now called a 
protruding edge for the growth situation but a re-entrant edge for the etch situation. 
Simultaneously, the function R(n) should be considered as positive for growth and 
dissolution alike. 
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Edges and vertices are in the first place defined by the orientations of the participating 
interfaces and in the second place by the sign of the edge(s) between them. Edges can 
occur in two species only, for which we introduce the following notation: 

protruding edge: edge { n 1 ( + )n2} 
re-entrant edge: edge { n 1 (-)n2 }. 

The basic vertex has three interfaces with (different) orientations n i , n2 and n3 and occurs 
in eight species: protruding, re-entrant and six saddlepoint vertices, with the following 
notation (see Fig. 2): 

protruding vertex: vertex { n 1 ( + )n2 ( + )n3 ( +) } 
saddlepoint vertex: vertex { n 1 (-)n2 ( + )n3 (-)}

vertex { n 1 ( + )112 (-)n3 (-)} 
vertex { n 1 (-)n2 (-)n3 ( +) } 
vertex{n 1 (+)n2 (+)n3 (-)} 
vertex { n 1 (-)n2 ( + )n3 ( +)} 
vertex{n 1 (+)n2 (-)n3 (+)} 

re-entrant vertex: vertex { n 1 (-)n2 (-)nJ(-)} 

(a) 

Frontal view: 

(b) 

(no 1 in Fig. 2(a)) 
(no 2) 
(no 3) 
(no 4) 
(no 5) 
(no 6) 
(no 7) 
(no 8). 

. \ ii ��·k< ...
�/ 3 

Fig. 2. Overview of the eight vertex types corresponding with three fixed orientations, n1 , n2 and n2 . 

a) Perspective view. b) Frontal view of the eight types as labeled in a. 
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The extension to vertices with more orientations is obvious. Note that the orientations n 1, 

n2, etc. have to be numbered in cyclic order following a path around the vertex, but the 

direction of this path is irrelevant. The extension to an infinite number of orientations is a 

cone. 

We have to emphasize that the word "edge" can actually be applied to two different 

objects, i.e., the actually 3D object of a folded planar sheet, i.e., two half-infinite planes 

connected by their intersection line, and the 2D object of two half-infinite lines connected 

by their intersection point. As far as the Gibbs-Wulff construction for their evolution is 

concerned, there is no difference: in the real 2D case we simply have one n variable in the 

R(n) function, in the actual 3D case we are left with one n variable because it is restricted 

to the directions perpendicular to the edge line. For this reason we will not emphasize the 

difference in section 4. However, we may differentiate between the term point source in 

the strict 2D case and the term line source in the strict 3D case. However, an edge 

associated with a vertex is actually a half-infinite edge and the endpoint (i.e., the vertex) 

may move in a direction which is not perpendicular to it. The consequences are discussed 

in section 5.2. 

In this paper we restrict ourselves to the simplest starting shapes: isolated edges and 

vertices defined by planar surfaces, which ensures that all occurring intersections are 

straight lines or half-lines. These starting shapes have the property that the evolving shape 

at any time after the start of the etching process can be calculated in a single time step. It 

can be rendered as a fixed shape in velocity space that simply has to be multiplied by the 

etching time to obtain the actual shape. We call this shape in velocity space the evolution 

shape of the edge or vertex surface. The surfaces and edges occurring in the evolution 

shape are not necessarily planar and straight, respectively. 

We introduce some terminology concerning the relation between the starting shape of 

an edge or vertex(= the shape at time t = 0) and the evolution shape. If the shapes are 

identical, we call the edge or vertex persistent. In their respective 2D and 3D representa­

tions, the evolving edge or vertex point then follows a single straight trajectory so that we 

can define a vector velocity Redge or Rvertex for it. If the shapes are not identical, this implies 
that beveling surfaces affect the evolution shape. For an edge this can only mean that it 

becomes truncated, so that the original edge point is cut off by the beveling surface and the 

original edge splits up into partial edges each following different trajectories, and/or 

(cylindrically) curved sections. These secondary edges are persistent. For a non-persistent 

edge or vertex we can still define the trajectory and the vertex velocity of the virtual edge 

or vertex, R(n 1,n2) or R(n i ,n2,n3). The virtual edge is defined as the intersection line of the 

infinite original planes n 1 and n2 and the virtual vertex as the intersection point of the 
infinite original planes n 1, n2 and n3, all travelling with the speed corresponding to the R(n) 

function, and thus the connectivity relation 

(1) 

is obeyed for all participating interfaces. For an edge this implies that we can construct 

R(n 1,n2) by drawing, in a polar plot of R(n), a circle through the origin and points PR(n1) 

and PR(n2). R(n i,n2) is then the vector represented by the diameter of this circle from the 
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ongm. The circle itself can be written as P { R(n i,n2)•n}. For a vertex formed by the three 

orientations n 1, n2 and n3 we have the obvious extension of this principle by drawing a 
sphere through the origin and the points PR(n 1), PR(n2) and PR(n3) (of course, the vector 
velocity of the vertex is the same for all eight vertex types). The sphere can be written as 
P{R(n i,n2,n3)•n}. 

Whereas a beveling surface of an edge necessarily cuts off the original edge, so that the 
starting edge is not persistent, we have two alternative possibilities for the vertex case. The 
first possibility is that the original vertex point splits up into a number of secondary 

vertices, edges and/or curved areas. Again, such a structure as a whole is persistent: it can 
be represented as a fixed evolution shape in velocity space. A fortiori, secondary vertices 
on their own are persistent. The second possibility is that the beveling surface includes the 
vertex point itself. This implies that the vertex point as such is persistent (and also its 
vector velocity is identical to R(n i ,n2,n3)) but the vertex structure, being changed by the 
beveling plane, is not persistent. Obviously we have to distinguish between trajectory 
persistence and shape persistence for a vertex. Of course, shape persistence includes 

trajectory persistence, but not inversely. 

3. The Correspondence between a Mask Corner and a Vertex

Shaw02J and JaccodineC13l describe a method for constructing underetch shapes. The 
evolution for the 2D case is predicted by considering the evolution of a 180° (= infinitely 

sharp) edge coinciding with the exposed surface, so that the edge line corresponds with the 
straight mask edge (Fig. 3(a)). Subsequently, the evolved shape, calculated on the basis of 

2D 3D 

evolved shape 4- ---[}

(a) (b) 

Fig. 3. Illustrating the formal identification of the situation at a mask edge with an evolving 180' 
edge (2D) and at a convex mask comer with a 180° saddlepoint vertex (3D). 
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the protruding edge evolution method that will be presented in section 4, is cut off by the 
mask which is considered as a boundary above which the shape is nonphysical. Note that, 
in a sense, this principle is simplistic as it assumes that the mask does not interact with the 

interface. In reality there may be an interaction, either resulting in an imposed orientation 

or in an enhanced nucleation rate. Such an interaction may provoke the mask junction to 

act as a velocity source.C14--I 5l We may generalize the 2D mask edge case to the 3D mask
comer case by following the 180° edge around that comer (Fig. 3(b)). In both the 2D and 
the 3D cases, the choice for the 180° edge guarantees that any contact angle with the mask 
is possible. Note that a convex mask comer, both for the case of underetching and for 
overgrowth, corresponds to a saddlepoint vertex. Conversely, a concave mask corresponds 

to a protruding vertex. 

The somewhat surprising consequence of this correspondence between mask corner 

types and vertex types is that, for the case of a masked planar substrate, re-entrant vertices 
simply never occur in the initial crystal surface. They may appear later, due to meeting 
events between convex vertices or edges with one another or with opposing planes. This 
happens when a masked area becomes underetched. Also, when etched surfaces originat­
ing from different mask openings or from opposed wafer sides meet, new saddlepoint 

vertices may be formed at the meeting point. 

4. The 2D Case: Evolution of Protruding and Re-entrant Edges

Two fixed orientations, n1 and n2 (n i "ic-n2), define the complementary protruding and re­
entrant starting edges {n 1 (+)n2} and {n 1 (-)n2}. We choose a demo function R(n) for 
which PR and QR are sketched in Fig. 4(a) in the relevant orientation range between n 1 and 

n2. In Figs. 4(b) and 4( c ), the transverse cross section of the starting edges is drawn with the 

edge position in the origin (protruding case in Fig. 4(b), re-entrant case in Fig. 4(c)). 
After unit time, the two legs are displaced by the vectors QR(n 1) and QR(n2), respec­

tively, and the evolved shape is completed by connecting the points QR(n 1) and QR(n2) 

following the curve QR(n) from n1 to n2 in the plane through n1 and n2. In this curve, self­
intersections may occur (we have chosen R(n) in order to produce such self-intersections 

for both cases, Figs. 4(b) and 4(c)). The "ears", cut short by the self-intersections, are 

nonphysical and should be eliminated. For a protruding edge (Fig. 4(b)) this applies to 

relatively faster orientations and for a re-entrant edge (Fig. 4(c)) to slower orientations. 
The shape after elimination of the ears is the shape obtained on the basis of the R(n) 

function alone. In the following, we will refer to these shapes by C(n 1 (+)n2) and C(n 1 (­
)n2). They consist of in- and outgoing straight interfaces of orientations n 1 and n2 with 
possibly a part or a sequence of intersecting parts of the QR curve as a connection. Note 
that a C(n 1 ( + )n2) shape can in principle only contain convex parts of the QR curve and a 

C(n 1 (-)n2) shape only concave parts. So we might say that in the case of the protruding 

edge we have to deal with a convex point source in the origin and in a re-entrant edge with 
a concave point source. This implies that, for the sake of defining a construction algorithm, 
we can neglect the nonapplicable parts of the QR curve beforehand in order to simplify the 
procedure. This can be generalized to the 3D case, and can greatly simplify the 3D 
algorithm too. 
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(a) 

(b) 

_ QR curve 
PRcurve \ , 

---- l 
� 
� 
... 

. ··/ 
...... l 

(c) 
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Fig. 4. Evolution of protruding vs re-entrant edge (2D case). a) PR and QR curves = point of 
departure for evolution constrnction, b) Case of protruding edge. c) Case of re-entrant edge. 

5. The 3D Case: Evolution of Vertices.

Whereas the "elements" in the 2D starting edge were 1) the two edge legs (= half­

infinite lines) and 2) the edge point, we have in the 3D 3-vertex case, for any of the eight 

vertex types, to deal with three kinds of elements in the starting shape: 

1) Three planar elements (sectors of infinite planes, each defined by two of the three half­

line edges),
2) Three half-line elements (edges, meeting in the vertex),

3) One point element (vertex point).

At time t = 0, each of these types starts moving and evolving into a specific type of smface,

characterized by its specific curvature type. In the same order, we obtain

1) From the three sector elements: the same sectors, each displaced by their appropriate

QR(ni) vector,

2) From the three half-infinite edges: a combination of cylindrical and eventually conical

surfaces (see below, section 5.1) and,

3) From the vertex point: the doubly curved part(s) of the QR(n) surface evolving from the

triangle of orientations between n1, n2 and n3 latently present in the protruding, re-entrant

or saddletype point source, with the appropriate curvatures (see below, section 5. 2).
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All surfaces overlap or are connecled at their boundaries, together forming a sheet 
extending to infinity in all directions. The sheet as a whole can have self-intersections. All 
parts of the surface beyond such self-intersections are nonphysical and have to be elimi­
nated. The evolution shape is the surface that survives after this elimination. It is the 3D 
analog of the 2D C(n 1 (±)n2) curve and we will call it the S(n1 (±)n2 (±)n3 (±)) surface, 
which is defined in 3D velocity space. 

5 .1 Cylindrical and conical areas 

Cylindrical surfaces are defined as ruled surfaces, in this case defined by lines parallel 
with the edge. The radius in the edge direction is infinite. Conical surfaces are also ruled 
surfaces (with one infinite radius), but the describing lines all pass through the vertex(= 
cone apex). The cylindrical part is sufficiently clear and it corresponds to the curve QR(n)

for n following the great arc from n; to nk. The construction is identical to that in section 4: 
we have to choose between the concave and the convex part of this QR(n) curve, in 
accordance with the sign of the edge. Whereas this curve is a line curve in 3D velocity 
space, the cylindrical surface is defined by extending every point of it to infinity in the 
direction of the edge. For an edge that is infinite in both directions, the cylindrical surface 
also extends to both sides. In contrast, in our 3D-vertex case we have to deal with a half­
infinite edge line and thus the cylindrical surface only extends in one direction from the 
vertex. All points of this cylindrical surface correspond to kinematic wave trajectories 
which have started from a point on the edge at t = 0. 

The conical part, if it occurs, is related to the possibility that the moving endpoint(= 
vertex point) continuously adds new length to the edge. This is illustrated schematically in 
Fig. 5 where we have chosen a 2D QR curve resembling that in Fig. 4 as a point of departure 

(see insert). This is the case if Rvertex is directed beyond the spatial area defined by the half­
cylindrical part. A conical part is then generated (in the opposite case it is occluded by the 
half-cylindrical part). Points on the conical part have started later, at t > 0, simply because 
the edge had not yet reached the corresponding position at t = 0. As the endpoint of the 
edge rµoves at a constant speed along a straight trajectory, this endpoint emits kinematic 
wave trajectories continuously, i.e., for that conical surface it acts as a velocity source. C14•16l

Correspondingly, the shape of the cone can be calculated by the conical Gibbs-Wulff 
construction, which describes the cone shape induced by a velocity source (see appendix 
and Ref. (9)). 

It is a consequence of this construction that the surface defined by the connected 
cylindrical,plus conical areas has a saddletype character. This can be seen in Fig. 5 (the 
sign of the corner between connected ruling lines on cone and cylinder is opposed to the 
curvature in the other direction). This applies to protruding as well as re-entrant edges. 
This saddletype character as such is sufficient proof that a conical area cannot occur in the 
evolution shape of either a protruding or a re-entrant vertex in principle. However, for the 
saddlepoint case conical areas can survive, because such vertices are meeting points of re­
entrant and protruding edges. 
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Fig. 5. Cylindrical and conical areas as emitted by the line source of a half-infinite edge whose 

endpoint follows a trajectory diverging from the cylindrical area. The example shows a re-entrant 

edge similar to the 2D case sketched in Fig. 4(c). 

5.2 Areas with double curvature 

In the discussion of the 2D case we emphasized the identification of protruding edges 
with convex line somces and of re-entrant edges with concave line sources, instead of the 

conventional identification of protruding edges with the survival of slow orientations, and 

of re-entrant edges with the survival of fast orientations. In the 3D case, this conventional 

identification works for protruding and re-entrant vertices, but it gives no clue for the 

handling of saddlepoint vertices. Here we see the advantage of the alternative identifica­

tion: recognizing the saddletype of the involved point source, we can exclude convex as 

well as concave parts of the QR surface, and even those saddletype parts whose curvatures 

do not correspond to the starting saddlepoint vertex. Note that concave and saddletype 
regions do not necessarily occur in a QR surface. If not, we can reduce the intersection 

calculations for re-entrant edges and re-entrant and saddletype vertices by neglecting the 

QR surface altogether. 

Note that the elimination of the nonapplicable parts of the QR curve/surface(= those 

parts with the inappropriate curvature) is not really necessary for the construction to 

succeed. Rather it is an intuitive aid in understanding which parts of the QR curve/surface 

participate in the end result. As can be seen in the construction procedure of Figs. 4(b) and 
4( c ), the inapplicable parts of QR are eliminated automatically in the 2D case. The same 

happens in the 3D construction. However, depending on the ear-cutting procedure used, 

eliminating them beforehand can reduce the complexity of the ear-cutting algorithm and 

therefore the computing time as well. 
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5.3 The 3D construction procedure in one or two steps 

Now that all surface types that can participate have been mentioned, we may proceed to 
develop the construction procedure for the evolution shape of a vertex. We emphasize that 
this procedure involves a single step for a re-entrant or a protruding vertex, but two steps 
for a saddlepoint vertex. 

In the first step the surface S(n 1 (±)n2 (±)n3 (±)) is determined, but without the conical 
areas. We call this surface S(l\n 1 (±)n2 (±)n3 (±)). For protruding and re-entrant starting 
vertices, this first step is already sufficient, because we know beforehand that S cannot 
include conical areas in any case, and therefore sc1J and S coincide (see section 5.2).

For saddletype starting vertices, however, the surface soJ may have one or more 
(moving) saddlepoint vertices. If so, these moving saddlepoint vertices may still appear in 
the final surface S, but eventually they may have an additional, nucleated, conical area. 
This has to be checked, and the shape of the conical area determined, by the ·''conical 
Gibbs-Wulff constrnction": this is the second step of the procedure (this second step has to 
be worked out for all saddlepoint vertices occurring in SOl). 

Because one of the input data required for the conical Gibbs-Wulff construction is the 
vertex velocity Rsaddiepoint vertex of the saddlepoint vertex under consideration, it is now 
evident why we could not combine this construction directly with step 1. R,actct1epoint vertex is a 
result of the "step 1" procedure, so it is only available afterwards. All vertices found in S(l) 
are trajectory-persistent, and their vector velocity is not affected by eventual conical areas 
nucleated by them: thus, their R,actctlepoint vertex vectors are correct input data for the conical 
Gibbs-Wulff construction. 

The result of the second step (i.e., the conical Gibbs-Wulff checks for all saddlepoint 
vertices occurring in SOl) is a list of n�0 newly discovered conical areas. These do not 
occur in S(l), and therefore we have to amend the preliminary evolution shape S(l) in order 
to take them into account. The result of this amendment -again after elimination of the 
(new) self-intersections- is called S(2). This surface S(2) may contain new saddlepoint 
vertices as compared with S<lJ, which have to be checked again. This iteration continues, 
until new saddlepoint vertices are no longer found. The new vertices found in each of the 
surfaces SCI), s<2J, etc. may be labeled as belonging to the first, second, and so on 
"generations" of vertices. Altogether, in this way, in principle we have to follow a chain of 
a finite number of cycles, each of which yields a new generation of conical areas and 
vertices. These generations are linked in a causal chain, which is to be followed until new 
vertices are no longer detected. We emphasize that, although we have to work our way 
through a list of "steps 2" which may be longer or shorter (�0 checks), the shape of the 
structure is still predictable in a single time step. 

6. Explanation of the Underetched Convex Mask Corner on {100} Silicon

The structure of the underetched convex mask corner on { 100} silicon has a certain 
reputation because of its complexity. The case was investigated in detail by Schroder and 
ObermeierC7l and Schroder<8J for various compositions and temperatures of KOH and
TMAH etchants. Different etch conditions result in different structures, and the nucleating 
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saddlepoint vertices which are the focus of interest in this paper are not always present. 
They are not an inevitable consequence of the saddletype point source character of the 
convex mask corner, as the etch rate function also has to satisfy certain conditions. The 
structure shown in Fig. 1 (courtesy H. Schroder) was etched in pure KOH/H20 solution 
(33wt%. 80°C) and shows a complex shape involving ten vertices in three generations. We 
chose this example to illustrate the principles developed above. 

The starting situation is sketched in Fig. 6(a). The mask edges are aligned along the 
<110> and <10> directions. The first generation, i.e., without the conical areas, is obtained
by intersecting surfaces of types 1, 2 and 3 as referred to in section 5, but still without the
conical sections emerging from the edge endpoints ("step I" of the two-step procedure of
section 5).
Ad 1) With respect to the three planar sectors involved, only one is relevant: the (100) plane
in the 270° exposed sector between the <110> and the <110> edges. Its QR direction is
vertically downwards.
Ad 2) The cylindrical surfaces starting from the mask-edge line sources are the almost­
planar { 111} surfaces whose etching speed is very low. In practice, R(l 11)/R(lOO) may be
as low as 0.01, but in order to make it clear that the velocity is not zero we have exaggerated
R(l 11) in Fig. 6(b) to a visible value. In Figs. 6(b), 6(c) and 6(d) these surfaces are the
trapezoids B 1A1D 1C1 and B2A2D22C2. 

(b) 

(d) 

Fig. 6. The three stages of construction of the underetch shape following the algorithm for the 

saddlepoint vertex. a) Initial shape. b) "First generation", before checking procedure by conical 

Gibbs-Wulff construction. c) Addition of four conical sectors found by checking points A l, A2, Dl 

and D2. d) Addition of two conical sectors found by checking the new point F, resulting from step c). 
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Ad 3) Finally, the doubly curved QR(n) shape emerging from the origin (mask corner) 
should have the appropriate saddletype curvature. The orientations obeying this condition 
are the (110) orientation and a vicinal region near ( 100) tilted towards (110). In Fig. 6(b ), 
the (110) area corresponds to the trapezoid A1A2D 1D2 (at 45° with the mask). The 
triangular region D1M*D2, where M* is the projection of the mask corner onto the receding 
(100) plane, may correspond to the vicinal region near (100), but this identification is
uncertain because the difference with the surrounding exact (100) area is hardly detectable
(see below).

Thus, roughly speaking (i.e., approximating all surfaces by planes), the first-generation 
surface consists of the assembled (100), (110), (111) and (111) planes, each displaced by 
their QR vectors and connected in their intersections (Fig. 6(b )). This surface has fsmr 
saddlepoint vertices Ai , D1 , A2 and D2• A2 and D2 are mirror images of A 1 and D1, 
respectively. The second step in the procedure (section 5) is to check whether the conical 
Gibbs-Wulff construction predicts the nucleation of a conical bevel area for the vertices A/ 
A2 and for D1 /Dz. 

Looking now at the experimental structure, we can observe that the points A1 and A2 do 
exhibit a 4-plane vertex. Consequently we conclude (based on this observation only) that 
a cone is nucleated, and we can also identify the nucleated cones as the planes A1EFG1 and 
A2EFG2, because the latter are new as compared to the first generation structure. The cones 
are almost planar (in agreement with a "sharp" saddlepoint in the PR(n) surface), and their 
orientation is approximately { 411}. The new saddlepoint vertices formed by the second 
generation are E and F, which each have to be checked again for nucleating activity of a 
next generation of conicai areas. 

The points D1 and D2 are also saddlepoint vertices and might in principle nucleate a 
conical area. The triangular region D1M*D2, being in the shadow of the mask, cannot in 
principle have exact (100) orientation because it is not etched directly from above. On the 
other hand, in the experimental structure of Fig. 1, the difference between this triangle and 
the exact (100) surroundings is hardly visible. In precision measurements by Schrodei-(9

) it 
was found that the etch depth at point F was actually about 4% less than that of the (100) 
plane. In the present discussion we will neglect the details of this triangular area D1M*D2, 

because they are hardly visible anyhow. Certainly, we cannot distinguish between the 
options a) that the region con-esponds to a saddletype doubly curved QR surface evolving 
from M, or b) that it is composed of two conical areas nucleated from D1 and D2, as would 
also be possible. In agreement with this, we have omitted the point M* from the sketches 
in Fig. 6 and we have depicted the triangle D1M*D2 as being identical with the surrounding 
(100) area.

Continuing the analysis, we find from the experimental structure that saddlepoint
vertex F nucleates two (symmetrically equivalent) conical sections, FH1K1 and FH2K2• 

These are clearly the result of the second round of "step 2" procedures. Again the cone 
areas are nearly planar, now with orientation roughly { 441 }. Clearly the saddlepoint 
vertex E is shape-persistent. The newly formed vertices Hi , K i, H2 and K2 are all 
protruding and do not need to be checked. This automatically brings the construction 
algorithm to its conclusion. 

Summarizing the entire procedure, we can recognize the underlying causal chain of 
nucleating saddlepoint vertices, linked by nucleated conical sections: area A1A2D1D2, 
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saddlepoint vertices A1+A2 � areas A1EFG1 and A2EFG2, new saddlepoint vertices E and 

F � areas FH1K1 and FH2K2 (end). The resulting structure contains three nucleating 

saddlepoint vertices, three shape-persistent saddlepoint vertices and four protruding verti­

ces, together defining ten areas. 

We have to emphasize that our explanation of this structure, including the connectivity 
of the causal chain, is deduced from the experimentally observed structure. It has not yet 

been checked by starting from the R(n) function and performing all steps of the construc­

tion algorithm numerically, as would be possible. However, we feel that the correspon­

dence between the chain of> 3-edged saddlepoint vertices and the experimental structure is 

sufficiently strong evidence for our explanation, at least as far as the principle is concerned. 

We emphasize that the structure discussed here was chosen to illustrate the principles of 
saddlepoint evolution. It is certainly not representative for all structures that can be 

obtained for the same substrate orientation and mask configuration by etching at different 

temperatures and/or etchant compositions. The experiments by Schroder(9l show clearly

that even slightly different conditions may give rise to significantly different geometries, 

some even without nucleating saddlepoint vertices at all, e.g., for KOH with addition of 

isopropyl alcohol (IPA). Also Lee(17l published a structure for the same crystallographic 

situation (Si and mask orientation), but hydrazine/IP A as the anisotropic etchant, which has 
only regular 3-edged saddlepoint vertices composed of {211} oriented surfaces. This is 

hardly a surprise: we can see in Fig. 1 that some of the surfaces that produce the structure 

of Fig. 6( d) by mutual intersection differ only slightly in orientation. A small change in the 

shape of the R(n) function may therefore markedly affect the relative positions of the 

intersections, and consequently the shapes themselves. 

7. Conclusions

The observation of saddlepoint vertices connecting more than three edges and planes in 

a crystal surface during growth or dissolution is geometrical proof that one or more of the 

planes is nucleated by the presence of the others in the saddlepoint vertex. This concept has 

been developed in the terminology of (3D) kinematic wave theory. We have shown that the 

phenomenon is a straightforward consequence of the principles of kinematic wave theory, 
although this appears to have remained unnoticed to date. The structures developing from 
any given initial shape can be predicted by an algorithm based on this theory. For an 

arbitrary single vertex, including the saddletype case, this can be done in a single time step. 

The phenomenon is of technical importance in the wet-chemical etching of crystals 

such as silicon and quartz for the fabrication of microdevices. Experimentally observed 

structures of the underetched convex mask comer on Si(lOO ) can be fully understood on 

the basis of our algorithm. 

The algorithm for saddletype vertex simulation requires an extra step as compared with 
that for a convex or a concave vertex. This extra step completes the toolbox required for 

numerical simulation of the evolution of arbitrary 3D shapes. 



340 Sensors and Materials, Vol. 13, No. 6 (2001) 

Acknowledgements 

The experiments by H. Schroder were an important source of inspiration for this 

analysis. We acknowledge his permission to use his SEM image in Fig. 1. This work was 

supported by the Dutch Technology Foundation (STW). 

References 

l F. C. Frank: Growth and Peifection of Crystals (John Wiley, New York 1958) p. 411.
2 A. A. Chernov: Sov. Phys. Crystallography 8 (1963) 401.
3 I. V. Katardiev, G. Carter, M. J. Nobes, S. Bay and H. 0. Blom: J. Vac. Sci. Technol. A 12 

(1994) 61. 
4 C.H. Sequin: Sensors and Actuators A 34 (1992) 225. 
5 J. S. Dane! and G. Delapierre: Sensors and Actuators A 31 (1992) 267. 
6 H.K. Trieu and W. Mokwa: J. Micromech. Microeng. 8 (1998) 80. 
7 H. Schroder and E. Obermeyer: J. Micromech. Microeng. 10 (2000) 163. 
8 H. Schroder: "Modell des anisotropen Atzens von einkristallinem Silizium in wilszrigen KOH­

Losungen", Thesis, Berlin 2000. 
9 J. van Suchtelen and E. van Veenendaal: The role of saddlepoint vertices in the kinematic wave 

theory of growth and dissolution of crystals, Phys. Rev. B, submitted. 
10 R. Kern: Morphology of Crystals A, ed. I. Sunagawa (Terra.pub, Tokyo, 1987) Chap.2. 
11 P. Bennema and G. H. Gilmer: Crystal Growth, an introduction, ed. P. Hartmann (North-

Holland, Amsterdam/London 1973) Chap. 10, p. 310. 
12 D. W. Shaw: J. Cryst. Growth 47 (1979) 509. 
13 R. J. Jaccodine: J. Appl. Phys. 33 (1962) 2643. 
14 J. van Suchtelen, A. J. Nijdam, J. G. E. Gardeniers, M. Elwenspoek, E. van Veenendaal, W. J. 

P van Enckevort and E. Vlieg: Generalisation of the kinematic wave theory to growth and 
dissolution of impeifect Crystals, Phys. Rev. B, submitted. 

15 J. van Suchtelen, A. J. Nijdam and E. van Veenendaal: J. Cryst. Growth 198-199 (1999) 17. 
16 J. van Suchtelen: Morphology of Crystals C, ed. I. Sunagawa (Terrapub, Tokyo, 1995). 
17 D. B. Lee: J. Appl. Phys. 40 (1969) 4569. 

APPENDIX: the conical Gibbs-Wulff construction 

All conical interfaces which are nucleated by a moving saddlepoint vertex acting as a 
velocity source during the etch process necessarily obey eq. (1), the connectivity relation, 
which expresses that the surface oriented at n keeps pace with the vertex. This implies that 
the orientations of these interfaces can be found from the intersection of the polar plot 
PR(n) and the sphere P[Rvertex•n]. We call this intersection the conecurve ofRvertex. 

We define the baseplane of R vertex as the plane through the origin perpendicular to 

Rvertex. The conecurve of Rvertex can be projected onto this baseplane from the point 

Rvertex. The projected curve can be considered as the polar plot for the orientation­
dependent advance rate RC2l of the intersections of cone planes with the baseplane,
P<2lRC2l(n

proj). Here llproj is the normal of the intersection line in the baseplane, and pc2J is
used as a symbol for the 2D P operator defined in the baseplane. By analogy with the 



(b) 
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Gibbs-Wulff construction for shapes generated by a point source, the actual intersection of 
the cone areas nucleated by the velocity source and the baseplane correspond with the 
relevant sections of the shape QC2JRC2l(n

proi.) as cut off by the edge sections. The cone area 
itself is formed as the surface obtained by connecting this curve with the apex Rvertex. 
Consequently we call this the conical Gibbs-Wulff construction for the cone shape. 

In the first step of the two-step procedure discussed in section 5, we find moving 
saddlepoint vertices without conical areas. Such a vertex is trajectory-persistent, i.e., its 
existence and trajectory is fixed by n 1 , n2 and n3 which can be determined from the 
evolution shape as found in the first step, and its vector velocity is therefore= R(n 1,n2,n3). 

The planes n 1, n2 and n3 participate in the vertex. In Fig. 7(a) we have depicted such a 
saddlepoint vertex [n 1 (-)n2 (+)n3 (-)] schematically, still without conical areas, as an 
example. The intersections of the sectors with the baseplane can be drawn, they are 
indicated as n2 and n3 in Fig. 7(b). The mutual intersection points of Np and Nq are 

(c) 

Fig. 7. Illustration of cQnical Gibbs-Wulff construction for a saddlepoint vertex. a) Saddlepoint 
vertex [n 1 (-) n2 (+) n3 -(-)] without conical areas, moving upwards+ base plane. b) Conical Gibbs­
Wulff construction for the conical areas nucleated by the moving vertex point, as drawn in the base 
plane. c) Resulting structure. 
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indicated as L
pq· We have chosen a Q<2lR<2l(nproj .) curve which produces conical areas in the

re-entrant edges. Irt Fig. 7(b) the character of the edges shows up in the points L
pq

· L23 

represents a protruding edge, whereas L12 and L 13 represent re-entrant edges. Each of the 
edges in the baseplane evolves according to the method illustrated in Figs. 4(b) and 4( c ). 
Correspondingly, the conical areas can be found from the eventually beveling curves found 
for the three edges in the baseplane, by forming the corresponding�cones to the vertex 
point. A perspective view of the resulting persistent structure of the saddlepoint vertex is 
sketched in Fig. 7(c). 

We emphasize that the use of Fig. 7 to illustrate the principle of the conical Gibbs­
Wulff construction should not be considered to imply that a nucleated cone is always a 
faster area in a re-entrant edge. By the same procedure, a slower conical area can be 
constructed in a protruding edge of a saddlepoint vertex. This is the case in the experimen­
tal structure analyzed in section 6. 




