
Sensors and Materials, Vol. 23, No. 3 (2011) 159–166
MYU Tokyo

S & M 0835

*Corresponding author: e-mail: wuaimin@mail.sim.ac.cn

159

Silicon-on-Insulator-on-Cavity-Structured 
Micropressure Sensor

Aimin Wu*, Xing Wei, Zhifeng Yang, Jing Chen, 
Ming Chen, Dawei Bi, Zhengxuan Zhang and Xi Wang

State Key Laboratory of Functional Materials for Informatics, 
Shanghai Institute of Microsystem and Information Technology, 

Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China

(Received February 9, 2010; accepted July 13, 2010)

Key words: silicon on insulator (SOI), SOI-on-cavity, finite element analysis, pressure sensor

 A new design of a micropressure sensor using stress concentration structure, which is 
fabricated on a silicon-on-insulator (SOI)-on-cavity substrate, is presented in this paper.  
High sensitivity and good linearity can be achieved simultaneously, and it is fabricated 
with a larger process tolerance than that by a traditional process.  Moreover, it has 
potential applications in high-temperature environments.  Mechanical analysis results 
and design rules of the structure based on finite element analysis are also presented.

1. Introduction

 Silicon on insulator (SOI) has been used more and more widely to improve the 
performance of micro-electromechanical systems (MEMS) devices, since SOI-
MEMS offer several advantageous features in comparison with bulk and surface 
micromachining.(1–3)  A novel SOI-based substrate, which has been called “SOI-on-cavity” 
substrate, is proposed to provide more freedom for the design and fabrication of SOI-
MEMS structures in this paper.  Compared with “Si BOX” or “cavity SOI” substrate,(4–7) 
the SOI-on-cavity substrate is produced by bonding an SOI wafer to a Si wafer with pre-
etched cavities, instead of bonding two silicon wafers.
 As one of the most successful commercial MEMS products, pressure sensors 
also benefit from the Si BOX and SOI-on-cavity substrates with low cost and high 
yield owing to the avoidance of the prolonged back-etching in traditional bulk 
micromachining.(4–7)  However, piezoresistive sensors on Si BOX substrates fail to 
operate at high temperature owing to the reverse leakage of the p-n junction.  By 
contrast, the SOI-on-cavity substrate has a buried oxide layer acting as an isolation layer 
for potential applications in harsh environments.(8)

 For a flat diaphragm pressure sensor with lateral size a and diaphragm thickness h, 
a higher sensitivity means a larger a/h, whereas the displacement of the diaphragm is 
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directly proportional to a4/h4, i.e., the larger the a/h ratio, the larger the displacement, 
which can lead to severe nonlinearity issues.  Severe nonlinearity might make a very 
sensitive device of little practical value.  To solve the dilemma, stress concentration 
structures(9–11) were introduced to design a sensitive pressure sensor with good linearity.
 Nevertheless, all these stress concentration structures mentioned in the literature 
require deep anisotropic etching from the backside, so the feature sizes of the structures 
could not be defined accurately, i.e., fabrication of the devices requires very tight process 
control.  The pressure sensor demonstrated in this paper combines the SOI-on-cavity 
substrate and front beam-diaphragm structure.  It has all the advantages in nearly all 
aspects over other existing structures.  The design rules based on the results of finite 
element analysis (FEA) are also demonstrated in this paper.

2. Simulation and Design

 A front beam-diaphragm structure is used to reduce the deflection of the diaphragm 
without loss of sensitivity.  Figure 1 is a typical stress contour graph of the beam-
diaphragm structure under pressure.  It can be seen clearly that the stress is first 
concentrated from the diaphragm to the beam owing to the thickness difference; then the 
stress is further concentrated at three narrow regions of the beam owing to the difference 
in width.
 Since the FEA results between the models with and without the oxide layer are no 
more than 5%,(12) it is reasonable to simplify the multilayered SOI structure to bulk 
silicon model during stress simulation.  The stress distribution on the axis line of the 
beam, simulated in ANSYS, is shown in Fig. 2.  The results show that the beam stress 

Fig. 1. Typical stress contour graph of the beam-diaphragm structures.
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is concentrated at the three narrow regions.  The stress on the central region has a sign 
opposite to that on the narrow sections at the two ends.  Therefore, to design an X-ducer 
pressure sensor,(13,14) the X-ducer should be put in the center region or the two ends to 
achieve the largest stress, which corresponds to the maximum sensitivity.  Since the 
beam is made parallel to (110), the axis of the X-ducer should have an included angle at 
45° with the beam for the largest output.(15)

 To design a beam-diaphragm structure means to choose the optimum geometrical 
sizes of the beam and the diaphragm.  Firstly, the thickness and lateral sizes of the 
diaphragm are mainly determined on the basis of the pressure range of the device.  Thus, 
there are five remaining parameters of the beam to consider, namely, H, L1, L2, W1, and 
W2, as marked in Fig. 3.  As the flexure rigidity of the plate is proportional to the cube 
of its thickness, a difference in thickness by a factor of 2 to 3 often gives a sufficient 
difference in flexure rigidity for stress adjustment.(16) Thus, H is often defined in this 
way when the dimensions of the diaphragm are chosen.  Then, the effects of the other 
four parameters, L1, L2, W1, and W2, on the stress distribution are simulated.  When a 
specific parameter is considered, the other parameters are fixed to a specific value, so the 
change in the stress at points O (center of the central narrow region) and Q (center of the 
end narrow region) with the appointed variable could be demonstrated clearly through 
comparisons.
 Since the stress at O has a sign opposite to the stress at Q, the absolute values of O 
and Q are used in the comparison.  Figures 4(a) and 4(b) show that W1 and L1 should be 
made as small as possible for effective stress concentration, as long as the resistors can 
be accommodated in the narrow regions of the beam.  It is shown in Fig. 4(c) that the 
larger the L1/L2 , the larger the stress at Q, while the stress at O is exactly the opposite, 
which means that L2 is determined by the position of the X-ducer, around point O or 
point Q.  As for W2, when the stresses at O and Q reach their peak values, W2 equals 

Fig. 2. Stress on the axial line of the beam diaphragm structure.
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about half the width of the diaphragm, according to Fig. 4(d).  Therefore, to obtain the 
largest sensitivity, W1 and L1 should be made as small as possible, and W2 should be an 
intermediate value for the X-ducer pressure sensor.  L2 should be made slightly larger 
than L1/2.5 when the X-ducer is placed at the central region of the beam.

3. Fabrication of the Device

 As can be seen from Figs. 5(a)–5(e), the general structure of the pressure sensor is 
formed by SOI-Si wafer bonding.  The original SOI wafer has a 25-µm-thick top Si layer 
and a 3-µm-thick buried oxide layer.  Then, the backside of the top SOI wafer is thinned 
until 2 microns of the Si layer is left.  The pre-etched cavity in the Si wafer is 1,800×2,000 
µm2 with the depth at 25 µm, obtained by anisotropic etching prior to wafer bonding, 
which can be easily adjusted according to the displacement of the diaphragm for overload 
protection.  Since the hole at the backside is only used for connecting the cavity with the 
outside, there are no stringent requirements on process control.  The beam diaphragm 
and the X-ducer are sculpted through dry etching of the top SOI structure.  The X-ducer 
is placed at the central narrow region, isolated from the beam diaphragm with the BOX 
layer.  The fabrication flow is finished after the deposition and the patterning of the 
aluminum electrode.
 As for the process tolerance of the device, the SOI-Si bonding and thinning process 
are very similar to the process of fabricating thick-film SOI wafers, which is mature 
and reliable.  The ultrathin diaphragm, which is crucial to the range and performance 
of the sensor, is obtained by dry etching the thin top Si layer of the original SOI wafer.  
Compared with obtaining a several-micron-thick film through prolonged etching of an 

Fig. 3. Schematic of the X-ducer micropressure sensor.
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entire wafer in the structures mentioned above, avoidance of an etching-through issue 
is much easier, which indicates a larger process tolerance than that of the traditional 
devices.

4. Results and Discussion

 The chip size of the X-ducer micropressure sensor was 3×3 mm2.  The geometric 
parameters were H = 20 µm, h = 5 µm, a = 1,800 µm, b = 2,000 µm, W1 = 300 µm, 
W2 = 1,000 µm, L1 = 200 µm and L2 = 200 µm.  The internal structure of the device is 
shown in Fig. 6.  The measurements were performed in a sealed chamber using a Druck 
DPI610 Portable Pressure Calibrator at room temperature (RT) and 180°C, and 5 V DC 
was supplied as input.  The pressure range used was 2 kPa.  For each device, rising and 
falling turn measurements were carried out ten times to obtain the average sensitivity 
and nonlinearity, and ten points were selected in each turn.  As shown in Fig. 7, the 

Fig. 4. Stress dependence on specific parameters for a beam-diaphragm structure under 2 kPa 
pressure with fixed parameters of the beam diaphragm: h = 5 µm, H = 20 µm, a = 1,800 µm, b = 
2,000 µm.  (a) Stress dependence on W1 with L1 = 400, L2 = 200 µm, W2 = 1,000 µm; (b) Stress 
dependence on L1 with fixed L1/L2 = 2, W1 = 300 µm, W2 = 1,000 µm;  (c) Stress dependence on 
L1/L2 with L2 = 200 µm, W1 = 300, W2 = 1,000 µm; (d) Stress dependence on W2 with W1 = 240 µm, 
L1 = 400, L2 = 200 µm.

(a) (b)

(c) (d)
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sensitivity was 3.6 mV/V/kPa at 25°C, and the nonlinearity of the sensor was about 
0.51%, which is a fairly good demonstration in comparison with other reports.(17–19)  
The measurement for high temperature was limited to 180°C owing to the simplicity 
of the package.  The sensitivity was reduced to 2.8 mV/V/kPa at 180°C without loss of 
nonlinearity.  The decrease in sensitivity is considered to be due to the negative effect 
of the Si piezoresistive factor of varying temperature, which could be adjusted by 
introducing a temperature compensation circuit.

Fig. 5. Schematic fabrication flow of the SOI-on-cavity-structured pressure sensor.  (a) Etching 
to form the cavity and hole; (b) SOI-Si bonding; (c) thinning of the backside; (d) fabrication of the 
beam-diaphragm structure; (e) schematic of the X-ducer design.

Fig. 6. Internal structure of the X-ducer micropressure sensor.
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 Furthermore, the pressure range can be conveniently lowered by selecting the 
appropriate SOI wafer or increasing the dry etching depth, i.e., choosing the proper h and 
H on the basis of the design rules.  The masks are still applicable in this case, which is 
beneficial to minimize the cost.
 The design rules can also be used for Wheatstone bridge pressure sensors.  To obtain 
maximum sensitivity, the four resistors should be made on the three narrow regions of 
the beam with two at the center and the others at the two ends.  For a Wheatstone bridge, 
the nonlinearity is further affected by the nonlinearity of the resistors, which means that 
the balance of the stresses in the four resistors has to be considered.
 In conclusion, a pressure sensor combining an SOI-on-cavity substrate and a stress 
concentration structure is demonstrated, realizing high sensitivity and good linearity 
simultaneously, which can be fabricated with a large process tolerance compared with 
that by a traditional bulk Si micromachining process.  Design rules for the structure 
based on mechanical simulation results are also presented.  Since only parts of the 
specifications are provided in this article, more characteristics will be investigated 
to realize a practical industrial product for low-pressure-range applications in harsh 
environments.
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Fig. 7. Mean value of full-scale output for rising and fall test cycle at RT and 180°C.
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